
The Ethanolamine Permease EutH Promotes Vacuole
Adaptation of Salmonella enterica and Listeria monocytogenes
during Macrophage Infection

Christopher J. Anderson,a John Satkovich,a Volkan K. Köseoğlu,a Hervé Agaisse,a Melissa M. Kendalla
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ABSTRACT Ethanolamine is a ubiquitous and essential molecule within a host. Sig-
nificantly, bacterial pathogens exploit ethanolamine during infection to promote
growth and regulate virulence. The ethanolamine permease EutH is dispensable for
growth in vitro under standard conditions, whereas EutH is required for ethanol-
amine utilization at low pH. These findings suggested a model in which EutH facili-
tates diffusion of ethanolamine into the bacterial cell in acidic environments. To
date, the ecological significance of this model has not been thoroughly investigated,
and the importance of EutH to bacterial growth under physiologically relevant con-
ditions is not known. During infection, immune cells internalize invading bacteria
within an acidic, nutrient-depleted vacuole called the phagosome. Here, we investi-
gated the hypothesis that EutH promotes bacterial survival following phagocytosis.
Our findings indicate that EutH is important for survival and replication of the facul-
tative intracellular pathogens Salmonella enterica serovar Typhimurium and Listeria
monocytogenes during prolonged or transient exposure to the phagosome, respec-
tively. Furthermore, in agreement with EutH being important in the acidic environ-
ment, neutralization of the vacuole abolished the requirement for EutH. Significantly,
consistent with a role for EutH in promoting intramacrophage survival, EutH was not
required during S. Typhimurium local intestinal infection but specifically conferred
an advantage upon dissemination to peripheral organs. These findings reveal a
physiologically relevant and conserved role for EutH in spatiotemporal niche adapta-
tion during infection.
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Ethanolamine (EA) is a ubiquitous molecule within a host as a base constituent of
phosphatidylethanolamine (PE), an abundant lipid in mammalian and bacterial cell

membranes. Additionally, free EA is present within cells and in bodily fluids (1–5). In
mammals, EA-containing lipids as well as EA itself are essential for health by modulating
immune processes, energy balance, cell growth, regulated cell death pathways, and
cardioprotection (4, 6–12). In bacteria, EA plays a dynamic role as a metabolite that
promotes growth of pathogens during infection as well as a signal that modulates
virulence (13–20). Genes encoding EA metabolism and signaling are carried in the EA
utilization (eut) locus. eut loci have been identified in nearly 100 fully sequenced
bacterial genomes and can be generally classified according to the number of genes
within a respective locus (short versus long) (21). The short loci may contain only the
genes encoding the EA-ammonia lyase EutBC, which catalyzes the first step in the
breakdown of EA. In contrast, the long loci may also encode autoregulatory compo-
nents, auxiliary proteins involved in EA catabolism, as well as genes encoding a
microcompartment (22). Significantly, most short and long eut loci encode an EA
permease—EutH or Eat (21). In vitro studies have shown that EutH and Eat are
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dispensable for bacterial growth in vitro under standard conditions (23–27), whereas
EutH is required for EA utilization at low pH, suggesting a model in which EutH
facilitates EA diffusion into the bacterial cell in acidic environments (25). To date, an
ecologically relevant role for EutH in EA utilization and/or signaling has not been
established.

