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ABSTRACT Apramycin, an aminocyclitol aminoglycoside, was rapidly bactericidal
against Acinetobacter baumannii. In a neutropenic murine thigh infection model,
treatment-associated A. baumannii CFU reductions of �4 log10 per thigh were
observed for all exposures for which area under the curve (AUC)/MIC ratio was
�50 and maximum concentration of drug in serum (Cmax)/MIC was �10 or
higher. Based on these findings, we suggest that apramycin deserves further pre-
clinical exploration as a repurposed therapeutic for multidrug-resistant Gram-
negative pathogens, including A. baumannii.

KEYWORDS antimicrobial, apramycin, maximum tolerated dose, mouse thigh model,
pharmacodynamics, pharmacokinetics, resistance, time-kill

There is a pressing need for new antimicrobials that target multidrug-resistant
Gram-negative pathogens, including Acinetobacter baumannii (1). Apramycin is an

aminocyclitol aminoglycoside used in veterinary medicine. It differs from 16S rRNA
decoding A-site aminoglycosides approved for use in human therapy (e.g., gentamicin,
tobramycin, amikacin) in several respects. First, at a molecular level, apramycin is
believed to have only a minor effect on amino acid coding fidelity (2), yet it still
demonstrates bactericidal activity for Escherichia coli (3). Second, apramycin appears to
be neither ototoxic nor nephrotoxic (3–5), potentially based in part on greater selec-
tivity for bacterial over mitochondrial ribosomes (3). Third, apramycin has a broad
activity spectrum against multidrug-resistant human clinical isolates of A. baumannii,
Pseudomonas aeruginosa, and carbapenem-resistant Enterobacteriaceae (6, 7). For
multidrug- and extensively drug-resistant A. baumannii in particular, the apramycin
MIC50/MIC90 (8/32 �g ml�1) was notably lower than that for gentamicin, tobramycin,
and amikacin (�64/�256 �g ml�1). Remarkably, only 2% of apramycin MICs for this
highly resistant A. baumannii strain set were above the epidemiological cutoff value of
64 �g ml�1 (6).

Interestingly, apramycin, in contrast to other aminoglycosides, including plazomicin,
retains activity in the presence of armA and rmtA-H 16S rRNA methylases, which are
widely found in strains expressing NDM-1 (8, 9) and OXA-48 (10–15) carbapenemases
and in some aminoglycoside-resistant A. baumannii strains (10, 16, 17). Only the npmA
ribosomal methylase, through modification of a distinct nucleotide in the 16S RNA
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decoding A-site, undermines apramycin activity. However, at present, there is only one
report of npmA in a clinical isolate (18, 19).

Despite these intriguing attributes, there is a paucity of toxicological, pharmacoki-
netic, and pharmacodynamic data for apramycin in the peer-reviewed literature. There-
fore, we further characterized activity of apramycin against A. baumannii in in vitro
time-kill assays and in the neutropenic mouse thigh infection model.

To evaluate in vitro bactericidal activity of apramycin, we selected three strains of A.
baumannii that had representative apramycin MICs of 2, 16, and 64 �g ml�1, within the
previously determined epidemiological cutoff value of 64 �g ml�1 (6), and were
virulent in neutropenic CD-1 mice (see Table S1 in the supplemental material). Time-kill
studies were performed according to CLSI guidelines (20), with CFU quantified using
the drop-plate method (21). In time-kill analyses, apramycin demonstrated rapid bac-
tericidal activity (99.9% killing) within 1 to 2 h of antibiotic exposure at 1� to 4� the
broth microdilution MIC (Fig. 1).

