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Abstract

peripheral blood mononuclear cells (PBMC)s.

murine RAW264.7 cells and human monocytes.

Background: Radix Paeoniae Rubra (RPR), a traditional Chinese herb, has anti-inflammatory and immuno-regulatory
properties. This study explored the effects of RPR on stimulation of osteoclast differentiation in RAW264.7 cells and

Methods: The mature osteoclasts were measured by bone resorption assays and TRAP staining. JNK, ERK, p38 and
NF-kB inhibitors were used applied in order to verify their contribution in RPR-induced osteoclast differentiation.
The NF-kB and MAPK pathways were evaluated by western blotting, RT-PCR and luciferase assay.

Results: RPR induced osteoclast differentiation in a dose-dependent manner and induced the resorption activity of
osteoclasts differentiation of RAW264.7 cells and PBMCs. Western blotting showed that RPR treatment induced
phosphorylation of JNK, ERK, and p38 in RAW 264.7 cells. Treatment of JNK, ERK, and p38 MAP kinase inhibitors verified
the contribution of JNK, ERK and p38. RPR treatment induced c-Fos and NFATc1 protein expression; NF-kB inhibitor
treatment and luciferase assay verified the contribution of the NF-kB pathway.

Conclusions: This study demonstrated the interesting effect, in which RPR stimulated osteoclast differentiation in

Keywords: Osteoclast, Mitogen-activated protein kinase, Receptor activator of nuclear factor-kappa B

Background

Bone remodeling is a regulated, keenly balanced process
affected by delicate changes in inhibitory cytokines and
proinflammatory factors. These occur predominantly
through the TNF-family molecule RANKL (Receptor Acti-
vator of NF-kappaB Ligand, a.k.a., OPGL, TRANCE, ODE,
and TNFSF11) and its receptor, RANK (TNFRSF11A),
which are vital regulators of bone remodeling and es-
sential for the development and stimulation of osteo-
clasts [1, 2]. Such growth factors and cytokines are
associated with the inflammatory processes in rheumatic
disease. Various osteopenic disorders, such as Rheumatoid
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Arthritis, involve amplified osteoclast activity, which can
cause the increase in bone resorption, and ultimately crip-
pling damage to bone. Inhibition of RANKL function via
Osteoprotegerin (OPG), a natural decoy receptor, can be
useful in treating osteoporosis and arthritis. The proposed
method establishes an unexpected molecular paradigm
that connects bone morphogenesis; variations of these
methods create the opportunity to conceive innovative
therapies that will impede the bone loss associated with
arthritis and osteoporosis [3—6]. Furthermore, apart from
the above cytokines (RANKL and M-CSF), recent studies
have determined that osteoclastogenesis may also be nega-
tively or positively influenced by many other cytokines or
recombinant proteins [6—10].

Radix Paeoniae Rubra (RPR), the dried root of either
Paeonia lactiflora Pall. or Paeonia veitchii Lynch, is a
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traditional Chinese medicine commonly used for treat-
ment of various diseases in China. RPR has been fre-
quently used to enhance blood circulation, dissipate
stasis, and protect the liver [11, 12]. RPR contains triter-
penes [13], flavonoids [13], polyphenols [14], and glycoside
compounds, such as paeoniflorin, paeonin, benzoylpaeoni-
florin, albiflorin, paeonol, and oxypaeoniflorin [15-17],
some of which were demonstrated to have some
pharmacological effects, including anti-oxidative, anti-
atherosclerosis, and anti-inflammatory effects [14, 18].

For thousands of years, RPR has been used to treat
various diseases, including hepatitis, diabetes, obesity,
traumatic injuries, dementia, and arthritis [19, 20]. The
herb contains monoterpene glycosides, galloyl glucoses,
and phenolic compounds, and many researchers suggest
that it has immuno-regulatory, anti-oxidant, anti-
allergic, and anti-inflammatory effects [21-23]. Recently,
it has shown that monoterpene glycosides perform a
wide variety of biological activities.

Methods

Formulation of the aqueous extracts of RPR

RPR (Chishao) was obtained from the GMP pharma-
ceutical company (Sun Ten Pharmaceutical Co., Taipei,
Taiwan). The herb powder (20 g) was extracted with five
folds (volume) of distilled water and sterilized by auto-
claving (121 °C and 1 atm) for 15 min. Then, the super-
natant was collected and further dried under vacuum
(76 mmHg, 25 °C). Distilled water dissolved the dried
powder (1 mg/ml) before used. The outgoing quality con-
trol profiling of Radix Paeoniae Rubra was identified and
analysis according to the Taiwan Herbal Pharmacopoeia.
The voucher specimen has been deposited in the
Institute of Chinese Pharmaceutical Sciences, China
Medical University.

