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ATTED-II (http://atted.jp) is a coexpression database for
plant species to aid in the discovery of relationships of un-
known genes within a species. As an advanced coexpression
analysis method, multispecies comparisons have the potential
to detect alterations in gene relationships within an evolu-
tionary context. However, determining the validity of com-
parative coexpression studies is difficult without quantitative
assessments of the quality of coexpression data. ATTED-II
(version 9) provides 16 coexpression platforms for nine
plant species, including seven species supported by both
microarray- and RNA sequencing (RNAseq)-based coexpres-
sion data. Two independent sources of coexpression data
enable the assessment of the reproducibility of coexpression.
The latest coexpression data for Arabidopsis (Ath-m.c7-1 and
Ath-r.c3-0) showed the highest reproducibility (Jaccard coef-
ficient = 0.13) among previous coexpression data in ATTED-II.
We also investigated the statistical basis of the mutual rank
(MR) index as a coexpression measure by bootstrap sampling
of experimental units. We found that the error distribution of
the logit-transformed MR index showed normality with equal
variances for each coexpression platform. Because the MR
error was strongly correlated with the number of samples
for the coexpression data, typical confidence intervals for
the MR index can be estimated for any coexpression platform.
These new, high-quality coexpression data can be analyzed
with any tool in ATTED-II and combined with external re-
sources to obtain insight into plant biology.

Keywords: Arabidopsis � Comparative transcriptomics �

Database � Gene coexpression � Gene network � Statistics.

Abbreviations: AUROC, Area under the receiver operating
characteristic curve; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MR, mutual rank;
PCC, Pearson’s correlation coefficien; RNAseq, RNA
sequencing.

Introduction

Gene coexpression analysis, which is a guilt-by-association ap-
proach based on gene expression profiles, can uncover

functionally related gene pairs. Of particular importance, coex-
pression information based on a large amount of publicly avail-
able transcriptome data is not highly affected by a specific
experimental condition and provides a fundamental view of
gene functional networks. A number of databases have been
developed to provide condition-independent coexpression in-
formation for various applications, from gene prioritization to
the delineation of global relationships among multiple network
modules (Aoki et al. 2007, Usadel et al. 2009, Rung and Brazma
2013). In addition, comparisons of gene networks among mul-
tiple species can be used to identify conserved and specific gene
modules in an evolutionary context. Conserved gene relation-
ships suggest a core function for a cell system, whereas species-
specific relationships are linked to the differentiation of species
(Stuart et al. 2003, Oti et al. 2008, Obayashi and Kinoshita 2011,
Movahedi et al. 2011, Okamura et al. 2015, Ruprecht et al. 2017).

Although the importance of coexpression data is widely
recognized, related methodologies have various limitations.
For example, the determination of coexpression consists of
multiple steps, from the preparation of gene expression data
to the calculation of a gene-to-gene matrix (Zhang and Horvath
2005). To optimize this procedure, we should find the optimal
combination of algorithms for each step. In the case of the
detection of differentially expressed genes from microarray or
RNA sequencing (RNAseq) data, which is related to the task of

coexpression calculation, we can use a benchmark dataset, such
as MicroArray Quality Control datasets (Canales et al. 2006,
Kadota et al. 2009). However, determining a gold standard for
gene coexpression is quite difficult because gene coexpression is
a summarization metric of gene expression data and thus it
depends on the composition of individual experimental sam-
ples (Usadel et al. 2009).

