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Metabolic pathway disturbances associated with drug-induced liver injury remain unsatisfactorily characterized. Diagnostic
biomarkers for hepatotoxicity have been used to minimize drug-induced liver injury and to increase the clinical safety. A
metabolomics strategy using rapid-resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS) analyses and
multivariate statistics was implemented to identify potential biomarkers for hydrazine-induced hepatotoxicity. The global serum
and urine metabolomics of 30 hydrazine-treated rats at 24 or 48 h postdosing and 24 healthy rats were characterized by a
metabolomics approach. Multivariate statistical data analyses and receiver operating characteristic (ROC) curves were
performed to identify the most significantly altered metabolites. The 16 most significant potential biomarkers were identified to
be closely related to hydrazine-induced liver injury. The combination of these biomarkers had an area under the curve
(AUC)> 0.85, with 100% specificity and sensitivity, respectively. This high-quality classification group included amino acids and
their derivatives, glutathione metabolites, vitamins, fatty acids, intermediates of pyrimidine metabolism, and lipids. Additionally,
metabolomics pathway analyses confirmed that phenylalanine, tyrosine, and tryptophan biosynthesis as well as tyrosine
metabolism had great interactions with hydrazine-induced liver injury in rats. These discriminating metabolites might be useful
in understanding the pathogenesis mechanisms of liver injury and provide good prospects for drug-induced liver injury
diagnosis clinically.

1. Introduction

Drug-induced liver injury is a life-threatening risk that is
unpredictable and frequent during the clinical course of
disease treatment [1–3]. The commonly used medicines as
well as herbal products and vitamins may lead to liver injury
[4–7]. The current methods for drug-induced liver injury
diagnosis, such as blood biochemistry parameters including
alanine aminotransferase (ALT), alkaline phosphatase (ALP),
and aspartate aminotransferase (AST), are incapable of pro-
viding an accurate early diagnosis [8]. Hydrazine has been
extensively applied as the classical animal model of liver
injury and can also induce the alterations of endogenous
metabolites including 2-aminoadipate, β-alanine, 2-oxoglu-
tarate, and citrate [9–14]. However, to date, the reliability of
biomarkers has not been verified and evaluated by multi-
variate data analysis methods or other methods of data

analysis [15, 16]. Therefore, it is still necessary to identify
and validate reliable biomarkers by using integrated detection
methods and analysis methods for hydrazine-induced hepa-
totoxicity. Metabolomics is reported to be a powerful quanti-
tative approach for determining global metabolite changes in
response to disease or medical treatment and is particularly
suitable for discovering biomarkers in a complex system
[17–21]. Various techniques and methods have been applied
for identification of endogenous metabolites for metabolo-
mics analyses, including liquid chromatography-mass spec-
trometry (LC-MS) in addition to gas chromatography-mass
spectrometry (GC-MS) and 1H nuclear magnetic resonance
(1H-NMR) spectrometry [22–25]. The high sensitivity and
potential for metabolite identification have made mass
spectrometry (MS) the dominant approach for metabolomics
studies [26, 27]. Previous research has shown that alterations
of amino acids, glucose metabolism, lipid metabolism, and
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oxidative stress might be associated with hepatic fatty
degeneration and glycogen accumulation, obtained mainly
by using NMR- and GC-MS-based approaches [9–14]. These
platforms or technologies have different strengths and weak-
nesses. Metabolomics studies currently lack a comprehensive
metabolite identifying ability due to the lack of an electronic
database. Multiple metabolomics platforms and technologies
have allowed us to substantially enhance the level of metabo-
lome coverage [28, 29]. Up to now, potential biomarkers for
drug-induced injury lack methodology validation by other
omics or metabolic pathways as well as large clinical samples,
and the predictive ability of the analytical platform is not fully
understood. Potential biomarkers capable of providing an
accurate early diagnosis for drug-induced liver injury still
require further mining. Thus, metabolomics based on LC-
MS analyses may provide a comprehensive list of potential
biomarkers for hydrazine-induced hepatotoxicity.

The present study utilized a nontargeted metabolomics
approach by rapid-resolution liquid chromatography-mass
spectrometry (RRLC-MS) combined with multivariate statis-
tical analyses to investigate the metabolic profile changes
between healthy and hydrazine-administered rats. Metabolic
disturbances and changes in response to pathological condi-
tions were further evaluated by multivariate statistics to
identify potential diagnostic biomarkers. The reliabilities of
the identified discriminated metabolites were further vali-
dated by receiver operating characteristic (ROC) analyses.

2. Experimental Procedures

2.1. Chemicals. Hydrazine hydrate was from Acros Organics
(Morris Plains, NJ, USA). Acetonitrile and formic acid
(HPLC-grade) were from Merck (Darmstadt, Germany).
Metabolite standards with 99% purity (creatine, L-carnitine,
tryptophan, tyrosine, kynurenic acid, adenosine, tanshinone
IIA, peoniflorin, isosorbide 5-mononitrate, digitoxin, and
tramadol) were from Sigma-Aldrich. All other standards
used were of analytical or higher grade.

2.2. Animal Study Design and Sample Collection.Male Wistar
rats (n = 60, 6-7 weeks old) were from Charles River China
Inc. (Vital River Laboratories, China). The experiments were
carried out under the approval by the Animal Ethics Com-
mittee of Beijing Chao-Yang Hospital affiliated with Beijing
Capital Medical University. Rats were randomly divided into
four groups: two control groups (12 rats/group) and two
hydrazine-treated groups (18 rats/group). One control group
and one hydrazine-treated group were allocated for sampling
at 24 h postdosing, while the remaining two groups were
for sampling at 48 h postdosing. The hydrazine-treated
groups were orally administrated with a single dose of
hydrazine (150mg/kg), at which hydrazine could induce
an obvious histopathological effect and hepatocellular lipid
accumulation [10–14].

