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ABSTRACT We aimed to prospectively validate an optimized combination dosage
regimen against a clinical carbapenem-resistant Acinetobacter baumannii (CRAB) iso-
late (imipenem MIC, 32 mg/liter; tobramycin MIC, 2 mg/liter). Imipenem at constant
concentrations (7.6, 13.4, and 23.3 mg/liter, reflecting a range of clearances) was
simulated in a 7-day hollow-fiber infection model (inoculum, �107.2 CFU/ml) with
and without tobramycin (7 mg/kg q24h, 0.5-h infusions). While monotherapies
achieved no killing or failed by 24 h, this rationally optimized combination achieved
�5 log10 bacterial killing and suppressed resistance.
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Acinetobacter baumannii has an exceptional propensity for emergence of resistance
against commonly used antibiotics (1, 2); current treatment options are extremely

limited (3, 4). While carbapenems may combat infections by susceptible A. baumannii,
carbapenem-resistant A. baumannii (CRAB) isolates now comprise more than half of the
isolates in the United States and elsewhere (3, 5, 6). Aminoglycosides in monotherapy
can achieve substantial bacterial killing; however, this is followed by rapid and exten-
sive regrowth with emergence of resistance (7, 8). Overall, combination therapy holds
promise to treat serious infections by CRAB but needs to be optimized.

(Part of this work was presented at the Interscience Conference on Antimicrobial
Agents and Chemotherapy [ICAAC], San Diego, CA, 18 to 21 September 2015.)

We previously designed an imipenem-plus-tobramycin combination dosage regi-
men against a clinical CRAB isolate based on static concentration time-kill experiments
(SCTK), mechanism-based modeling (MBM), and Monte Carlo simulations (9). The
optimized regimen was imipenem 4 g/day continuous infusion with a 1-g loading dose
combined with tobramycin 7 mg/kg q24h as 0.5-h infusions. Monte Carlo simulations
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predicted that this combination regimen would achieve �5 log10 killing without
regrowth over 7 days in 98.2% of critically ill patients (9).

Very few studies have evaluated �-lactam-plus-aminoglycoside combination regi-
mens against CRAB isolates in the dynamic in vitro hollow-fiber infection model (HFIM)
or in in vivo models (10–12). Montero et al. (11) assessed an empirical, nonoptimized
imipenem-plus-tobramycin combination in a murine pneumonia model against CRAB.
However, no prior study evaluated bacterial killing and resistance suppression of a
CRAB isolate for optimized combination dosage regimens in the HFIM.

Our primary objective was to simulate human pharmacokinetics (PK) and evaluate
bacterial killing and resistance suppression by a rationally optimized combination
dosage regimen against a clinical CRAB isolate. The secondary objective was to assess
via MBM the translation from SCTK to the HFIM.

Dynamic hollow-fiber in vitro infection model. An HFIM (13, 14) was used to
simulate the time course of antibiotic concentrations as expected in critically ill patients
for the proposed dosage regimen. For imipenem, the median (13.4 mg/liter), 5th
percentile (7.6 mg/liter), and 95th percentile (23.3 mg/liter) of the unbound concen-
trations at steady state during continuous infusion of 4 g/day were simulated. These
concentrations were based on Monte Carlo simulations using published population PK
models (9, 15, 16). We simulated the two-compartment behavior of tobramycin by
changing the pump flow rate at 5 h each day. Our target inoculum of 107.2 CFU/ml was
chosen to mirror bacterial densities in severe infections in patients (17–19). Serial viable
counts of the total and of resistant populations (on 1.75� and 3� MIC agar plates for
imipenem and 3� and 5� MIC plates for tobramycin) were determined over 7 days,
and drug concentrations were measured by liquid chromatography-tandem mass
spectrometry. We developed MBM in S-ADAPT (20–22) and evaluated competing
models as described previously (23, 24). Further methodological details are provided in
the supplemental material.