We have been continuously developing a coexpression data-
base for plants, ATTED-II (http://atted.jp). In previous reports,
we have described associations between gene coexpression and
cis-elements (Obayashi et al. 2007), the development of a coex-
pression measure with sample weights and the mutual rank
(MR) index (Obayashi et al. 2009), the analysis of condition-
specific coexpression (Obayashi et al. 2011) and the evaluation
of coexpression (Obayashi et al. 2014). In the most recent
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report associated with ATTED-II, we demonstrated the detec-
tion of lineage-specific gene coexpression using eight coexpres-
sion platforms for four species (Aoki et al. 2016b). However, we
could not apply statistical tests to the identification of lineage-
specific coexpression for two reasons. First, the correspondence
of sample conditions among the four species was not clear. To
account for potential differences in the compositions of sam-
ples, we focused on lineage-specific coexpression, rather than
species-specific coexpression, in which detected coexpression
was also supported by conserved coexpression relationships.
Secondly, statistical characteristics of the coexpression index
were not clear. We have adopted the MR index of gene-to-
gene correlations as a coexpression measure because it has a
higher predictive power for gene function than the Pearson’s
correlation coefficient (PCC) (Obayashi and Kinoshita 2009).
However, the MR index was not statistically characterized,
thereby restricting the usage of this index for meta-analyses
of coexpression data. Here, we report an update of ATTED-II
that focuses on the following three aims to promote
meta-coexpression analyses among species: (i) establishment
of comparable assessment measures of gene coexpression for
different species; (ii) investigation of the statistical properties of
the MR index; and (iii) construction of high-quality coexpres-
sion data. As a result of these revisions, ATTED-II provides
multispecies coexpression data with improved accuracy and
usability.

Results and Discussion

New ATTED-II coexpression data for nine species

We updated both the microarray-based and RNAseq-based
coexpression data in ATTED-II (Table 1), based on Affymetrix
GeneChip data in ArrayExpress (Kolesnikov et al. 2015) and
Illumina RNAseq data in the DNA Data Bank of Japan (DDBJ)

(Ogasawara et al. 2013). We also added two sets of RNAseq-
based coexpression data for barrel medick (Medicago trunca-
tula RNAseq; Mtr-r) and grape (Vitis vinifera RNAseq; Vvi-r). As
a result, ATTED-II provides two coexpression platforms for each
of nine species, except for field mustard (Brassica rapa) and
poplar (Populus trichocarpa) for which only a single platform is
available. Multiple platforms for individual species are prefer-
able for determining the reproducibility of coexpression data, as
shown below. These coexpression data are available in the
search or draw tools in ATTED-II. To assist users, examples of
queries for every species are provided (http://atted.jp/top_
search.shtml and http://atted.jp/top_draw.shtml).

Reproducibility of co expression data

Determining the reproducibility of coexpression data is straightfor-
ward. First, we checked microarray-based and RNAseq-based coex-
pression data for Arabidopsis, with the longest history of
coexpression data in ATTED-II. Table 2 shows overlap in the coex-
pression edges between each data type, i.e. microarray-based
Arabidopsis coexpression data (Ath-m) and RNAseq-based data
(Ath-r). This table clearly shows the successful development of
Arabidopsis coexpression data in ATTED-II, with the highest

Table 1 Coexpression data in ATTED-II version 9

Species Platform IDa Version Genes Samples Logit-MR error Function scoreb Reproducibilityc

Arabidopsis thaliana Ath-m c7.1 20,819 16,033 0.37 5.43 0.136
Ath-r c3.0 22,760 2,120 0.71 5.17

Brassica rapa Bra-r c2.1 28,978 188 1.04 4.77 –

Glycine max Gma-m c3.1 15,746 1,131 0.74 3.37 0.076
Gma-r c3.0 8,373 599 1.02 7.64

Medicago truncatula Mtr-m c3.1 20,376 975 1.04 4.43 0.021
Mtr-r c1.1 3,753 41 1.46 2.65

Oryza sativa Osa-m c6.1 19,867 2,250 0.76 4.98 0.041
Osa-r c2.1 24,437 336 1.07 4.06

Populus trichocarpa Ppo-m c2.1 21,910 765 1.10 3.82 –

Solanum lycopersicum Sly-m c2.1 5,721 401 1.04 4.08 0.041
Sly-r c2.1 20,564 282 1.01 3.87

Vitis vinifera Vvi-m c3.1 9,421 314 1.14 4.47 0.028
Vvi-r c1.1 18,587 346 0.90 3.10

Zea mays Zma-m c3.1 10,777 806 1.11 4.62 0.055
Zma-r c2.1 32,274 1,794 0.88 4.42

aXxx-m, microarray-based coexpression; Xxx-r, RNAseq-based coexpression.
bPredictive performance of the KEGG annotation represented by partial AUROC (1E-04). A higher score indicates a better performance.
cJaccard coefficient for common edges between the platforms in the same species. The top three coexpressed genes from every gene were used as edges.