Urine samples from metabolic cages were collected for
8 h from 16 to 24h and 40 to 48 h postdosing and then
centrifuged at 5000×g for 5min at 4°C; the supernatant was
used for creatinine concentration measurement [14].

The orbital blood was taken from rats at 24 and 48 h post-
dosing. Serum samples collected by centrifugation at 5000×g,
and 4°C for 5min was used for determining ALT, ALP, and
AST concentrations. Blood biochemistry analyses were mea-
sured by a clinical biochemistry analyzer (AU400, Olympus,
Japan) at De Yi Biotechnology Co. Ltd.

After blood collection, the rat livers were collected and
fixed in 4% formaldehyde. The fixed rat liver samples were
trimmed, embedded in paraffin wax, sectioned, and then
stained with hematoxylin and eosin (H&E) for histopatho-
logical examination.

2.3. Sample Preparation. An aliquot of 50μL of urine super-
natant was further diluted to 200μL with water and then
filtered through a syringe filter (0.2μm, 96-well Captiva
sample prep solutions, Agilent Technologies, USA) before
LC-MS analysis. A 100μL aliquot of serum was added to
300μL of cold acetonitrile, and the mixture was vortexed
for 4min and centrifuged at 12,000×g for 10min. A total
of 200μL of the supernatant was centrifuged (SAVANT
SPD121 P SpeedVac, Thermo Scientific, USA) for 60min
or 90min at 4°C. Dry residues were reconstituted in 200μL
of water containing 2% acetonitrile and were vortexed for
5min. The supernatant was removed and filtered through a
syringe filter for RRLC-MS analysis.

2.4. RRLC-MS Analysis. Chromatographic separation was
performed on an ACQUITY UPLC HSS T3 column (1.8μm,
10 cm× 2.1mm,Waters, Ireland) with an Agilent 1200 RRLC
system (Agilent Technologies, Aldbronn, Germany). The
column temperature was kept at 50°C, and the injection
volume was 5μL. The analysis gradient conditions for
both serum and urine samples were the same, as follows:
0–5min, linear gradient of 2–10% B; 5–17min, linear gradi-
ent of 10–40% B; 17–20min, 40–100% B; and 20–30min,
100% B. The program was followed by a return to the starting
conditions, which were maintained for 8min to equilibrate
the column. Mobile phase A was 0.1% formic acid in water,
and mobile phase B was acetonitrile. The flow rate was
250μL/min.

MS spectra were acquired on a Q-TOF LC-MS system
(AB/MDS Sciex, Foster City, CA) with an electrospray ion
(ESI) source in positive-ion mode. The ion source voltage
was 5.5 kV, and the declustering potential was 50V. The
collision energy (CE) was set to 30/10 eV, and the vaporizer
temperature was 450°C. The MS was operated with gas
conditions of 30 psi for the curtain gas, 5 psi for the collision
gas, 70 psi for the nebulizer gas (GS1), and 60psi for the
drying gas (GS2). Nitrogen gas was used as both the nebuliz-
ing and drying gas. The mass-to-charge (m/z) scan range
was from 65 to 1000. Data processing and acquisition
were conducted on Analyst QS 2.0 software (QSTAR Elite,
AB/MDS Sciex).

MS/MS spectra were obtained with information-
dependent acquisition mode. MS signals were first collected
by one time-of-flight (TOF) survey scan and followed by
two product-ion scans for parent ions with the highest
intensity. For each survey scan, three MS/MS experiments
were triggered. Compounds with identical m/z ratios were
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excluded automatically. Metabolites of interest were added to
the MS/MS table list. MS/MS data were auto-normalized by
background ions (phthalates: m/z 391.2843 and 149.0233).

2.5. Assessment for Data Quality. To obtain high-quality and
reliable data to reflect the endogenous metabolite changes,
analytical and technical errors should be decreased to
minimize any influence on multivariate data analysis. In the
current study, a test standard mixture, including adenosine,
tanshinone IIA, peoniflorin, isosorbide 5-mononitrate, digi-
toxin, and tramadol, was added into the sample batch to
monitor the system stability. Quality control (QC) samples
prepared by pooling equal volumes of urine or serum from
each healthy and liver-injured rat were treated as the real
samples to monitor system reproducibility and stability [27].

2.6. Data Processing. RRLC-MS raw data were converted to
the m/z format with the threshold set at 1% using wiff to
m/z data translator software (version 1.0.0.4, AB/MDS
Sciex). Using open-source software MZmine 2 beta (version
2.9.1), peak finding, alignment, filtering, and scaling were
carried out. All parameters were optimized in a stepwise
manner until aligned peaks agreed with those from manual
inspection [30, 31]. Detailed preprocessing parameters are
listed in S1 Table [22].

The preprocessing data from urine samples were normal-
ized by the creatinine level. The obtained data were then
subjected to SIMCA-P 13.0 software (Umetrics AB, Umeå,
Sweden) for multivariate data analysis. In order to reduce
model noise and artifacts, centered- and pareto-scaling were
used prior to multivariate statistical analysis. To test the
model validity against overfitting and to validate the bio-
markers statistically, Q2, the cross-validation parameter,
was calculated using partial least squares discriminant
analysis (PLS-DA) by a random permutation test of 100
permutations. Discriminating variables were chosen based
on jack-knife confidence intervals, S-plot, variable impor-
tance on projection (VIP) values, and raw data plots using
the orthogonal partial least squares discriminant analysis
(OPLS-DA) model. The OPLS-DA model quality was evalu-
ated by the relevant R2 and Q2 values as well as the intercepts
of R2 and Q2. The OPLS-DA models were considered to be
valid only if 0<R2(Y)–Q2(Y)< 0.3, Q2(Y)> 0.5, intercepts of
R2< 0.4, and intercepts of Q2< 0.05 [32]. The independent
t-test (2007 version of Microsoft Office Excel) was used to
check whether potential biomarkers derived from OPLS-
DA modeling were statistically significant (p < 0 05).