Observed PK and viable count profiles. The observed tobramycin concentration-
time profiles adequately matched the targeted profiles following administration of 7
mg/kg tobramycin as 0.5-h infusions (see Fig. S1 in the supplemental material); un-
bound peak concentrations for tobramycin were 12.3 mg/liter at 1.2 h, and unbound
trough concentrations were 1.37 mg/liter at 23 h. Constant imipenem concentrations of
7.6 (low, 5th percentile) and 13.4 (intermediate, median) mg/liter in monotherapy failed
to achieve any killing against isolate FADDI-AB-034 (MIC, 32 mg/liter) at an inoculum of
107.2 CFU/ml. Although 23.3 mg/liter (high, 95th percentile) resulted in 3.1 log10 of
killing at 4 h, it was followed by extensive regrowth to �10 log10 CFU/ml at 24 h (Fig.
1A). Tobramycin monotherapy (MIC, 2 mg/liter) yielded 3.4 log10 of killing at 8 h
followed by extensive regrowth. The combinations of tobramycin with each of the
three imipenem concentrations were synergistic, provided near-complete bacterial

FIG 1 Observed viable count profiles (0 to 28 and 0 to 168 h) for the optimized imipenem-plus-tobramycin
combination dosage regimen against isolate FADDI-AB034. Imipenem 7.6 (low, 5th percentile), 13.4 (intermediate,
median), and 23.3 (high, 95th percentile) mg/liter are 3 clinically relevant imipenem profiles arising from a 4-g/day
continuous infusion (with a 1-g loading dose). Observed viable counts below the limit of counting (i.e., �1.0 log10

CFU/ml) were plotted as zero.
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killing (�5 log10), and prevented regrowth (i.e., total viable counts remained at �2
log10) over 7 days (Fig. 1B).

Combinations but not monotherapies suppressed resistance. All three combi-
nations of imipenem with tobramycin suppressed resistance over 7 days in the HFIM;
only one or two colonies were observed on tobramycin-containing agar plates at 95
and 143 h (Fig. 2F, G, and H). In contrast, tobramycin monotherapy and the high-
concentration (23.3-mg/liter) imipenem monotherapy failed, with substantial regrowth
and amplification of resistance (Fig. 2B and E). For tobramycin monotherapy, the
tobramycin-resistant population at 3� and 5� MIC almost completely replaced the
susceptible population by �47 h (see Table S1 in the supplemental material and
Fig. 2B). Imipenem monotherapy at 23.3 mg/liter created sufficient drug pressure to
increase the frequency of the highly resistant subpopulation by 2 to 4 log10 by
23 h (Table S1; Fig. 2E).

Mechanism-based modeling. MBM simultaneously described all treatments and
the growth control (see Fig. S2 in the supplemental material). The coefficient of
correlation for the observed versus individual (population) fitted log10 viable counts
was 0.995 (0.968). Synergy due to imipenem killing the tobramycin-resistant population
and vice versa (i.e., subpopulation synergy) was not sufficient to characterize the time
course of bacterial killing and regrowth for the combinations. Inclusion of mechanistic

FIG 2 Effect of monotherapies (B to E) and combinations (F to H) on the total bacterial population and resistant populations
(quantified on agar plates containing 1.75� or 3� the imipenem MIC and 3� or 5� the tobramycin MIC). While tobramycin
monotherapy and imipenem monotherapy at 23.3 mg/liter led to extensive emergence of resistance, all combinations
suppressed resistance over 3 days. All four types of antibiotic-containing agar plates were determined for the combinations;
most counts were zero on these antibiotic-containing agar plates (F to H).
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synergy with tobramycin enhancing the target site concentration of imipenem was
greatly beneficial (P � 0.0001, likelihood-ratio test) (Fig. S2). Tobramycin was modeled
to permeabilize the outer bacterial membrane toward imipenem against the
imipenem-intermediate and tobramycin-resistant population (i.e., population 3 in Fig.
S4 in the supplemental material). Mechanistic synergy was expressed as a 70-fold
decrease (P � 0.0001) of the imipenem concentration resulting in half-maximal killing
of population 3 (KC50,IR,IPM) in the presence of at least 1.15 mg/liter (estimated)
tobramycin (Table 1); the KC50,IR,IPM was 112 mg/liter in the absence of and 1.60
mg/liter in the presence of at least 1.15 mg/liter tobramycin (Table 1). For populations
1 and 2 in Fig. S4, mechanistic synergy was estimated to be small or absent.

Validation of novel combination dosing strategies. This study is the first to
demonstrate that a rationally optimized imipenem-plus-tobramycin combination dos-
age regimen can achieve extensive (�5 log10) synergistic bacterial killing and suppress
resistance of a CRAB isolate in the HFIM over 7 days. When combined with tobramycin,
synergy was achieved by imipenem concentrations as low as 7.6 mg/liter (equivalent to
24% of the MIC of 32 mg/liter) in the dynamic in vitro HFIM system. This was in complete
absence of an immune system. We further showed that translational predictions from MBM
Monte Carlo simulations based on SCTK data were successfully validated in the HFIM (9).
This MBM was subsequently refined to characterize the HFIM data.