Cell culture

We used the RAW264.7 murine monocytic/macrophagic
cell line human peripheral blood mononuclear cells
(PBMCs) for the model system of osteoclastogenesis.
Cells were maintained as previously described [10].
RAW?264.7 cells were purchased from the American
Type Culture Collection (ATCC; Rockville, MD, USA).
Human PBMCs from healthy donors were separated by
gradient centrifugation with Ficoll-Hypaque reagent and
were re-suspended in a-MEM supplemented with 10%
heat-inactivated FBS.

Osteoclast differentiation

For osteoclastic differentiation, cells were cultured in the
presence of 25 ng/ml murine M-CSF and 50 ng/ml mur-
ine RANKL (for RAW?264.7, from PeproTech, USA), hu-
man M-CSF and human RANKL (for PBMCs, from
Peprotech, USA), and RPR. In some experiments, cells
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were pre-incubated for 40 mins with pharmacologic
inhibitor p38/MAPK (SB203580; 10 ng/ml), ERK1/2
(PD98059; 20 pM), and JNK (SP600125; 10 ng/ml) (all
from Calbiochem, La Jolla, CA) before RPR was added.
In other experiments, cells were pre-incubated for 30 mins
with an NF«B inhibitor (NF-kB SN50, cell-permeable in-
hibitor peptides; Calbiochem, San Diego, CA); caspase-3
specific inhibitor, Z-DEVD-FMK (R&D Systems, Inc.,
USA); caspase-9 specific inhibitor, Z-LEHD-FMK (BD
Biosciences, San Diego, CA); or the general caspase inhibi-
tor, Z-VAD-fmk (Bachem, Bubendorf, Sweden) at a concen-
tration of 20 uM before RPR treatment.

MTT assay

Cell viability was determined by MTT assay following
the procedure described previously [24]. Briefly, cell cul-
tures were treated with varying concentrations of RPR for
different set periods. After an incubation with 0.5 mg/ml
MTT for 4 h at 37 °C, MTT Formosan was dissolved with
the addition of an equivalent cell culture volume of 0.04 N
HCIL. An ELISA plate reader determined that the absorb-
ance value was 570 nm. The following equation: [OD of
solvent-treated cells-OD of compound-treated cells/OD of
solvent-treated cells] x 100% was performed to determine
cell viability (%).

TRAP staining

Tartrate-resistant acid phosphatase (TRAP) staining of
mature osteoclasts was done as previously described
[10]. Briefly, cells were stained with TRAP (Acid Phos-
phatase Kit 387-A; Sigma-Aldrich, St. Louis, MO) for 30
s, naphthol AS-BI phosphate and tartrate solution for 1
h at 37 °C and then counterstained with a hematoxylin
solution. In order to control phosphatase activity that
may occur in the background, we opted to use a greater
dilution of 1 M tartrate (final 20 mM) and not the tar-
trate supplied as part of the kit [10]. Intensifying the tar-
trate dilution suppressed control cells’ staining to allow
the RPR and RANKL/M-CSF-treated cells to be positive.
The total of TRAP-positive cells and nuclei per TRAP-
positive cell in every individual well were respectively
counted, followed by the photographing of the morpho-
logical features of the osteoclasts.

Bone resorption assay

The bone resorption assay was conducted as previously
described [10]. Cells were seeded into 24-well plates cov-
ered by artificial bone slides (BD BioCoat™ Osteologic™
Bone Cell Culture System). After 7 or 14 days of cul-
ture(for RAW264.7 or PBMCs, respectively), the wells
were washed with DPBS, and the cells within were de-
tached with incubation of 5% sodium hypochlorite for 5
min. The pits that remained in each well were calculated
using a microscope and photographed.
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Transfection and luciferase assay

Transfection and luciferase assays were performed based
on a previously described method [10]. RAW264.7 cells
were seeded into 24-well plates at a density of 7 x 10*
cells/well 1 day prior to transfection. Plasmid DNA,
lipofectamine reagent and lipofectamine plus reagent
were all mixed together in serum free DMEM and
moved into the cells according to the recommended
procedure of the manufacturer. 20 h after transfection,
the cultures were then treated with RANKL (100 ng/ml)
or RPR (100 ng/ml) for 12-16 h. The cells were rinsed
two times with PBS and lysed in a reporter lysis buffer
(Promega, Madison, WI). Following the instructions of
the manufacturer, a dual-luciferase reporter assay system
(Promega, Madison, WI) then measured the results of
luciferase activity.