Metabolites were identified via searching free databases
including HMDB, PubChem, METLIN, and KEGG, using
accurate molecular weights [33]. High-resolution mass spec-
tra (HR-MS/MS) were applied for further identification.
Based on the retention time comparison, authentic standards
were also used. Each identified biomarker was evaluated for
its discriminatory power and predictive ability using the area
under the receiver operating characteristic curve [34]. Meta-
bolic pathway analysis for potential biomarkers was carried
out by powerful pathway enrichment analysis and pathway
topology analysis to identify the most relevant pathways
through MetaboAnalyst 3.0 (http://www.metaboanalyst.ca).

The most relevant pathways involved were confirmed only
if the pathway impact was greater than 0.1 and the node size
and color were graphically larger and darker.

3. Results and Discussion

3.1. Toxicological Examination. Hydrazine-induced hepato-
toxicity in rats was confirmed by evaluation of blood
biochemistry and liver tissue histology. Alternations of the
blood biochemical parameters between healthy and
hydrazine-treated rats are listed in Table 1. AST decreased
significantly in the hydrazine-treated rats at both 24 and
48 h postdosing, perhaps owing to hydrazine or its metabo-
lites causing sequestration of the aminotransferase cofactor
pyridoxal 5-phosphate, resulting in inhibitory effects on
aminotransferase activities [9–14, 35]. However, ALT and
ALP did not significantly differ between hydrazine-treated
groups at 24 and 48h postdosing and their controls,
respectively, indicating hepatic injuries might be accompa-
nied with little changes of ALT and ALP for self-regulation
and recovery. The results also suggested that the activities
of hepatotoxicity enzymes might not be sensitive enough to
predict hydrazine-induced liver injury.

The histopathological photographs are shown in Figure 1.
Figures 1(a) and 1(b) show normal hepatocytes surrounding
the central vein in control rats, and Figures 1(c)–1(f) show
the cytoplasmic vacuoles induced by fatty degenerations
in the midzonal area of hepatocytes and single-cell necrosis
of hepatocytes in hydrazine-treated rats. Additionally, isolated
extracellular and eosinophilic bodies were distributed in some
necrotic cells of hydrazine-treated rats. These findings indicate
that hydrazine-treated rats at 24 or 48h postdosing had
suffered from serious liver injury.

3.2. Assessment of Data Quality. To obtain high-quality and
reliable data to reflect the endogenous metabolite changes,
analytical and technical errors should be decreased to
minimize any influence on multivariate data analysis. In the
current study, a test standard mixture including adenosine,
tanshinone IIA, peoniflorin, isosorbide 5-mononitrate,
digitoxin, and tramadol was added into the sample batch
to monitor the system stability. As demonstrated in S1
Fig, the maximum deviation in retention time for all
standards in the test standard mixture was 0.06min, the
average variation of retention time was <0.82% (RSD),

Table 1: Alterations of blood biochemistry parameters in
hydrazine-treated rats.

Time Dose ALT (U/L) ALP (U/L) AST (U/L)

24 h
0mg/kg 48.4± 14.8 199.5± 21.4 150.7± 34.9
150mg/kg 39.8± 10.2 180.1± 24.1∗ 109.8± 55.5∗

48 h
0mg/kg 47.3± 19.4 193.1± 41.0 131.2± 18.0
150mg/kg 31.3± 15.5† 201.1± 27.5 86.6± 45.6††

ALT: alanine aminotransferase; ALP: alkaline phosphatase; AST: aspartate
aminotransferase. ∗Significantly different from the 0mg/kg group (24 h)
(p < 0 05). †Significantly different from the 0mg/kg group (48 h) (p < 0 05).
††Significantly different from the 0mg/kg group (48 h) (p < 0 01).
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and the average variation of extracted ion areas was
<14.30% (RSD) (S2 Table). Multivariate analysis was
performed after creatinine normalization and unit variance
scaling. Using principal component analysis (PCA), the
peak area deviation of serum or urine QC plots was less
than 2-fold of the SD (S2 Fig). These results indicate that
differences between test samples were more likely to
reflect varied metabolic profiles than technical errors or
analytical variation.

3.3. Multivariate Statistical Analysis of Control and Liver-
Injured Rats. Using MZmine software, the RRLC-MS data
of urine and serum samples were analyzed by peak detection
and integration, leading to the identification of m/z 647 and

m/z 604 peaks for urine and serum samples between reten-
tion times of 1 to 25min, respectively.

First, PCA was applied to integrate and coanalyze all
observations from serum and urine samples to investigate
metabolomics changes. The control groups and hydrazine-
treated groups at both 24h and 48 h postdosing were
not well distinguished in terms of PCA score plots, and
the 48h postdosing group did not show a significant dif-
ference compared with the 24 h postdosing group, espe-
cially for the urine samples. OPLS-DA was applied to
the control groups and hydrazine-treated groups at both
24 h and 48h postdosing. The separation of the three
groups was good (Figure 2). Furthermore, OPLS-DA was
applied as a stoichiometric analysis method to explore

(a) (b)

(c) (d)

(e) (f)

Figure 1: Liver histopathology at 24 h and 48 h postdosing for control rats and liver-injured rats, which were induced by hydrazine. No
abnormalities were detected in the controls (0mg/kg) at the 24 h and 48 h time points (a and b). Fatty degeneration and single-cell
necrosis appeared obviously in the midzonal areas of the hydrazine-treated groups (150mg/kg) at 24 h (c and d) and 48 h (e and f)
postdosing. Histological sections were stained with H&E (×400).
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differences between healthy and liver-injured rats. Score
plots for the OPLS-DA models showed a clear separation
between healthy and liver-injured rats (Figure 3). For
serum data analyses, one predictive component (tp) and
two orthogonal (to) components (1 + 2) with cross-validated
predictive abilities Q2(cum) of 85.9% were derived.