TABLE 1 Population mean parameter estimates for the imipenem-plus-tobramycin combination model against isolate FADDI-AB034

Parametera Symbol (unit) Population mean value (relative SE, SE %)

Initial inoculum (log10 CFU/ml) logCFU0 7.29 (2.4)
Maximum population size (log10 CFU/ml) logCFUmax 10.1 (1.1)
Replication rate constant (h�1) k21 50 (fixed)

Mean generation time (min)
IPMS/TOBS k12,SS

�1 33.7 (9.9)c

IPMR/TOBI k12,RI
�1 63.2 (11.0)

IPMI/TOBR k12,IR
�1 33.7 (9.9)c

Log10 mutation frequencies at 0 h
IPM logMUT,IPM

b �5.59 (4.9)
TOB logMUT,TOB

�3.22 (7.8)

Killing by IPM
Maximum killing rate constant (h�1) Kmax,IPM 1.74 (19.0)
Imipenem concn causing 50% of Kmax,IPM (mg/liter)

IPMS/TOBS KC50,SS,IPM 0.175 (29.4)
IPMR/TOBI KC50,RI,IPM 645 (17.8)
IPMI/TOBR KC50,IR,IPM Monotherapy, 112 (17.9); combination

(TOB �1.15 mg/liter), 1.60 (41.2)
Hill coefficient for imipenem HILLIPM 3.0 (fixed)d

Killing by TOB
Maximum killing rate constant (h�1)

IPMS/TOBS Kmax,TOB,SS 4.69 (14.7)e

IPMR/TOBI Kmax,TOB,RI 0.992 (9.5)
IPMI/TOBR Kmax,TOB,IR 4.69 (14.7)e

Tobramycin concn causing 50% of Kmax,TOB (mg/liter)
IPMS/TOBS KC50,SS,TOB 0.156 (49.4)
IPMR/TOBI KC50,RI,TOB 0.316 (25.6)
IPMI/TOBR KC50,IR,TOB 27.7 (10.7)

Tobramycin concn required for mechanistic synergy (mg/liter) TOBcut 1.15 (20.5)
SD of residual error on log10 scale SDCFU 0.304 (10.7)
aIPM, imipenem; TOB, tobramycin; S, susceptible; R, resistant; I, intermediate.
bMUT, mutant.
cMean generation time (transition from state 1 to state 2) was assumed to be the same for the SS and IR populations. Estimation as separate values yielded no
benefit.

dIt was beneficial to include a Hill coefficient for imipenem. Following a sensitivity analysis involving different Hill coefficient values, the Hill coefficient was fixed at 3.0.
eThe maximum rate of bacterial killing by tobramycin (Kmax,TOB) was assumed to be the same for the SS and IR population. Estimation as separate values yielded no
benefit.
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Both tobramycin and the highest-studied imipenem concentration (23.3 mg/liter,
95th percentile) in monotherapy achieved slightly more than 3 log10 bacterial killing;
however, this was followed by rapid and extensive emergence of high-level resistance
in our CRAB isolate (Fig. 2). The proposed optimized combination dosage regimen
achieved rapid and extensive bacterial killing with near-complete suppression of
resistance (Fig. 2).

This combination regimen proved robust when we used the HFIM to simulate the
median, 5th, and 95th percentiles of concentrations expected to occur in critically ill
patients; the Monte Carlo simulations were performed for a continuous infusion of
imipenem 4 g/day with a 1-g loading dose. In combination with tobramycin 7 mg/kg
q24h, all three imipenem concentration-time profiles yielded synergistic killing and
resistance suppression over 7 days even for patients with the 5th percentile of the
imipenem (7.6 mg/liter) concentration.

For tobramycin 7 mg/kg q24h (as a 0.5-h infusion) against this CRAB isolate, the area
under the unbound concentration-time curve over 24 h divided by the MIC (fAUC/MIC)
was 51.5, and the free maximum unbound concentration over MIC (fCmax/MIC) was 8.9.
Note that the unbound imipenem concentrations were below the MIC during the entire
therapy (i.e., fT�MIC, 0%), even for the 95th percentile of imipenem concentrations
arising from an imipenem 4-g continuous infusion with a 1-g loading dose. For this
rationally optimized dosage regimen, the imipenem concentrations were 24% (7.6
mg/liter), 42% (13.4 mg/liter), and 73% (23.3 mg/liter) of the MIC (32 mg/liter); these
concentrations achieved enhanced killing and resistance suppression in combination
with tobramycin against this CRAB isolate.