Table 2 Jaccard coefficients of common edges among a series of
coexpression data for Arabidopsis in ATTED-II

Ath-r.c3-0 Ath-r.c2-0 Ath-r.c1-0

Ath-m.c7-0 0.134 0.055 0.038

Ath-m.c6-0 0.111 0.057 0.040

Ath-m.c5-0 0.106 0.056 0.040

Ath-m.c4-1 0.078 0.046 0.032

Ath-m.c3-1 0.061 0.042 0.029

Xxx-m, microarray-based coexpression; Xxx-r, RNAseq-based coexpression.
Note that a Jaccard coefficient of 1 indicates complete overlap between the two
sets of coexpression edges, whereas a Jaccard coefficient of 0 indicates no
overlap.
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Jaccard coefficient between the current coexpression data, Ath-
m.c7-1 and Ath-r.c3-0. Reproducibility results for the other species
are summarized in Table 1. In addition to the highest level of
reproducibility with the Arabidopsis data, data for soybean
(Glycine max) and maize (Zea mays) were relatively highly repro-
ducible, whereas coexpression data for M. truncatula and V. vinifera
were not consistent among data types within each species, sug-
gesting that one or both of the coexpression datasets (i.e. micro-
array and RNAseq) is of low quality.

Consistency of gene co expression data with gene
function

Although reproducibility can be measured without any external
data, this measure mutually depends on the coexpression data-
sets. In other words, this index does not indicate the quality of
individual gene coexpression data. Another concern is that it is
possible to select a limited set of samples to achieve highly
reproducible coexpression data. In such cases, high reproduci-
bility does not indicate high quality. As another quality meas-
ure, the enrichment of functional annotations in coexpressed
genes is useful because gene coexpression information is used
to identify functionally related genes. Gene Ontology (GO) an-
notation provides a rich resource for the functional annotation
of genes (Gene Ontology Consortium 2015). Conveniently, the
directed acyclic graph structure of GO terms enables the selec-
tion of terms that have a particular range of information con-
tent (Lord et al. 2003). However, GO annotations are not
sufficient for plant species in ATTED-II, except Arabidopsis,
and thus cannot be used for the quality assessment of coex-
pression data among species (Obayashi et al. 2014). To resolve
this problem, we adopted the KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway annotation (Kanehisa et al.
2016) as an alternative method. To select highly informative
annotations, we excluded pathways associated with >100
genes in a genome, resulting in 102.2 pathways, on average,
for the nine species. To characterize the selected KEGG path-
way annotations, we first checked the consistency of the KEGG
evaluation results with the GO evaluation results using a series
of coexpression data for Arabidopsis. The discriminative power
based on gene pairs with and without common gene function
annotations showed a similar trend between the two annota-
tion types (GO and KEGG), supporting the validity of KEGG
pathway annotation for the quality assessment of coexpression
(Fig. 1A). Because KEGG pathway annotations are provided for
a broad range of species with almost the same annotation
density across species, this will be useful not only for com-
parisons among plant species, but also for comparisons of
coexpression data across species in distinct kingdoms, such
as microalgae and animals (Okamura et al. 2015, Aoki et al.
2016a).

Using the function score based on the KEGG pathway an-
notation, the efficiency of coexpression for all coexpression
platforms was compared (Table 1; Fig. 1B). The function
scores were correlated with the logarithmic number of samples
for each species (PCC = 0.44), as reported previously (Ballouz
et al. 2015). These trends were observed for both microarray-
and RNAseq-based data. The only exception was Gma-r, which

showed a high score, despite a relatively small number of sam-
ples. In this functional scoring, we did not eliminate paralogous
gene pairs, which usually have similar functional annota-
tions and expression profiles, resulting in overestimation of
scores in species having a large number of paralogous genes.
Furthermore, the function score is based on unevenly distrib-
uted annotations across genes in a species. For example, highly
expressed genes tend to be well studied and thus well anno-
tated (Supplementary Fig. S1). Therefore, the function score
for coexpression may not reflect the overall performance
of coexpression data. Nonetheless, the KEGG scores for each
species were generally consistent with the reproducibility