Additionally, 38.9% of the variance in X[R2(X)] was
applied to account for 92% of the Y[R2(Y)] variance
(Figure 3(a)). For urine data analyses, R2(X) = 41.1%,
R2(Y) = 90.5%, and Q2(cum)=86.8% across one predictive
component (tp) and two orthogonal (to) components are
shown in Figure 3(b).
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Figure 2: OPLS-DA score plots of (a) serum and (b) urine samples derived from the RRLC−(+) ESIMS data. (The symbols are as follows:
green circle =C healthy rats; blue circle =M liver-injured rats induced by hydrazine at 24 h postdosing; and brown circle = FM liver-
injured rats induced by hydrazine at 48 h postdosing.)
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To avoid overfitting, a seven-round validation across
three components by excluding 1/7th of the samples in each
round was applied. Validation by 100 random permutation
tests resulted in intercepts of R2 = 0.267 and Q2 =−0.235 for
the serum data (S3 Fig A and B). Similarly, the validated
intercepts of R2=0.213 and Q2=−0.242 were calculated for
the urine data (S3 Fig C and D). These results demonstrated
that the OPLS-DA models based on the RRLC-ESI-MS
data showed good predictability for both the serum and
urine samples.

3.4. Screening of Potential Diagnostic Biomarker Candidates.
S-plot was applied to screen the discriminative variables.
Metabolites with a high correlation were selected preferen-
tially [36]. Variables with a VIP> 1.0 were marked as vari-
ables of interest [37]. Raw data plots and jack knife-based
confidence interval analyses were subsequently employed to
remove variables with low reliability. In parallel, the indepen-
dent t-test was applied to evaluate the significance of the

concentration difference for identified variables (p < 0 001).
Redundant variables obtained from the samemetabolite were
excluded by partial correlation coefficients. Consequently,
27 and 53 metabolites detected in serum and urine,
respectively, were deemed to be biomarker candidates
reflecting metabolic differences. To further identify serum-
or urine-specific biomarker(s), the first screened potential
biomarkers were evaluated by a self-compiled Microsoft
Visual Basic program [22]. The results showed that only
five discriminatory metabolites were identified in both
serum and urine. In total, 22 and 48 metabolites were
considered as unique biomarkers for serum and urine,
respectively (S3 Table).

3.5. Identification of Potential Biomarkers by MS/MS
Fragmentation Patterns.Amolecular formula could be deter-
mined according to the accurate mass weights, mass defect
considerations, assignments, MS/MS fragmentation patterns,
and relative intensities of the isotope peaks obtained from the
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Figure 3: OPLS-DA score plots derived from the RRLC−(+) ESIMS data from (a) serum and (b) urine samples. (The symbols are as follows:
red circle =C healthy rats and blue circle =M and FM liver-injured rats induced by hydrazine at 24 h and 48 h postdosing.)
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HR-MS/MS [22, 31, 33]. Here, the identification processes
were briefly demonstrated by taking m/z 206.0415 as an
example (Figure 4). Such steps enabled the characterization
of 19 potential biomarkers in the serum and urine. Their
HR-MS/MS fragments and relative abundances are listed in
Table 2. Five potential screened biomarkers (creatine, L-car-
nitine, tryptophan, tyrosine, and kynurenic acid) were fur-
ther confirmed by the retention time comparison with the
standard.

3.6. Characterization of Potential Diagnostic Biomarkers.
ROC analyses were performed to reconfirm these putative

biomarkers for their discriminatory power. Nineteen identi-
fied potential biomarkers (8 for serum, 12 for urine, and 1
for both serum and urine) were classified into two categories,
8 were upregulated, and 11 were downregulated in liver-
injured rats (Table 2). The seven upregulated metabolites
had AUC values of 0.667 to 1 (S4 Fig A). Only tyrosine
showed a relatively low diagnostic significance (AUC< 0.7)
[31, 34]. The eleven downregulated metabolites provided
AUC values of 0.838 to 1 (S4 Fig B). Heat maps were
also obtained to evaluate the discriminative power of
potential biomarkers, and their AUC values are ranked
in Figure 5(a). The peak area changes between the control
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Figure 4: (a) Extracted ion chromatogram (XIC) of m/z 206.0415 in positive-ion mode of LC-MS analysis for urine samples. (b and c) The
identification of the metabolite xanthurenic acid by means of Q-TOF MS/MS in positive-ion mode; the positive product ion spectrum ofm/z
206.0415 at 8.16min (b) and its postulated main fragmentation pathway (c).
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and hydrazine-treated groups are summarized in
Figure 5(b). To achieve more discriminative power, a
biomarker group was generated including 6 upregulated
(creatine, tryptophan, N-acetylhistidine, L-carnitine, pyro-
glutamic acid, and indoleacrylic acid) and 10 downregu-
lated (prolinebetaine, L-acetylcarnitine, pipecolic acid,
xanthurenic acid, trigonelline, kynurenic acid, indole-3-
carboxylic acid, phosphorylcholine, 4-pyridoxic acid, and
thymine) metabolites with AUC> 0.85. These biomarkers
were further analyzed by binary logistic regression, followed
by ROC curve analysis, which provided an AUC of 1. In
addition, both specificity and sensitivity calculated at best
cut-off points could reach 100% (S5 Fig). These findings
demonstrate that this group of combined biomarkers showed
a more preferable discrimination capability between healthy
and liver-injured rats.

3.7. Biological Significance of the Identified Potential
Biomarkers. Tyrosine and tryptophan have been shown to
be associated with thioacetamide-induced liver fibrosis
[38]. In the tryptophan metabolism pathway, lower levels
of kynurenic acid and xanthurenic acid have been con-
firmed to indicate disturbances in liver function and
energy-related metabolism [39, 40]. Furthermore, down-
regulation of indoleacrylic acid and indole-3-carboxylic

acid might result from a tryptophan metabolism disorder
involved in liver diseases [41].