In the past, low-inoculum checkerboard and SCTK studies showed synergy for
imipenem plus tobramycin against A. baumannii isolates (25, 26); however, no study
assessed this combination in the HFIM. Cefepime plus amikacin was studied in HFIM
and murine models against CRAB (10, 12), but extensive regrowth occurred in the HFIM.
Empirical, nonoptimized imipenem-plus-aminoglycoside combinations were studied at
a single time point (i.e., 24 or 48 h) against CRAB in murine and guinea pig pneumonia
models (11, 27, 28). The present prospective HFIM validation study evaluated bacterial
killing, regrowth, and resistance in a CRAB isolate over 7 days.

A limitation of this study was the use of a single CRAB isolate that was assessed by
translational MBM. We only studied one replicate of each dosage regimen, although the
results were robust and consistent for our combinations, which used three imipenem
concentrations. Our observed tobramycin concentrations fell within the range of concen-
trations found in critically ill patients (15). While it is a limitation of this study that imipenem
concentrations were not measured, we precisely achieved the targeted imipenem concen-
trations after continuous infusions in previous HFIM studies. Tobramycin monotherapy
failed, with rapid and extensive resistance at the studied high inoculum (Fig. 2B).
Although we found extensive synergy against a tobramycin-susceptible CRAB isolate,
synergy may be less pronounced or absent in tobramycin-resistant CRAB isolates.
However, we previously showed in SCTK and a mouse thigh infection model that
rationally optimized imipenem-plus-tobramycin combinations yielded extensive syner-
gistic killing without resistance emergence in a Pseudomonas aeruginosa isolate resis-
tant to both imipenem (MIC, 16 mg/liter) and tobramycin (MIC, 32 mg/liter) (29, 30).

Moreover, the present study was not designed to identify the PK/pharmacodynamic
index for tobramycin that best predicts outer membrane permeabilization. Future
studies are required to investigate this question. The synergy mechanism proposed by
our MBM is in agreement with electron micrographs of ultrastructural damage and loss
of cytosolic green fluorescent protein from a P. aeruginosa strain (31); tobramycin 0.25
mg/liter disrupted the outer membrane of this P. aeruginosa strain, which was in the
range of the estimate (1.15 mg/liter) in the present study.

We employed the latest MBM to describe the antibacterial effects of the imipenem
and tobramycin concentration-time profiles in monotherapy and combination; the final
model contained three preexisting bacterial populations of different susceptibility (Fig.
S4; Table 1). Both subpopulation synergy and mechanistic synergy (i.e., tobramycin
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enhancing the outer membrane penetration of imipenem) were needed to adequately
describe the HFIM data (32).

The outer membrane of A. baumannii and P. aeruginosa isolates presents a formi-
dable penetration barrier (33–36), and its disruption may enhance the target site
penetration of imipenem (9, 37–39). Mechanistic synergy in our model is supported by
studies that demonstrated disruption of the outer membrane of P. aeruginosa by
albumin-conjugated aminoglycosides (40, 41) and the outer membrane permeabilizing
effect of aminoglycoside hybrid antibiotics (42, 43).

In our previous SCTK studies, imipenem 8 mg/liter achieved synergistic killing and
resistance suppression in combination with tobramycin against the studied CRAB
isolate, as observed in the HFIM (Fig. 2F) (9). Imipenem 4 g/day continuous infusion was
predicted to achieve an unbound steady-state concentration of at least 7.6 mg/liter in
95% of Monte Carlo-simulated critically ill patients (9). For patients with low or
intermediate imipenem clearance, slightly lower doses should be sufficient to achieve
the desired imipenem exposure, especially if therapeutic drug management is em-
ployed (44, 45).

In summary, the proposed rationally optimized imipenem-plus-tobramycin combi-
nation dosage regimen demonstrated synergistic killing and suppressed resistance at
clinically relevant exposure profiles of both antibiotics. This is the first study to report
the prospective evaluation of an optimized combination regimen against a CRAB
isolate in the HFIM over 7 days. Synergy was explained by tobramycin disrupting and
thereby permeabilizing the outer membrane toward imipenem. Future animal infection
models and ultimately clinical studies are warranted to evaluate this highly promising
combination regimen, which was rationally optimized by translational mechanism-
based modeling.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.02053-17.
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