Salmonella enterica serovar Typhimurium and Listeria monocytogenes are facultative
intracellular pathogens that cause acute or mild gastroenteritis, respectively, and can
cause invasive systemic disease in susceptible individuals. Importantly, both S. Typhi-
murium and L. monocytogenes exploit EA to promote pathogenesis (13, 18, 20, 28). In
S. Typhimurium, the eut locus contains 17 genes, including the transcription factor EutR
(23, 29, 30) (Fig. 1A). In response to EA and vitamin B12, EutR directly activates eut
expression to promote EA utilization (16, 29). In the intestine, S. Typhimurium exploits
EA as a noncompetitive metabolite to sidestep nutritional competition from the
microbiota and establish infection (13, 20). Subsequently, S. Typhimurium invades the
epithelial barrier and penetrates to the lamina propria, where S. Typhimurium is
internalized by macrophages. In the intramacrophage environment, EutR promotes S.
Typhimurium survival and replication by directly activating expression of ssrB (13),
which encodes SsrB, the master regulator of Salmonella pathogenicity island 2 (SPI-2)
(31–33). SPI-2 encodes the type 3 secretion system 2 (T3SS-2) and effectors that convert
the phagosome into a replicative niche called the Salmonella-containing vacuole (SCV)
(34–37). Significantly, EutR-mediated regulation of SPI-2 during systemic infection is
independent of EA metabolism (13), suggesting a dynamic role for EutR in S. Typhi-
murium host colonization. In L. monocytogenes, the eut locus contains at least 19 genes
(Fig. 1B) that are regulated by a two-component system, EutVW, and a riboswitch-
containing small RNA (sRNA), Rli55/EutX, that functions as an antiterminator (18, 38, 39).
Similar to S. Typhimurium, EA metabolism also promotes L. monocytogenes host
colonization, as disruption of eutB impacts growth of L. monocytogenes in HeLa cells as
well as during systemic infection (18, 28). Although the disease progressions of S.
Typhimurium and L. monocytogenes share common features, L. monocytogenes uses a
distinct strategy for replicating within host cells. L. monocytogenes secretes the pore-
forming toxin listeriolysin O (LLO) and the phospholipases C to escape the phagosome
and replicate in the cytosol (40–44). Regardless of prolonged or transient exposure to
the vacuole, S. Typhimurium and L. monocytogenes must be able to withstand the
acidic, nutrient-limiting environment of the phagosome to cause disease. Here, we
provide evidence that the EA permease EutH contributes to fitness of these pathogens
during macrophage infection. Furthermore, in agreement with EutH being important in
the acidic environment, neutralization of the vacuole abolished the requirement for
EutH. Additionally, although EutH was dispensable during S. Typhimurium local intes-
tinal infection, EutH specifically conferred an advantage during dissemination to pe-
ripheral organs. These findings reveal a conserved and physiologically relevant role for
EutH in spatiotemporal niche adaptation during infection.

RESULTS AND DISCUSSION
EutH promotes S. Typhimurium survival with macrophages. eutH was originally

identified as an open reading frame within the eut locus (27). Sequence analysis and

FIG 1 Schematic of the eut locus in (A) S. Typhimurium or (B) L. monocytogenes.
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structure predictions indicated that EutH was a hydrophobic protein containing at least
six transmembrane helices, and thus EutH was hypothesized to function as a permease
(27). Although deletion of eutH did not render S. Typhimurium unable to utilize EA in
vitro, this deletion resulted in mild attenuation during intraperitoneal (i.p.) mouse
infection, suggesting that EutH and EA were important for S. Typhimurium replication
in vivo (27). Subsequent studies confirmed that eutH was dispensable for bacterial
growth in vitro under standard conditions (23, 25) (Fig. 2A) but also showed that EA
enters cells in a charge-dependent manner (25). These latter findings suggested that pH
may influence the requirement for EutH in EA utilization (25). Consistent with this idea,