Elevated creatine kinase and transaminase levels have
been found in statin-induced liver damage [42]. In the cur-
rent study, a dramatic decrease of urinary pipecolic acid
was observed in hydrazine-induced liver injury. In addition,
the upregulation of plasma pipecolic acid has been reported
in chronic liver disease patients almost paralleling the
severity of liver damage [43]. Pyroglutamic acid, an interme-
diate of the endogenous tripeptide glutathione biosynthesis
pathway, is well documented as a hepatotoxicity biomarker
following acetaminophen exposure [10, 44].

Trigonelline is an effective lipid-lowering agent that
occasionally causes hepatic failure [45]. Previous studies have
demonstrated that trigonelline is decreased by acute and
chronic acetaminophen administration [46]. 4-Pyridoxic
acid, the catabolic product of vitamin B6, regulates transsul-
furation reactions for glutathione production and aberrant
vitamin B-dependent hepatic methionine metabolism [47].
Moreover, 4-pyridoxic acid, indoleacrylic acid, and trypto-
phan have been shown to have a great influence on oxidative
stress as well as on liver and renal dysfunction induced by
pesticides [48].

Compared with the healthy controls, the liver-injured
rats demonstrated significantly higher serum levels of

Table 2: Identified potential biomarkers related to perturbations of hydrazine-induced liver injury.

Biological
sample

RT
(min)

m/z
Elemental
composition

Metabolite
identification

MS/MS fragmentsc
VIPd

(trend)
p valuee

Serum 2.19 130.0512 C5H8NO3
+ Pyroglutamic acidb 84.0449 1.03 ↑ 2.33E− 09

Serum 1.22 132.0770 C4H10N3O2
+ Creatinea,b 90.0555, 87.0791, 72.0565 4.25 ↑ 9.83E− 11

Serum 1.26 144.1029 C7H14NO2
+ Prolinebetaineb 102.0556, 84.0812 1.36 ↓ 3.44E− 14

Serum 1.16 162.1129 C7H16NO3
+

L-Carnitinea,b 103.0377, 85.0277 1.45 ↑ 3.15E− 13
Serum 1.14 198.0861 C8H12N3O3

+ N-Acetylhistidineb 153.0890, 138.0548 1.62 ↑ 1.86E− 20
Serum 1.80 204.1243 C9H18NO4

+
L-Acetylcarnitineb 144.1032, 85.0870 1.25 ↓ 1.28E− 06

Serum 5.20 205.0990 C11H13N2O2
+ Tryptophana,b 188.0704, 146.0612, 118.0673 2.30 ↑ 1.21E− 09

Serum/urine 2.62 182.0803 C9H12NO3
+ Tyrosinea,b

165.0548, 136.0760,
123.0449, 119.0490

5.38/2.28 ↑
1.77E− 06/
9.94E− 04

Urine 1.51 127.0490 C5H7N2O2
+ Thymineb 84.0444 1.11 ↓ 5.05E− 11

Urine 1.69 130.0857 C6H12NO2
+ Pipecolic acidb 84.0808 2.28 ↓ 9.68E− 06

Urine 1.21 138.0534 C7H8NO2
+ Trigonellineb 94.0650, 78.0332, 67.0407 1.96 ↓ 3.43E− 12

Urine 4.02 144.0660 C6H11NO3
+ Vinylacetylglycineb 99.0680, 98.0568, 86.0600 7.35 ↑ 1.55E− 05

Urine 1.70 146.0913 C5H12N3O2
+ 4-Guanidinobutanoic acidb

111.0566, 87.0440,
86.0584, 69.0326

2.42 ↓ 1.14E− 06

Urine 11.1 162.0532 C9H8NO2
+ Indole-3-carboxylic acidb 144.0414, 116.0463, 89.0382 1.62 ↓ 2.00E− 09

Urine 4.09 184.0590 C8H10NO4
+ 4-Pyridoxic acidb 166.0469, 148.0400 1.41 ↓ 4.19E− 14

Urine 6.91 185.1245 C5H16NO4P
+ Phosphorylcholineb 126.0902 1.55 ↓ 7.13E− 08

Urine 7.97 188.0692 C11H10NO2
+ Indoleacrylic acidb 142.0651 1.05 ↑ 1.71E− 06

Urine 8.82 190.0482 C10H8NO3
+ Kynurenic acida,b

162.0527, 144.0431,
116.0464, 89.0357

1.86 ↓ 2.86E− 15

Urine 8.16 206.0430 C10H8NO4
+ Xanthurenic acidb

178.0462, 160.0367,
132.0415

2.22 ↓ 9.00E− 06

aMetabolites confirmed using standard compounds. bMetabolites confirmed by literature or database searches and MS fragmentation. cMS/MS fragments were
obtained with a CE of 30/10 eV, respectively. dVIP is variable importance in the projection obtained from OPLS-DA with a threshold of 1.0. ep value of the
independent t-test between the control and model group.
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L-carnitine, while the level of acetylcarnitine decreased.
Carnitine is reported to be essential for fatty acid metabo-
lism and transport of activated long-chain fatty acids to
β-oxidation sites in the mitochondria [49]. In rats, L-acetyl-
carnitine has been shown to increase the endogenous
antioxidant defense mechanism and thus protect the
animals from radiation-induced liver toxicity [50]. There-
fore, elevated carnitine and decreased acylcarnitine levels
might be important indicators for oxidation disturbances
of long-chain fatty acids that are closely related to liver
injury. Furthermore, increased levels of L-dihydroorotic
acid and decreased levels of thymine have been demon-
strated to result from a pyrimidine metabolism disorder
in the development of liver diseases [51].

Elevated phosphorylcholine concentrations were observed
in human hepatic tumor patients due to reconstitution of
phospholipids in the injured membrane, and the opposite
change was found in liver-injured rats [52]. These potential
biomarkers indicate that perturbations of amino acids,
glutathione metabolism, vitamins, fatty acids, pyrimidine,
and lipid metabolism might be important in liver dysfunction.