Western blot

The Western blot procedure was performed as described
previously [10]. Proteins were resolved on SDS-PAGE
and transferred to Immobilon polyvinyldifluoride (PVDEF)
membranes. The blots were blocked with 5% non-fat dry
milk in Tris-buffered saline with 0.5% Tween-20 (TBST)
for 1 h at room temperature and then probed with p-p38,
p-ERK, p-JNK, p38, ERK, JNK (Cell signaling, USA), anti-
c-fos, anti-NFATcl (Santa Cruz Biotechnology, Dallas,
TX) for 1 h at room temperature. After three washes, he
blots were washed in TBST and developed with horserad-
ish peroxidase conjugated in an anti-mouse antibody
(Santa Cruz Biotechnology, Dallas, TX) (diluted in 1:5000)
for 1 h in ambient temperature. After another wash, the
membrane was subjected to film treated with a chemilu-
minescence reagent with ECL plus Western blotting
reagents (Amersham). Every individual blot was then
stripped and re-probed with anti-p actin antibodies to
allow the standardization of expression amongst samples.
This experiment was replicated three times to corroborate
the results of this assay.

Preparing RNA and real-time RT-PCR

Total RNA and actual RT-PCR were prepared using the
SYBR Green incorporation method [10, 25]. A compara-
tive cycle threshold technique using p-actin as the
housekeeping gene was used to measure relative gene
expression. The primers for NFATcl were 5'-CGAG
CCGTCATTGACTGTGC-3" (sense) and 5'-GAGCGC
TGGGAGCATTCGAT-3’ (anti-sense); 5'- GGTGGAA
CAGTTATCTCCAG-3’ (sense) and 5'-TGTCTCCGCT
TGGAGTGTAT-3’ (anti-sense) for c-Fos; 5'-CGTGCT
GACTTCACACCAACAGC-3’ (sense) and 5'-CACTTT
TGAAGAGTGCAAACCGCC -3’ (anti-sense) for OSC
AR; 5- CTGTCCTGGCTCAAGAAACAG-3' (sense)
and 5'-CATAGTGGAAGCGCAGATAGC-3’ (anti-sense)
for TRAcP; and 5'- GCGGTGGTATTATCTCTTGG-3’
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(sense) and 5'-TTCCCTCATTTTGGTCACAAG -3’ (anti-
sense) for calcitonin receptors.

Statistical analysis

Statistical analyses were conducted as previously de-
scribed [10]. All of the experiments were done in dupli-
cate and the results were averaged. The results were
expressed as mean + SD of averages obtained in at least
three experiments. The Student’s t-test was used to
evaluate variations in the means. A p < 0.05 was consid-
ered statistically significant.

Results

RPR-stimulated osteoclast differentiation from the RAW264.7
cell line and human monocytes

We first examined the effects of RPR in RAW264.7 cells
using TRAP staining. When cultured with M-CSF (25 ng/
ml) and RANKL (50 ng/ml), RAW264.7 cells differentiated
into osteoclasts, as characterized by TRAP-positive staining.
Under RPR treatment, TRAP-positive multi-nuclear cells
developed after 7 days of culture (Fig. 1a). Similarly, RPR
also stimulated human monocytes (PBMCs) to develop into
multi-nuclear TRAP-positive cells within 14 days of culture
(Fig. 1b). When treated with different concentrations of
RPR, RAW?264.7 and human PBMCs differentiated into os-
teoclasts in a dose-dependent manner (Fig. 1c and d).