FIG 2 EutH promotes S. Typhimurium survival within macrophages. (A) In vitro growth curve of the WT
S. Typhimurium (SL1344) and the ΔeutH (CJA052) strains grown in LB broth. Each data point shows the
average from three biological replicates. Error bars represent the mean � standard deviation (SD). (B)
Intramacrophage survival and replication of WT (CJA034), ΔeutR (CJA032), or eutR complemented
(CJA033) strains in peritoneal exudate macrophages after 7 h postphagocytosis. n � 9 replicates per
strain. (C) Intramacrophage survival and replication of WT (AJK61), ΔeutR (CJA023), or ΔeutH (CJA043) S.
Typhimurium strains in RAW macrophages after 5 h postphagocytosis. n � 18 replicates per strain. (D)
Intramacrophage survival and replication of WT S. Typhimurium (AJK61), ΔeutH (CJA043), and ΔeutH
ΔeutR (CJA168) strains after 5 h postphagocytosis in BMDMs. n � 15 replicates per strain. (E) Intramac-
rophage survival and replication of WT S. Typhimurium (CJA034), ΔeutH (CJA087), and eutH (CJA184)
complemented strains after 5 h postphagocytosis in BMDMs. n � 18 replicates per strain. (F) Intramac-
rophage survival and replication of ΔssaV, ΔssaV ΔeutR (CJA064), and ΔssaV ΔeutH (CJA172) S. Typhi-
murium strains after 5 h postphagocytosis in BMDMs. ssaV encodes an essential component of the
T3SS-2, and the ΔssaV strain is completely defective for T3SS-2-mediated secretion (48). n � 9 replicates
per strain. (G) Initial phagocytosis of S. Typhimurium WT (AJK61), ΔeutH (CJA043), and ΔeutH ΔeutR
(CJA168) strains at time zero (see Materials and Methods). n � 24 replicates per strain. (H) In vitro growth
curve of the S. Typhimurium WT (SL1344) and ΔeutH (CJA052) strains grown in SPI-2 inducing medium.
Each data point shows the average from three biological replicates. Error bars represent the mean � SD.
For panels B to G, the mean and standard error of the mean (SEM) are shown. *, P � 0.05; **, P � 0.005;
***, P � 0.0005. P values of �0.05 are not significant (ns).
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a ΔeutH S. Typhimurium strain was unable to grow on EA at low pH (with the addition
of 20 or 41 mM EA to the culture medium) (25). These data suggested a model in which
EutH facilitates EA diffusion into the bacterial cell in acidic environments (25), which we
hypothesize includes the phagosome of macrophages. EA signaling through the tran-
scription factor EutR promotes S. Typhimurium fitness within macrophages (Fig. 2B)
(13); therefore, we examined the importance of EutH to S. Typhimurium survival during
macrophage infection. In accordance with the proposed model, the ΔeutH S. Typhimu-
rium strain was similarly attenuated compared to the ΔeutR or ΔeutH ΔeutR strains
following infection of RAW macrophages or bone marrow-derived macrophages (BM-
DMs), respectively (Fig. 2C and D). Furthermore, trans-complementation with eutS-H
expressed from the native eut P1 promoter restored survival of the ΔeutH strain within
BMDMs to near-wild-type (WT) levels (Fig. 2E). In agreement with our previous findings
(13), the macrophage survival phenotype was dependent on the T3SS-2 (Fig. 2F).
Importantly, there were no differences in phagocytic uptake of the ΔeutH or ΔeutH
ΔeutR strains compared to the WT (Fig. 2G) or during in vitro growth in a macrophage-
like medium (SPI-2 inducing medium) (Fig. 2H).

As an alternative method to demonstrate the importance of EutH to EA-enhanced
survival, we infected RAW macrophages and then supplemented the medium with EA
following gentamicin treatment. The latter step ensured that the added EA was
restricted to internalized bacteria. EA supplementation augmented WT S. Typhimurium
survival within macrophages in a concentration-dependent manner (Fig. 3A). In con-
trast, EA addition did not affect survival of the ΔeutR and ΔeutH strains (Fig. 3B and C),
and EA enhanced survival of the complemented ΔeutH strain (Fig. 3D). Collectively,
these data indicate that EutH is required for EA-dependent survival and replication
within macrophages.

Vacuole acidification drives the requirement for EutH. Uncharged EA freely
diffuses across the bacterial membrane, whereas protonated EA cannot. The pH of the
environment influences the ratio of uncharged to charged EA. At low pH, the proton-
ated form of EA predominates, and EutH facilitates diffusion of EA into the bacterial cell
(25). Therefore, to further test the proposed model that EutH mediates EA diffusion