Additionally, metabolomics pathway analyses confirmed that
phenylalanine, tyrosine, and tryptophan biosynthesis as well
as tyrosine metabolism had great interactions in hydrazine-
induced liver injury in rats (Figure 6).

4. Conclusions

We investigated the application of an RRLC-MS/MS-based
metabolomics method for hepatotoxicity evaluation in rats.
To achieve a better discriminatory capability, a biomarker
group was built by assembling biomarkers with high diagnos-
tic value based on ROC analysis and a logistic regression
model. The sensitivity and specificity of prediction were
significantly improved by a group of biomarkers consisting
of seven upregulated and ten downregulated metabolites.
These discriminating metabolites might be useful in under-
standing the pathogenesis mechanisms of liver injury and
provide good prospects for drug-induced liver injury diagno-
sis clinically.

This study confirmed the feasibility of using an LC-
MS-based urine metabolomics platform to characterize
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Figure 5: (a) Visualization of the discriminatory powers of individual potential biomarkers (AUC values> 0.8). Heat map showing the
discriminatory capacity of each metabolite estimated by the AUC. Colors correspond to AUC values; red and blue represent high and low
values, respectively. (b) Concentration changes of potential biomarkers in the control and liver-injured groups (∗∗∗p < 0 001).
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hydrazine-induced hepatotoxicity in rats. However, the
specificity of these potential biomarkers must be further
evaluated. Further studies will be applied to validate these
biomarkers in larger cohorts of different patients.
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48 h postdosing.) S4 Fig: visualization of the discriminatory
powers of potential biomarkers. (A) The eight upregulated
metabolites provided AUC values of 0.667 to 1. (B) The 11
downregulated metabolites provided AUC values of 0.838
to 1. S5 Fig: ROC curve of the combined potential bio-
markers (AUC> 0.85) that provided an AUC of 1 and sen-
sitivities and specificities that reached 100%, respectively.
(Supplementary Materials)

References

[1] D. S. Goldberg, K. A. Forde, D. M. Carbonari et al., “Pop-
ulation-representative incidence of drug-induced acute liver
failure based on an analysis of an integrated health care
system,” Gastroenterology, vol. 148, no. 7, pp. 1353–
1361.e3, 2015.

[2] N. Chalasani, R. J. Fontana, H. L. Bonkovsky et al., “Causes,
clinical features, and outcomes from a prospective study of
drug-induced liver injury in the United States,” Gastroenterol-
ogy, vol. 135, no. 6, pp. 1924–1934.e4, 2008.

[3] R. Idilman, M. Bektas, K. Cinar et al., “The characteristics and
clinical outcome of drug-induced liver injury: a single-center
experience,” Journal of Clinical Gastroenterology, vol. 44,
no. 6, pp. e128–e132, 2010.

[4] M. Robles, E. Toscano, J. Cotta, M. Lucena, and R. J. Andrade,
“Antibiotic-induced liver toxicity: mechanisms, clinical fea-
tures and causality assessment,” Current Drug Safety, vol. 5,
no. 3, pp. 212–222, 2010.

[5] B. E. Senousy, S. I. Belal, and P. V. Draganov, “Hepato-
toxic effects of therapies for tuberculosis,” Nature Reviews
Gastroenterology & Hepatology, vol. 7, no. 10, pp. 543–
556, 2010.

[6] J. A. Agúndez, M. I. Lucena, C. Martínez et al., “Assessment of
nonsteroidal anti-inflammatory drug-induced hepatotoxicity,”
Expert Opinion on DrugMetabolism& Toxicology, vol. 7, no. 7,
pp. 817–828, 2011.

[7] E. S. Björnsson, “Drug-induced liver injury due to antibiotics,”
Scandinavian Journal of Gastroenterology, vol. 52, no. 6-7,
pp. 617–623, 2017.

[8] M. Chen, H. Bisgin, L. Tong et al., “Toward predictive models
for drug-induced liver injury in humans: are we there yet?,”
Biomarkers in Medicine, vol. 8, no. 2, pp. 201–213, 2014.

[9] A. W. Nicholls, E. Holmes, J. C. Lindon et al., “Metabonomic
investigations into hydrazine toxicity in the rat,” Chemical
Research in Toxicology, vol. 14, no. 8, pp. 975–987, 2001.

[10] S. Garrod, M. E. Bollard, A. W. Nicholls et al., “Integrated
metabonomic analysis of the multiorgan effects of hydrazine

3.0

2.5

2.0

1.5

−l
og

 (p
)

1.0

0.5

0.0 0.1 0.2 0.3 0.4 0.5

Tyrosine metabolism
(pathway impact = 0.14)

Phenylalanine, tyrosine and
trytophan biosynthesis
(pathway impact = 0.5)

Pathway impact

Figure 6: Metabolic pathway analysis for potential biomarkers
related to liver-injured rats induced by hydrazine. The most
relevant pathways are represented by large and dark nodes
(pathway impact> 0.1).

10 Disease Markers

http://downloads.hindawi.com/journals/dm/2018/8473161.f1.docx


toxicity in the rat,” Chemical Research in Toxicology, vol. 18,
no. 2, pp. 115–122, 2005.

[11] M. E. Bollard, H. C. Keun, O. Beckonert et al., “Comparative
metabonomics of differential hydrazine toxicity in the rat
and mouse,” Toxicology and Applied Pharmacology, vol. 204,
no. 2, pp. 135–151, 2005.

[12] D. J. Crockford, E. Holmes, J. C. Lindon et al., “Statistical
heterospectroscopy, an approach to the integrated analysis of
NMR and UPLC-MS data sets: application in metabonomic
toxicology studies,” Analytical Chemistry, vol. 78, no. 2,
pp. 363–371, 2006.

[13] T. G. Klenø, B. Kiehr, D. Baunsgaard, and U. G. Sidelmann,
“Combination of ‘omics’ data to investigate the mechanism(s)
of hydrazine-induced hepatotoxicity in rats and to identify
potential biomarkers,” Biomarkers, vol. 9, no. 2, pp. 116–138,
2004.