RPR-induced activation of MAP kinases
The main signaling pathway associated with osteoclast differ-
entiation was investigated. In our previous study, we demon-
strated the pivotal roles of MAPKs (JNK, ERK, and p38) in
osteoclast development downstream of RANK signaling. In
the western blotting assay, we showed that RPR treatment in-
duced phosphorylation of JNK, ERK, and p38 (Fig. 2a).
SP600125 (a selective JNK inhibitor), PD98059 (a selective
mitogen-activated protein/ERK kinase (MEK) inhibitor), and
SB203580 (a selective p38 MAP kinase inhibitor) were ap-
plied to verify the contribution of p38 MAP kinase, ERK, and
JNK in the behavior of RPR and RANKL. As shown
in Fig. 2c, the formation of multi-nuclear cells was con-
strained by kinase inhibitors, confirming the roles of JNK,
ERK, and p38 in osteoclast differentiation induced by RPR.
Since the previous results showed that both the
osteoclast-specific transcription factors, c-Fos and NFATcl1,
were critical for osteoclast differentiation [10], we also ex-
amined their expression. RPR treatment induced c-Fos and
NFATc1 protein expression in RAW 264.7 cells (Fig. 2b).
Real-time RT-PCR was then performed to analyze the levels
of c-Fos and NFATc]1, and the genes related with osteoclast
regulation (calcitonin receptor), fusion (OSCAR), and
function (TRAcP; Fig. 2d). The results revealed no sub-
stantial variations among cells subjected to RPR and
RANKL in downstream osteoclast-specific genes, suggest-
ing a similar activation process.
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Fig. 1 RPR-induced osteoclast-like multi-nucleated cells from RAW264.7 macrophages and human monocytes. a RAW264.7 cells and (b) human
PBMCs were cultured with RANKL+M-CSF or RPR, and then TRAP-stained. € RAW264.7 cells and (d) human PBMCs were cultured with RANKL+M-CSF
or increasing concentrations of RPR, and then TRAP-stained. Data represent the mean + SD of 3-6 individual experiments. *p < 0.01; **p < 0.001,

compared with the control

Reliance of RPR-induced osteoclast differentiation on NF-kB
stimulation
An MTT colorimetric assay for cell viability was per-
formed to ascertain if RPR induction of osteoclastogene-
sis impacts osteoclast capability. The results showed that
RPR did not exert cytotoxicity on RAW 264.7 or human
PBMCs, but displayed signs of cytotoxicity on K562
tumor cells (Fig. 3a) [26].

We investigated whether RPR-induced osteoclast differ-
entiation depends on stimulation of caspase and induction

of apoptosis following engagement with RPR. The results
indicated that osteoclast precursors opposed RPR-induced
apoptosis (Fig. 3b). Furthermore, there were no differences
in capacity to stimulate osteoclast differentiation, with or
without the caspase-9 specific inhibitor, caspase-3 specific
inhibitor, or pan-caspase inhibitor, suggesting that RPR-
induced osteoclast differentiation did not depend on the
stimulation of caspases.

Conversely, after adding the NF-kB inhibitor to the
culture, the capability of RPR to induce osteoclast
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RANKL (50 ng/ml) and M-CSF (25 ng/ml). Cells were then solubilized, and Western blot analysis of p38, JNK, and ERK protein expression was used
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membrane (shown in the bottom panel) was then exposed and re-probed with the kinase antibody to identify the total kinase protein level.
Outcomes represent three separate experiments. b Western blotting with Abs specific for 3-actin (control), NFATc1, and c-Fos (all from Santa Cruz
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treatment versus no treatment. d The image shows the consequences of RANKL and RPR on osteoclast gene expression. M-CSF (200 ng/ml) and
RANKL (100 ng/ml) or RPR (15 pg/ml) were applied to human monocytes. After culture for 14 days, total RNA was obtained and real-time RT-PCR
was conducted for OSCAR, NFATCc1, calcitonin receptors, c-fos, and TRACP. Expression was regulated to that of 3-actin; data represent the means + SD
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activated NF-kB in RAW264.7. The agent alone did not affect NF-kB stimulation. Each band's B-actin value normalized the densitometry reading

differentiation was eliminated, implying that RPR-
induced osteoclast differentiation activity depends on
NE-kB stimulation (Fig. 3b). The NF-kB luciferase re-
porter plasmid was introduced into RAW?264.7, with or

without RPR or RANKL, to investigate RPR- and
RANKL-induced NF-kB stimulation more closely. RPR
or RANKL stimulation induced NF-«B transcriptional
activity (Fig. 3c). The medium alone did not affect
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nuclear NF-kB-p65 levels in RAW264.7 cells. However,
addition of RPR or RANKL to the RAW264.7 cell cul-
ture media increased NF-kB activation four-fold within
30 mins (Fig. 3d).

RPR-induced bone resorption activity in RAW264.7 cells
and human PBMCs

To determine whether differentiated osteoclast-like mul-
tinuclear cells induced by YPH-PA3 have similar charac-
teristics to osteoclasts, functional identification was
confirmed in an in vitro culture system with synthetic
bone coating. The number of pits dissolved by RAW264.
7 cells or PBMCs treated with differentiation agents was
compared to those not treated. In contrast to RANKL
and M-CSF, osteoclasts that differentiated from RPR
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dissolved even more pits in the synthetic bone coat-
ing (Fig. 4a), suggesting higher bone resorption activ-
ity. The following chart presents the number of
dissolution holes (Fig. 4b).