FIG 3 Bacterial survival following EA supplementation. (A) Intramacrophage survival and replication of
WT S. Typhimurium (AJK61) after 5 h postphagocytosis in RAW macrophages without or with EA
supplementation. n � 9. (B) Intramacrophage survival and replication of ΔeutR S. Typhimurium (CJA023)
after 5 h postphagocytosis in RAW macrophages without or with EA supplementation. n � 9. (C)
Intramacrophage survival and replication of ΔeutH S. Typhimurium (CJA043) after 5 h postphagocytosis
in RAW macrophages without or with EA supplementation. n � 9. (D) Intramacrophage survival and
replication of the eutH complemented strain (eutH�) of S. Typhimurium (CJA184) after 5 h postphago-
cytosis in RAW macrophages without or with EA supplementation. n � 12. For all values, the mean and
SEM are shown. *, P � 0.05. P values of �0.05 are not significant (ns).
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specifically at low pH, we examined how neutralization of the vacuole affected the
requirement for EutH in enhancing S. Typhimurium survival within macrophages. For
the initial experiments, BMDMs were treated with concanamycin A, an inhibitor of
vacuolar ATPases that prevents acidification. Consistent with our previous data, in the
untreated BMDMs, the ΔeutH strain was significantly less fit than the WT. However, after
concanamycin A treatment, both strains were significantly attenuated compared to
infection of untreated BMDMs and survived similarly to each other (Fig. 4A). Acidifica-
tion of the SCV is required for expression of SPI-2 and formation of the T3SS-2 (45–50),
and complete ablation of vacuole acidification with concanamycin A renders S. Typhi-
murium susceptible to macrophage killing (47). Thus, these data further underscore a
role for EA signaling in enhancing T3SS-2-mediated survival and replication. Next, we
repeated these experiments using NH4Cl, a mild base. Treatment with NH4Cl did not
impact replication of WT S. Typhimurium during BMDM infection; however, neutraliza-
tion using 10 or 50 mM NH4Cl restored survival of the ΔeutH strain to nearly WT levels
(Fig. 4B). These findings reveal that EutH contributes to S. Typhimurium intramac-
rophage survival and replication specifically in response to vacuole acidification.

EutH promotes L. monocytogenes vacuole adaptation. To examine whether EutH
plays a more general role in bacterial fitness within the acidic environment, we assessed
the requirement for EutH in L. monocytogenes during in vitro growth as well as during
BMDM infection. Similar to S. Typhimurium, EutH did not impact L. monocytogenes
growth in vitro (Fig. 5A) or uptake by macrophages (Fig. 5B). Although L. monocytogenes
can begin to escape the vacuole within 30 min following internalization (51, 52), the
majority of L. monocytogenes bacteria are contained within the vacuole during the first
2 to 3 h following uptake (53, 54) and then escape to the cytosol within 5 to 10 h
(54–57). Therefore, we assessed the contribution of EutH to L. monocytogenes survival
and replication at 2, 5, and 8 h postinfection (hpi) as time points reflective of vacuolar
containment (2 h) and cytosolic replication (5 and 8 h). At 2 hpi, the ΔeutH L.
monocytogenes strain was significantly attenuated compared to the WT (Fig. 5C).
Correlating with increased access to the neutral, nutrient-replete cytosol (58), similar
numbers of WT and ΔeutH cells were recovered as infection progressed (Fig. 5C).
Consistent with the S. Typhimurium neutralization assays, treatment of macrophages

FIG 4 EutH enhances S. Typhimurium fitness in the acidified SCV. (A) Intramacrophage survival and
replication of the WT (AJK61) or ΔeutH (CJA043) strain in BMDMs without or with concanamycin A treatment.
n � 9 replicates per strain per condition. (B) Intramacrophage survival and replication of the WT (AJK61) or
ΔeutH (CJA043) strain in BMDMs without or with NH4Cl. n � 9 replicates per strain per condition. The mean
and SEM are shown. *, P � 0.05; **, P � 0.005. P values of �0.05 are not significant (ns).
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with concanamycin A ablated attenuation of the eutH L. monocytogenes strain in
comparison to the WT strain (Fig. 5D).