[14] K. Bando, T. Kunimatsu, J. Sakai et al., “GC-MS-based meta-
bolomics reveals mechanism of action for hydrazine induced
hepatotoxicity in rats,” Journal of Applied Toxicology, vol. 31,
no. 6, pp. 524–535, 2011.

[15] M. Yu, Y. Zhu, Q. Cong, and C. Wu, “Metabonomics research
progress on liver diseases,” Canadian Journal of Gastroenterol-
ogy and Hepatology, vol. 2017, Article ID 8467192, 10 pages,
2017.

[16] K. Kakisaka, Y. Yoshida, Y. Suzuki et al., “Serum markers for
mitochondrial dysfunction and cell death are possible predic-
tive indicators for drug-induced liver injury by direct acting
antivirals,” Hepatology Research, vol. 48, no. 1, pp. 78–86,
2017.

[17] J. K. Nicholson and I. D. Wilson, “Opinion: understanding
‘global’ systems biology: metabonomics and the continuum
of metabolism,” Nature Reviews Drug Discovery, vol. 2, no. 8,
pp. 668–676, 2003.

[18] A. Sreekumar, L. M. Poisson, T. M. Rajendiran et al., “Metabo-
lomic profiles delineate potential role for sarcosine in prostate
cancer progression,” Nature, vol. 457, no. 7231, pp. 910–914,
2009.

[19] D. Y. Chen, Y. M. Chen, H. J. Chien et al., “Metabolic
disturbances in adult-onset still’s disease evaluated using
liquid chromatography/mass spectrometry-based metabolo-
mic analysis,” PLoS One, vol. 11, no. 12, article e0168147, 2016.

[20] M. S. Ahmad, M. Alsaleh, T. Kimhofer et al., “Metabolic phe-
notype of obesity in a Saudi population,” Journal of Proteome
Research, vol. 16, no. 2, pp. 635–644, 2017.

[21] L. Wang, S. Liu, W. Yang et al., “Plasma amino acid profile
in patients with aortic dissection,” Scientific Reports, vol. 7,
article 40146, 2017.

[22] Z. An, Y. Chen, R. Zhang et al., “Integrated ionization
approach for RRLC-MS/MS-based metabonomics: finding
potential biomarkers for lung cancer,” Journal of Proteome
Research, vol. 9, no. 8, pp. 4071–4081, 2010.

[23] A. H. Emwas, C. Luchinat, P. Turano et al., “Standardizing
the experimental conditions for using urine in NMR-based
metabolomic studies with a particular focus on diagnostic
studies: a review,” Metabolomics, vol. 11, no. 4, pp. 872–894,
2015.

[24] A. Wuolikainen, P. Jonsson, M. Ahnlund et al., “Multi-
platform mass spectrometry analysis of the CSF and
plasma metabolomes of rigorously matched amyotrophic
lateral sclerosis, Parkinson’s disease and control subjects,”
Molecular BioSystems, vol. 12, no. 4, pp. 1287–1298, 2016.

[25] A. Vignoli, D. M. Rodio, A. Bellizzi et al., “NMR-based
metabolomic approach to study urine samples of chronic
inflammatory rheumatic disease patients,” Analytical and
Bioanalytical Chemistry, vol. 409, no. 5, pp. 1405–1413, 2017.

[26] I. D. Wilson, R. Plumb, J. Granger, H. Major, R. Williams, and
E. M. Lenz, “HPLC-MS-based methods for the study of
metabonomics,” Journal of Chromatography B, vol. 817,
no. 1, pp. 67–76, 2005.

[27] H. G. Gika, G. A. Theodoridis, J. E. Wingate, and I. D. Wilson,
“Within-day reproducibility of an HPLC-MS-based method
for metabonomic analysis: application to human urine,” Jour-
nal of Proteome Research, vol. 6, no. 8, pp. 3291–3303, 2007.

[28] A. Scalbert, L. Brennan, O. Fiehn et al., “Mass-spectrometry-
based metabolomics: limitations and recommendations for
future progress with particular focus on nutrition research,”
Metabolomics, vol. 5, no. 4, pp. 435–458, 2009.

[29] M. S. Monteiro, M. Carvalho, M. L. Bastos, and P. Guedes
de Pinho, “Metabolomics analysis for biomarker discovery:
advances and challenges,” Current Medicinal Chemistry,
vol. 20, no. 2, pp. 257–271, 2013.

[30] M. Katajamaa and M. Oresic, “Processing methods for differ-
ential analysis of LC/MS profile data,” BMC Bioinformatics,
vol. 6, no. 1, p. 179, 2005.

[31] Y. Chen, J. Xu, R. Zhang et al., “Assessment of data pre-
processing methods for LC-MS/MS-based metabolomics of
uterine cervix cancer,” The Analyst, vol. 138, no. 9, pp. 2669–
2677, 2013.

[32] L. Eriksson, E. Johansson, N. Kettaneh-Wold, J. Trygg,
C. Wikström, and S. Wold, Multivariate and Megavariate
Data Analysis Part I: Basic Principles and Applications,
Umetrics Academy, Sweden, 2001.

[33] Y. Chen, R. Zhang, Y. Song et al., “RRLC-MS/MS-based
metabonomics combined with in-depth analysis of metabolic
correlation network: finding potential biomarkers for breast
cancer,” The Analyst, vol. 134, no. 10, pp. 2003–2011, 2009.

[34] J. A. Swets, “Measuring the accuracy of diagnostic systems,”
Science, vol. 240, no. 4857, pp. 1285–1293, 1988.

[35] E. S. Lightcap and R. B. Silverman, “Slow-binding inhibition of
γ-aminobutyric acid aminotransferase by hydrazine ana-
logues,” Journal of Medicinal Chemistry, vol. 39, no. 3,
pp. 686–694, 1996.