Fig. 1 Quality assessment based on the consistency of known gene
functions. As a measure of the quality of gene coexpression data, the
power to discriminate gene pairs sharing a common functional anno-
tation from other gene pairs was used. (A) Previous and current
Arabidopsis coexpression data were assessed by this discrimination
analysis. Irrespective of the gene annotation source (GO Biological
Process or KEGG pathway), the quality trend was consistent. (B)
The current 16 coexpression platforms were assessed with the dis-
crimination analysis using the KEGG pathway annotation. Circles and
diamonds indicate microarray-based and RNAseq-based coexpression
datasets, respectively.
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scores (Table 1). As described above, reproducibility is mutually
dependent, and thus a lower quality of coexpression data
for a species mainly limits the reproducibility score. In
fact, reproducibility scores were well correlated with the
smaller KEGG scores across the two platforms in a species
(PCC = 0.82).

MR as a statistical indicator

We previously reported that the MR index is a powerful indi-
cator of the co-function of a gene pair (Obayashi and Kinoshita
2009). However, the poor characterization of this index limits
downstream analyses. To investigate the distribution and con-
fidence interval of the MR index, we repeatedly calculated the
coexpression matrix from bootstrapped samples of the experi-
mental unit. Fig. 2A shows the SD of the MR index for 100 sets
of bootstrapped RNAseq expression data in Arabidopsis. The
horizontal axis represents the mean of 100 bootstrapped MR
values expressed as a percentile from a positive correlation
(small MR) to a negative correlation (large MR). The MR
ranges from ‘1’ to ‘the number of genes minus 1’ (e.g.
1–22,759 for the Ath-r.c3-0 platform, which includes 22,760
genes). The vertical axis represents the median (black curved
line) and the first and third quantiles (gray curved lines) of the
SD of the bootstrapped MR values. The MR index was precise
near each end of its range, but in the middle of the range,
indicating no correlation, MR was easily affected by chance
(Fig. 2A). Additionally, the skewness and kurtosis of the error
distribution indicated that the data were not normally distrib-
uted (Supplementary Fig. S2A, B). In fact, this non-normal
distribution is commonly observed in the PCC (r) of samples,
which can be converted to a normal distribution using a
logit transformation known as the Fisher transformation
(Fisher 1915). This logit transformation can also be applied
to the range-standardized MR index (0 < pi < 1), which is
calculated by dividing by the total number of genes (N),
pi ¼ MRi=N.

logit pið Þ ¼ log
pi

1� pi

� �
ð1Þ

Note that this transformation is equivalent to the Fisher trans-
formation with the range standardization of r as pi ¼ ðr+1Þ=2.
Fig. 2B shows the distribution of SD for the logit-transformed
MR values (hereafter, logit-MR error). The logit-MR error
was nearly constant across the entire range of MR values.
Along with the skewness and kurtosis of the distribution
(Supplementary Fig. S2C, D), the logit-MR error can be re-
garded as a normal distribution with a constant SD for the
entire range of MR values. In the case of Ath-r.c3-0, shown in
Fig. 2B, the average logit-MR error was 0.87. The logit-MR errors
varied across the coexpression platforms (Table 1) and were
strongly correlated with the logarithmic number of samples for
each coexpression platform (PCC =�0.90) (Fig. 2C). This char-
acteristic is useful for estimating confidence intervals for the
MR index solely based on the number of samples. For example,
the logit-MR error for coexpression data based on 500 samples
will result in a value of approximately 1. Table 3 shows the 90%