LLO is essential for L. monocytogenes escape from the vacuole (43, 59). Therefore, to
further interrogate the importance of EutH to L. monocytogenes fitness within the
vacuole, we assessed time-dependent survival and replication of L. monocytogenes
carrying a deletion of hly (that encodes LLO) in the WT or ΔeutH background strains. At
2 hpi, we again measured a significant decrease in bacterial recovery (CFU) of the ΔeutH
strain compared to the WT, and no significant differences in CFU were measured at 5
or 8 hpi (Fig. 5E). Notably, the ΔeutH, Δhly, and Δhly ΔeutH strains displayed similar
survival defects within the first 2 hpi (Fig. 5E and F). In agreement with previous studies
(43, 60), our data show that the Δhly strain did not replicate within the macrophages,
and we did not measure any further attenuation in the context of the eutH deletion (Fig.
5E and F). A caveat to this experiment is that LLO functions in many aspects of L.
monocytogenes pathogenesis (61), such as intracellular growth and survival within the
phagosome (43, 60); therefore, further attenuation may not be detectable. Alternatively,
EutH- and LLO-dependent survival may be functionally linked. Additional studies are
needed to fully understand how EutH impacts L. monocytogenes survival within the

FIG 5 EutH contributes to survival of WT L. monocytogenes during macrophage infection. (A) In vitro
growth curve of WT (10403S) and ΔeutH (VK01) L. monocytogenes strains grown in LB broth. Each data
point shows the average from three biological replicates. Error bars represent the mean � SD. (B) Initial
phagocytosis of WT (10403S) and ΔeutH (VK01) L. monocytogenes strains at time zero (see Materials and
Methods). (C) Intramacrophage survival and replication of WT (10403S) or ΔeutH (VK01) L. monocytogenes
strains in BMDMs at the indicated times postphagocytosis. 2 hpi, n � 18 replicates per strain; 5 hpi, n �
12 replicates per strain; 8 hpi, n � 9 replicates per strain. For each time point, WT survival and replication
were set to 100%. (D) Intramacrophage survival and replication of WT (10403S) or ΔeutH (VK01) L.
monocytogenes strains in BMDMs without or with concanamycin A treatment at 2 h postphagocytosis.
n � 9 replicates per strain per condition. (E) Intramacrophage CFU per milliliter of the WT (10403S), ΔeutH
(VK01), Δhly (DP-2161), or Δhly ΔeutH (VK06) strains at time zero and 2, 5, and 8 h postphagocytosis.
n � 12 to 18 replicates per strain per time point. (F) The percentage of change in intramacrophage
survival and replication over time is calculated from data shown in panel E. Each percentage is indicative
of the change between the two time points listed and was calculated as (later time point – earlier time
point)/(earlier time point). For panels B to E, the mean and SEM are shown. *, P � 0.05; **, P � 0.005. P
values of �0.05 are not significant (ns).
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phagosome. Nevertheless, these findings reveal a conserved role for EutH in pH-
dependent vacuole adaptation in distinct intracellular pathogens.

EutH plays a spatiotemporal role in EA signaling during mammalian infection.
The gastrointestinal (GI) tract and intramacrophage environments are primary niches
for S. Typhimurium during host infection (62). The GI tract is characterized by neutral
pH and millimolar concentrations of EA (20, 63, 64), indicating that during infection,
EutH may play a niche-specific role in host adaptation. To investigate this idea, we
performed competition experiments using S. Typhimurium-infected murine models of
colitis and systemic infection (65). To examine the importance of EutH to S. Typhimu-
rium intestinal colonization, we infected streptomycin-treated mice with equal num-
bers of cells of the WT and ΔeutH strains or with equal numbers of cells of the ΔeutR
and ΔeutH strains and assessed bacterial burden in the intestinal contents as well as in
the colon and spleen. The ΔeutR strain cannot metabolize EA, and this strain is
attenuated for intestinal colonization (13). Equal numbers of cells of the WT and ΔeutH
strains were recovered from intestinal contents at 2 and 4 days postinfection (dpi) as
well as from the colon and spleen (4 dpi) (Fig. 6A), whereas the ΔeutH strain signifi-
cantly outcompeted the ΔeutR strain under all conditions (Fig. 6B). These findings
indicate that EutH is dispensable for EutR-dependent regulation of EA utilization during
colitis.