[36] S. Wiklund, E. Johansson, L. Sjöström et al., “Visualization of
GC/TOF-MS-based metabolomics data for identification of
biochemically interesting compounds using OPLS class
models,”Analytical Chemistry, vol. 80, no. 1, pp. 115–122, 2008.

[37] L. Eriksson, E. Johansson, N. Kettaneh-Wold, J. Trygg,
C. Wikström, and S. Wold, Multivariate and Megavariate
Data Analysis Part II: Advanced Applications and Method
Extensions, Umetrics, Sweden, 2006.

[38] D. D. Wei, J. S. Wang, P. R. Wang, M. H. Li, M. H. Yang, and
L. Y. Kong, “Toxic effects of chronic low-dose exposure of
thioacetamide on rats based on NMR metabolic profiling,”
Journal of Pharmaceutical and Biomedical Analysis, vol. 98,
pp. 334–338, 2014.

[39] L. Rios-Avila, H. F. Nijhout, M. C. Reed, H. S. Sitren, and J. F.
Gregory 3rd, “A mathematical model of tryptophan metabo-
lism via the kynurenine pathway provides insights into the
effects of vitamin B-6 deficiency, tryptophan loading, and
induction of tryptophan 2,3-dioxygenase on tryptophan
metabolites,” The Journal of Nutrition, vol. 143, no. 9,
pp. 1509–1519, 2013.

11Disease Markers



[40] X. Sun, W. Xu, Y. Zeng et al., “Metabonomics evaluation
of urine from rats administered with phorate under long-
term and low-level exposure by ultra-performance liquid
chromatography-mass spectrometry,” Journal of Applied
Toxicology, vol. 34, no. 2, pp. 176–183, 2014.

[41] F. Hartmann, E. Freiberg, and W. Ruge, “Indolepatterns in the
urine of liver patients,” KlinischeWochenschrift, vol. 40, no. 14,
pp. 721–729, 1962.

[42] L. Li, Y. Ma, X. B. Geng et al., “Drug-induced acute liver injury
within 12 hours after fluvastatin therapy,” American Journal of
Therapeutics, vol. 23, no. 1, pp. e318–e320, 2016.

[43] H. Kawasaki, T. Hori, M. Nakajima, and K. Takeshita, “Plasma
levels of pipecolic acid in patients with chronic liver disease,”
Hepatology, vol. 8, no. 2, pp. 286–289, 1988.

[44] S. Geenen, C. Guallar-Hoyas, F. Michopoulos et al., “HPLC-
MS/MS methods for the quantitative analysis of 5-oxoproline
(pyroglutamate) in rat plasma and hepatic cell line culture
medium,” Journal of Pharmaceutical and Biomedical Analysis,
vol. 56, no. 3, pp. 655–663, 2011.

[45] E. H. Ali, B. McJunkin, S. Jubelirer, and W. Hood, “Niacin
induced coagulopathy as a manifestation of occult liver
injury,” The West Virginia Medical Journal, vol. 109, no. 1,
pp. 12–14, 2013.

[46] J. Sun, L. K. Schnackenberg, R. D. Holland et al., “Metabo-
nomics evaluation of urine from rats given acute and chronic
doses of acetaminophen using NMR and UPLC/MS,” Journal
of Chromatography B, vol. 871, no. 2, pp. 328–340, 2008.

[47] C. H. Halsted, “B-vitamin dependent methionine metabolism
and alcoholic liver disease,” Clinical Chemistry and Laboratory
Medicine, vol. 51, no. 3, pp. 457–465, 2013.

[48] L. Du, S. Li, L. Qi et al., “Metabonomic analysis of the joint
toxic action of long-term low-level exposure to a mixture of
four organophosphate pesticides in rat plasma,” Molecular
BioSystems, vol. 10, no. 5, pp. 1153–1161, 2014.

[49] A. Kępka, S. D. Szajda, N. Waszkiewicz et al., “Carnitine:
function, metabolism and value in hepatic failure during
chronic alcohol intoxication,” Postȩpy Higieny i Medycyny
Doświadczalnej, vol. 65, pp. 645–653, 2011.

[50] H. H. Mansour, “Protective role of carnitine ester against
radiation-induced oxidative stress in rats,” Pharmacological
Research, vol. 54, no. 3, pp. 165–171, 2006.

[51] H. Sun, A. H. Zhang, D. X. Zou, W. J. Sun, W. XH, and X. J.
Wang, “Metabolomics coupled with pattern recognition and
pathway analysis on potential biomarkers in liver injury and
hepatoprotective effects of yinchenhao,” Applied Biochemistry
and Biotechnology, vol. 173, no. 4, pp. 857–869, 2014.

[52] T. Ogiso, T. Kobayashi, K. Kuhara, and Y. Kato, “Effect of
“drugs for liver disease” on hepatotoxic action of carbon tetra-
chloride II. Effect of protoporphyrin and phosphorylcholine
on microsomal drug-metabolizing enzyme activities and the
components in injuried liver,” The Japanese Journal of
Pharmacology, vol. 25, no. 4, pp. 411–421, 1975.

12 Disease Markers


	Metabolomics of Hydrazine-Induced Hepatotoxicity in Rats for Discovering Potential Biomarkers
	1. Introduction
	2. Experimental Procedures
	2.1. Chemicals
	2.2. Animal Study Design and Sample Collection
	2.3. Sample Preparation
	2.4. RRLC-MS Analysis
	2.5. Assessment for Data Quality
	2.6. Data Processing

	3. Results and Discussion
	3.1. Toxicological Examination
	3.2. Assessment of Data Quality
	3.3. Multivariate Statistical Analysis of Control and Liver-Injured Rats
	3.4. Screening of Potential Diagnostic Biomarker Candidates
	3.5. Identification of Potential Biomarkers by MS/MS Fragmentation Patterns
	3.6. Characterization of Potential Diagnostic Biomarkers
	3.7. Biological Significance of the Identified Potential Biomarkers

	4. Conclusions
	Conflicts of Interest
	Funding
	Supplementary Materials