Fig. 2 Properties of the error distribution of MR and logit-MR values.
SDs of the bootstrapped MRs from RNAseq-based Arabidopsis coex-
pression data (Ath-r.c3-0) are shown. (A, B) SDs of bootstrapped MR
values (A) and of logit-MR values (B) are shown against the mean of
the bootstrapped MR values. The black lines show the median values
with a sliding window corresponding to the 0.01 percentile of the MR
without overlap, whereas the gray lines represent the first and third
quantiles. (C) Mean SDs for the current 16 coexpression platforms in
ATTED-II are plotted against the number of samples for each plat-
form. Circles and diamonds indicate microarray-based and RNAseq-
based coexpression datasets, respectively.
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confidence intervals for typical MR values with logit-MR error = 1
or 0.5. ATTED-II shows the top 300 coexpressed genes as the
default. Taking into account the confidence intervals of the
MR index, this list typically includes most of the top 100 coex-
pressed genes. Note that the logit-MR error on the rightmost
edge of the MR percentile is slightly larger than that on the
leftmost edge (Fig. 2B), suggesting that negative coexpression
relationships are more unstable than positive relationships in
the MR calculation.

Integration of multiple MR values

Based on the normality of the logit-transformed MR values, we
can integrate multiple MR values. In general, the arithmetic
average can be generalized using the transformation function
f and its reverse function f�1.

AverageF ¼ f�1

�X
f ðxiÞ

�X
i

�
ð2Þ

For example, using identity, logarithmic and rational functions
as the transformation functions results in arithmetic, geomet-
ric and harmonic averages, respectively. Here, to determine
the average with a logit transformation, we adopted a logit
function for f and a sigmoid function for f�1. For k MR values
(MR1, MR2, . . ., MRk) with individual weights (w1, w2, . . . wk;
�wi = 1), the weighted logit average of the MR values is as
follows:

MRaverage ¼
N�MRwi

i

�ðN�MRiÞ
wi +�MRwi

i

ð3Þ

Note that this equation can be approximated as a weighted
geometric mean under MRi<< N.

MRgeometricmean.�MRwi

i ð4Þ

In ATTED-II, the CoExSearch tool provides an integrated list of
coexpressed genes for multiple gene queries (http://atted.jp/
top_search.shtml#CoExSearch). This tool uses equal weights
(wi ¼ 1=k) from Eqn. 3, simplified as follows:

MRaverage ¼
N

ffiffiffiffiffiffiffiffiffiffiffiffi
�MRi

k
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðN�MRiÞ

k
p

+
ffiffiffiffiffiffiffiffiffiffiffiffi
�MRi

k
p ð5Þ

Even given the high manageability of logit-transformed MR
values, we have retained the original MR index in the
ATTED-II database. Because the MR index is derived from
the ranking of the coexpression strengths, this index implies
the maximum size of the coexpression network including the
guide gene and its coexpressed genes.

Slight, but stable improvement in coexpression
quality based on the bootstrapping procedure

Sample bootstrapping is widely used to improve the generaliza-
tion ability of a model (Breiman 1994). As we proposed to use the
average method of the MR index, we could use the average of the
bootstrapped MR values as a coexpression index. As a result, the
bootstrapping and average approach (a simple bagging approach)
returned substantially better results than the original coexpres-
sion dataset using all samples at once (‘Bagging effect’ in Table 4).
Although the gains from the bagging procedure were not large for
most coexpression platforms, this procedure resulted in relatively
greater gains for platforms with a smaller number of samples. The
PCC between the bagging effect and the logarithmic number of
samples was �0.42, indicating that the bagging procedure was
not effective for platforms that include larger numbers of samples.
This may be explained by the limited number of bootstrap rep-
licates in our procedure (i.e. 100).