To evaluate the role of EutH in S. Typhimurium dissemination, we intraperitoneally
infected mice and assessed bacterial numbers recovered from the spleen at 6 hpi.
Macrophages play a major role in S. Typhimurium dissemination, and in agreement
with data shown in Fig. 2 to 4, the ΔeutH strain was recovered in significantly lower

FIG 6 Contribution of EutH to S. Typhimurium fitness in vivo. (A) Competitive indices of the ΔeutH
(CJA046) versus WT (SL1344) strain during colitis. n � 7 or 8 mice. (B) Competitive indices of the ΔeutH
(CJA052) versus ΔeutR (CJA007) strain during colitis. n � 8 mice. (C) Competitive indices in the spleen of
the ΔeutH (CJA046) versus WT (SL1344) strain, the ΔeutH complemented (CJA192) (eutH�, which
contains pGEN::eutS-eutH) versus WT (CJA182, which contains pGEN empty vector) strain, the ΔeutH
(CJA052) versus ΔeutR (CJA007) strain, the ΔeutH (CJA043) versus ΔeutB (CJA018) strain, and the ΔssaV
ΔeutH (CJA172) versus ΔssaV strain at 6 hpi following intraperitoneal injection. n � 8 to 11 mice per
competition. The median and interquartile range are shown *, P � 0.05. P values of �0.05 are not
significant (ns).
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numbers compared to the WT, and this defect could be complemented when eutH was
expressed in trans (Fig. 6C). A previous study reported that an eutH deletion strain did
not significantly impact dissemination (27); however, the experimental details were not
described and may contribute to differences between these studies. Additionally,
because the difference in recovery of the WT and ΔeutH strains was �2-fold, we
substantiated the importance of EutH to systemic infection by performing competition
infections between the ΔeutH and ΔeutR strains as well as between the ΔeutH and
ΔeutB strains. We previously reported that the ΔeutR strain was attenuated during early
systemic infection compared to the WT and the ΔeutB strains as EutR regulates SPI-2
independently of EA metabolism (13). In agreement with a role for EutH in EutR
signaling and macrophage survival, the ΔeutH strain was recovered in similar numbers
compared to the ΔeutR strain and was significantly outcompeted by the ΔeutB strain
(Fig. 6C). Moreover, equal numbers of the T3SS-2-deficient ΔssaV and ΔssaV ΔeutH
strains were recovered, which further underscores the requirement of the T3SS-2 in
EA-dependent dissemination (Fig. 6C). Collectively, these data demonstrate that EutH
contributes to S. Typhimurium dissemination during infection. Significantly, the initial
study that focused on EutH concluded with the idea that EutH is selectively maintained
within bacterial genomes because S. Typhimurium (and presumably other bacteria)
frequently encounters EA at concentrations or under pH conditions that limit the
external unprotonated EA— conditions under which EutH is required to enhance the
ability to utilize EA (25). Our findings are consistent with the original in vitro model
proposed nearly 15 years ago and reveal a physiologically relevant role for EutH in
spatiotemporal niche adaptation during infection (Fig. 7A and B).

Conclusions Following entry into host cells, the majority of intracellular pathogens
are at least initially trapped within a host vacuole. Although bacterial strategies to
withstand or evade immune defenses within the phagosome may be redundant,

FIG 7 EutH plays a spatiotemporal role in S. Typhimurium niche adaptation. (A) EutH is dispensable for EA
utilization in the intestine. (B) EutH contributes to EutR-dependent signaling and S. Typhimurium survival and
replication during systemic infection.
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many are specific to a particular pathogen (66). In contrast, host-specific signals that
promote virulence programs and/or metabolic processes may be shared among
diverse pathogens. Indeed, EA is a seemingly ubiquitous molecule within the host,
and diverse pathogens rely on EA as a metabolite to support growth during host
infection as well as co-opt EA as a signal to modulate virulence. Although a deletion
of eutH does not ablate bacterial virulence, EutH consistently and reproducibly
enhanced bacterial survival and replication within the phagosome and during S.
Typhimurium systemic infection. Altogether, our findings demonstrate that the EA
permease EutH contributes to the ability of distinct bacterial pathogens to survive
within the acidified vacuole of macrophages.