To identify the single maximum tolerated dose (MTD) of apramycin, CD-1 mice
(Charles River Laboratories, Inc., Kingston, NY), weighing 25 to 30 g, were injected
intraperitoneally (i.p.) with ascending doses of apramycin. Over the next 72 h, no signs
of distress were observed with doses up to 1,500 mg kg�1. Two of three mice from the
3,000-mg kg�1 group died �24 h postinjection. Thus, the single-dose MTD was 1,500
mg kg�1.
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FIG 1 Time-kill studies. Apramycin demonstrates rapid bactericidal activity against representative A.
baumannii strains. Data points plotted at 102 CFU correspond to the detection limit of the assay. Results
shown are representative of two independent experiments.
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Apramycin was then given daily at 500 mg kg�1 i.p. for 14 consecutive days. Treated
animals showed no signs of distress or change in body weight in comparison to
controls during the experiment (see Fig. S1A in the supplemental material). On day 15,
the mice were euthanized. Terminal measurements of serum creatinine (Fig. S1B) and
organ histology, i.e., kidney (Fig. S1C) and liver (data not shown), were unremarkable.
The multidose MTD was therefore �500 mg kg�1.

Pharmacokinetic and treatment studies were performed using CD-1 mice, rendered
neutropenic with cyclophosphamide and mildly renal deficient with uranyl nitrate to
more closely simulate human excretion kinetics (22). For pharmacokinetic studies,
animals were injected subcutaneously (s.c.) with 20, 80, and 500 mg kg�1 apramycin
(n � 3 per dose). Plasma apramycin concentrations were measured as described
previously and are detailed in the supplemental material (23). Apramycin demonstrated
first-order elimination kinetics (data not shown). Maximum concentrations of drugs in
serum (Cmax) were 29 (�16), 141 (�19), and 2,100 �g ml�1 (�1,200); and area under
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FIG 2 Apramycin demonstrates substantial treatment effect in the murine thigh model. Mice were
infected with A. baumannii strains and dosed with apramycin 2 h later. CFU were enumerated 24 h
postinfection. There were no CFU recovered from a single mouse infected with strain MRSN 7465 treated
with 80 mg kg�1 apramycin and a single mouse infected with strain MRSN 1450 and treated with 500
mg kg�1 apramycin. Data points are plotted at the 103 CFU and 102 CFU assay limit of detection in these
respective experiments.
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the curve (AUC) values determined by the linear trapezoidal method were 138 (�97),
991 (�486), and 11,500 (�9,400) �g h ml�1, respectively.

For mouse thigh infection studies, mice were inoculated with 106 CFU of A.
baumannii strains MSRN7465 and MSRN 1450 or 107 CFU of A. baumannii strain
FDA-CDC278 and subsequently treated with apramycin 2 h postinfection with single
doses of 20, 80, or 500 mg kg�1 s.c. Tissue was harvested 24 h after infection, ground,
and serially diluted for CFU determination. Notably, apramycin showed a dramatic
treatment effect against all three strains (Fig. 2). There was at least a 4-log10 reduction
in CFU for all dosing in which AUC/MIC ratio was �50 and Cmax/MIC was �10 or more
(24, 25).

Previously, therapeutic effects of apramycin against single strains of Staphylococcus
aureus and Mycobacterium tuberculosis in murine infection models were described (26).
In these studies, the apramycin MIC for S. aureus was 4 to 8 �g ml�1, and the
therapeutic effect increased in an immunocompromised murine septicemia model in a
stepwise fashion when dosed at 16, 32, or 80 mg kg�1. The M. tuberculosis MIC was not
noted; however, a significant reduction in lung CFU occurred after dosing at 200 mg
kg�1 for 9 days. Here, we provide evidence for an in vivo activity spectrum that also
includes A. baumannii.

Several limitations of the study should be noted. First, absence of pathologies in
MTD studies with relatively high systemic exposure provides some support for low
toxicity. However, mice are insensitive to nephrotoxic effects of aminoglycosides
(27–29). Therefore, our findings do not rule out the potential for kidney toxicity, an
area that deserves further investigation in more relevant models (30). Furthermore,
large doses were needed to obtain a 4-log10 reduction for strains with high MIC
values. It is unclear how dosing would scale in future potential human use and
ultimately what fraction of strains may prove treatable. Despite the preliminary
nature of our findings, we believe, based on in vitro and in vivo data, that apramycin
deserves further consideration as a repurposed therapeutic and as a starting point
for future medicinal chemistry efforts targeting MDR Gram-negative pathogens
such as A. baumannii.
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