Discussion

RPR (Chishao) was obtained from the GMP pharma-
ceutical company. The outgoing quality control profiling
of Radix Paeoniae Rubra was identified and analysis ac-
cording to the Taiwan Herbal Pharmacopoeia. One of
the preliminary exclusions of animal drugs and toxic
drugs. And there are not potential side effects with hu-
man in recent research. RPR is used to encourage blood
circulation, eliminate blood stasis, reduce fever, cool
blood, eliminate stagnant blood, and minimize swelling.
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cell culture and then treated with RANKL and M-CSF or RPR. After 7 or 14 days of culture, cells were separated. Microscopy was used to determine
the number of pits in each well, which were photographed. b Data are the mean + SD from three independent tests; *p < 001, **p < 0001, compared
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Furthermore, RPR also has anti-inflammatory and
immune-regulatory usages. The bioactive elements of
the plant’s root include a variety of monoterpene glyco-
sides, galloyl glucoses, and phenolic compounds [27, 28].
Furthermore, RPR also has anti-inflammatory and
immuno-regulatory usages. RPR-induced K562 tumor
cells developed apoptosis because caspase-3 mRNA and
caspase-9 mRNA were increased [26]. However, it is un-
clear if the signaling pathways are an integral part of
RPR-induced osteoclast differentiation.

RPR is already known to activate RAW264.7 macro-
phages and human PBMCs to differentiate into osteo-
clasts. However, the concentration facilitating optimal
differentiation remains unknown. A dose-dependent de-
sign (Fig. 1c and d) was used to demonstrate RPR’s novel
and unique behavior in osteoclastogenesis, and offer
new understanding of the molecular system correlating
osteo-immunology with the immune response associated
with osteoclasts.

Activation of MAP kinase is a vital step in osteoclasto-
genesis [29]. In this study, we found that RPR stimulates
osteoclast differentiation through a signaling pathway of
MAP kinases, which is the same mechanism as TRAIL
[30] or ribosome-inactivating protein B-chain [10].

This experiment further employed inhibitors to verify
the connection between JNK, ERK, and p38 MAP kinase
regarding the behavior of RPR. The differentiation of
murine RAW264.7 cells into TRAP-positive multi-
nuclear cells was impeded by these kinase inhibitors.
The data revealed that NF-kB, p38 MAP kinase, ERK,
and JNK signaling pathways are vital to RPR’s osteoclas-
togenic impact. Similar stimulation of MAP kinases
caused the same patterns of expression of vital transcrip-
tion elements, namely, NFATcl and c-fos. These can
help clarify that RPR function is similar to RANKL in
osteoclast differentiation.

The use of an in vitro culture system provides evi-
dence that RPR is an innovative effector molecule that
improves the development of osteoclast-like cells. This
study also defines the vital function of NF-kB, p38 MAP
kinase, ERK, and JNK signaling in inducing osteoclasto-
genesis, and is the first to test RPR in osteoclast
differentiation.

Using MS/MS, we identified the major components
from aqueous RPR extract (Additional file 1: Figure S1).
gallic acid (1), oxypaeoniflorin (2), albiflorin (3), paeoni-
florin (4), benzoic acid (5) and benzoylpaeoniflorin (6)
were identified from the aqueous extract of RPR
(Additional file 2: Figure S2). However, galloylpaeoni-
florin was not found in either paeoniflorin or benzoic
acid, based on the retention time under the same
solvent conditions [31]. In future studies, we would
like to evaluate the osteoclastogenesis properties of
the above components.
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Conclusions

This study investigated the biological function of RPR in
osteoclast formation. RPR was shown to induce mono-
cyte/macrophage lineage precursor cells to differentiate
into osteoclast-like cells in both murine RAW?264.7 cells
and human PBMCs as RANKL and M-CSF contrasts.

Additional files

Additional file 1: Figure S1. Representative base peak chromatograms
of aqueous extract of RPR positive (A) and negative (B) ion modes obtained
from Bruker HCT Ultra lon Trap MS spectrometer. Detailed experimental
conditions were shown in the text. (PDF 10 kb)

Additional file 2: Figure S2. Chemical structures of the major components
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