MATERIALS AND METHODS
Strains and plasmids. The bacterial strains and plasmids used in this study are listed in Table S1 in

the supplemental material. S. Typhimurium cultures were routinely grown overnight in LB broth with
antibiotics when appropriate. Antibiotics were used in the following concentrations: ampicillin (100
�g/ml), streptomycin (100 �g/ml), chloramphenicol (20 �g/ml), and kanamycin (50 �g/ml). SPI-2-
inducing medium was prepared as described: 100 mM Bis/Tris-HCl (pH 7.0), 5 mM KCl, 7.5 mM (NH4)2SO4,
0.5 mM K2SO4, 1 mM KH2PO4, 38 mM glycerol, 0.1% Casamino Acids, and 8 �M MgCl2 (67). Strains of L.
monocytogenes were routinely grown overnight in brain heart infusion (BHI) broth without antibiotics.

Deletions of eutR and eutH were constructed in the WT S. Typhimurium SL1344, invG mutant, or ssaV
mutant backgrounds using �-red mutagenesis (68) using primers eutR_�-red F/R or eutH_�-red F/R listed
in Table S2 in the supplemental material. To create the nonpolar deletions, the chloramphenicol or
kanamycin cassettes were resolved using pCP20 (68). Unresolved strains were used as indicated for
competition experiments in vivo. The invG eutH eutR mutant strain (CJA168) was left unresolved, as
subsequent use of pCP20 removed all genomic DNA between eutH and eutR. The eutH mutant was
complemented with pCJA031. pCJA031 was constructed by amplifying S. Typhimurium genomic DNA
with primers eutH_complement F/R, which are specific to the eut operon to include the native P1
promoter through eutH (listed in Table S2). Amplified PCR product was digested with NdeI and NotI and
inserted into pGEN-MCS (69) (Addgene MTA). When appropriate, WT and deletion strains were trans-
formed with empty pGEN-MCS vectors as controls.

An in-frame L. monocytogenes 10403S eutH deletion mutant strain and listeriolysin O mutant hly eutH
deletion strain were generated as described previously (70) with modifications. Briefly, primer pairs
ΔeutH.PA/ΔeutH.PB and ΔeutH.PC/ΔeutH.PD (Table S2) were used to amplify two 400-bp fragments
upstream and downstream of eutH. Subsequently, an 800-bp deletion fragment was constructed via
joining these 400-bp DNA fragments by overlap extension PCR with the ΔeutH.PA/ΔeutH.PD pair. The
800-bp deletion fragment was cloned into the pMAD vector after restriction digestion with EcoRI and
BamHI (New England BioLabs) and ligation reactions with T4 ligase (New England BioLabs). The resulting
pMAD::ΔeutH deletion construct was introduced into the L. monocytogenes 10403S and Δhly strains via
electroporation (71). Following electroporation, transformants were selected on BHI plates supple-
mented with 0.5 M sucrose, 10 �g/ml erythromycin, and 20 �g/ml X-Gal (5-bromo-4-chloro-3-indolyl-
�-D-galactopyranoside) after 48 h of growth at 30°C. After reisolation on a BHI-erythromycin plate, blue
colonies were picked for growth in BHI containing erythromycin at 39°C for 24 to 48 h. This culture was
plated on BHI containing erythromycin and X-Gal and incubated at 39°C to isolate transformants that
harbor the chromosomally integrated deletion construct. Blue colonies were used to start serial passages
(1 per day) in BHI at 30°C to mediate excision of pMAD plasmid from the chromosome. After 3 to 5
passages, the temperature was shifted to 39°C and incubation carried out for an additional 5 h. Final
cultures were plated on BHI–X-Gal plates and incubated at 39°C for 24 h. White colonies, which are cured
of pMAD plasmid, were screened for erythromycin sensitivity. In-frame deletion mutants were identified
from these white erythromycin-sensitive clones by PCR. Final verification of all deletions was performed
by sequencing.

Animal experiments. All animal experiments were approved by the Animal Care and Use Committee
at the University of Virginia. For all infections, 10- to 12-week-old, female C57BL/6 mice were used
(Envigo). For the mouse colitis model, 24 h prior to infection, mice received a single dose via oral gavage
of 20 mg streptomycin (72). Mice were infected via oral gavage with an equal mixture of 5 � 108 CFU
of each of the indicated S. Typhimurium strains. Fresh fecal samples were collected daily, and mice were
euthanized at 4 dpi to assess bacterial burden in the indicated tissues. Tissue samples were weighed and
then homogenized in 1 ml phosphate-buffered saline (PBS), and bacterial burden was quantified by
plating serial dilutions of homogenized tissue on MacConkey agar with streptomycin to obtain total
bacterial CFU and MacConkey agar with chloramphenicol to obtain unresolved mutant CFU. The
competitive index for each tissue was calculated as the ratio of indicated strains recovered from tissue
normalized to the ratio in the inoculum.

For i.p. infections, mice were infected with an equal mixture of 5 � 104 CFU of each of the indicated
S. Typhimurium strains. Spleens were collected at 6 h postinfection. Spleens were homogenized and
processed and competitive infections calculated as described above. For complementation studies,
samples were plated on LB agar with ampicillin to obtain total bacterial CFU and LB agar with ampicillin
and chloramphenicol to obtain unresolved mutant CFU.

Tissue culture. RAW cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS)
and 1� penicillin-streptomycin-glutamine. Peritoneal exudate macrophages (PEMs) from 8- to 12-week-
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old C57BL/6 mice were isolated as described previously (13, 73). Bone marrow-derived macrophages
(BMDMs) were isolated and cultured as described previously (73, 74). Briefly, 8- to 12-week-old C57BL/6
(S. Typhimurium infections) or BALB/c (L. monocytogenes infections) mice were euthanized, and bone
marrow was harvested from femurs. The extracted bone marrow was incubated with 0.84% ammonium
chloride solution at room temperature for 10 min to lyse red blood cells. Bone marrow cells were
centrifuged at 1,500 rpm for 5 min and resuspended in the indicated medium. Additional medium was
provided to cell cultures 3 days after harvest, and medium was replaced after 6 days of culture before
cells were used in assays. PEMs and BMDMs were cultured in RPMI 1640 supplemented with 10% FBS,
20% L-929 conditioned medium, and 1� penicillin-streptomycin-glutamine. All cells were seeded into
12-well plates at 5 � 105 cells/well for experiments.

Gentamicin protection assays were performed as described previously (13, 35, 73–77). We used the
invG mutant and indicated eut mutants for macrophage infections as invasive S. Typhimurium strains kill
macrophages in vitro (76). Furthermore, expression of invasion-associated genes is decreased upon
phagocytosis, and thus these strains more closely mimic S. Typhimurium encountering macrophages
during systemic infection (78). Overnight cultures of S. Typhimurium or L. monocytogenes were washed
and resuspended in PBS before incubation with macrophages at a multiplicity of infection (MOI) of 10.
RAW cells were infected using DMEM supplemented with 10% heat-inactivated FBS without antibiotics.
PEMs and BMDMs were infected using RPMI 1640 supplemented with 10% heat-inactivated FBS without
antibiotics. After 30 min of incubation, extracellular bacteria were killed with 100-�g/ml gentamicin
treatment for 30 min before replacement with medium containing 10 �g/ml gentamicin for the
remainder of the assay. Cells were lysed at the indicated time points in 1% Triton X-100, and CFU were
determined by serial dilutions and plating onto LB agar (S. Typhimurium) or BHI agar (L. monocytogenes).
Percentage of survival was calculated as viable CFU at indicated time points as a percentage of CFU
following 30 min of incubation with 100 �g/ml gentamicin (time zero) and normalized such that the wild
type was equal to 100%.

For vacuole neutralization, BMDMs were incubated for 1 h prior to infection with the indicated
concentration of concanamycin A (Sigma), dimethyl sulfoxide (DMSO) vehicle, or ammonium chloride
(79). Following a 1-h pretreatment, cells were washed twice to remove concanamycin A or DMSO vehicle
before continuing with a standard gentamicin protection assay as described above. Ammonium chloride
was maintained in the medium throughout infection.

For ethanolamine supplementation to RAW cell infection, ethanolamine was added to culture
medium at the indicated concentration following the 30-min incubation with 100 �g/ml gentamicin
(time zero) until cells were lysed at 5 h postinfection.

Statistical analysis. Statistical significance of in vivo competitive indexes was determined by
Wilcoxon’s signed-rank test with a theoretical median of 1. Student’s t test was used for the comparison
of viable CFU in tissue culture experiments.
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