Batch normalization of gene expression data

Batch effects are a major source of technical noise in transcrip-
tome data (Leek et al. 2010, Goh et al. 2017). In the previous
coexpression calculation procedure in ATTED-II, we applied
batch zero-centering (Usadel et al. 2009), which standardizes
the mean expression level of each gene in each experiment to
zero (Sims et al. 2008). On the other hand, in our previous
investigation, direct standardization of variances of each gene
in each experiment did not improve the quality of coexpression
results, probably due to loss of fold-change information in gene
expression. ComBat is a method that can be used to estimate
stably the mean and variance of the batch effect by the empir-
ical Bayes method (Johnson et al. 2007) and is effective for
transcriptome and coexpression analyses (Müller et al. 2016,
Vandenbon et al. 2016). However, batch estimation for data
with an unbalanced batch-group design risks introducing an-
other bias (Nygaard et al. 2016). Because the expression data for
coexpression calculation are aggregated from different experi-
ments, this is a case of the unbalanced batch-group design.
Therefore, we investigated the effect of variance standardiza-
tion by the empirical Bayes estimation in addition to batch
zero-centering for a set of the current coexpression platforms
in ATTED-II (Table 4). As a result, batch normalization with
gene- and experiment-specific noise variances had notable
effects on microarray-based and RNAseq-based coexpression
data (‘ComBat effect’ in Table 4). Based on this finding, we
incorporated the ComBat normalization method into the
latest calculation pipeline in ATTED-II.

Materials and Methods

Construction of gene coexpression data

In ATTED-II version 9, the coexpression calculation procedure was slightly

modified from the previous procedure to reduce the calculation cost suffi-

ciently to enable bootstrapping trials for multiple species. For microarray-

based coexpression data, we downloaded the GeneChip CEL files from

ArrayExpress (Kolesnikov et al. 2015), normalized them based on the RMA

method (Irizarry et al. 2003) and applied ComBat normalization (Johnson

Table 3 The 90% confidence intervals of typical MR values with
different error levels

MR Bootstrap SD = 0.5 Bootstrap SD = 1

1 0.8 1.4 0.7 2.1

3 1.9 4.9 1.3 8.3

10 5.9 17.3 3.5 30.2

30 14.2 52.6 6.6 92.5

100 56.9 175.8 32.4 308.4
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et al. 2007) using an experimental unit as a batch. Before calculating correl-

ations among all probe pairs, we selected a single probe for each gene. We made

this selection based on the similarity of coexpression patterns for the same gene

in the RNAseq coexpression data. For the microarray platforms of M. truncatula

(Mtr-m) and P. trichocarpa (Ppo-m), reliable RNAseq coexpression data were

not available. For these two platforms, the expression patterns of multiple

probes were averaged to generate a single pattern of expression for that

gene. After the selection of probes, a gene-to-gene correlation matrix, which

is identical to the probe-to-probe correlation matrix, was calculated by PCC,

and this was then converted to the MR index, MRij ¼
ffiffiffiffiffiffiffiffiffi
RijRji

p
, where Rij indi-

cates that gene j is the Rij-th strongest coexpressed gene for the guide gene i

(Obayashi and Kinoshita 2009, Obayashi and Kinoshita 2010).

For RNAseq-based coexpression data, we downloaded the Sequence Read

Archive format data from the DDBJ (Ogasawara et al. 2013) and mapped it to

NCBI RefSeq sequences (Brown et al. 2015). For this mapping, we employed

unique sequence signatures for each gene using Matataki software (https://

github.com/informationsea/matataki; Okamura and Kinoshita, in preparation),

which enables much faster quantification of RNAseq data than using normal

mapping procedures. After conversion to a base-2 logarithm with a pseudo-

count of 0.125, ComBat normalization was applied (Johnson et al. 2007), and

the average expression levels were subtracted for each gene and experiment.

Using all of the experimental data simultaneously, PCCs between all gene pairs

were calculated, and these values were then converted to the MR index.

Bootstrapping procedure for gene coexpression data

To characterize the MR index, we conducted a bagging procedure for gene

coexpression data. One bootstrap coexpression dataset was calculated based

on randomly selected experiments with replacement to generate the same

number of samples as the original dataset. In this study, we repeated this

bootstrap calculation of coexpression 100 times for every coexpression plat-

form. The coexpression values between any gene pair should vary with a par-

ticular mean and deviation depending on the randomly selected sample. In

general, the bootstrap distribution can be used as an estimate of the population

distribution and thus can be used to estimate confidence intervals for the value.

In addition, the mean of the bootstrapping coexpression values (bagging MR

value) was used as another estimate of the MR index.

Reproducibility between microarray-based and
RNAseq-based gene coexpression data

To measure the reproducibility of gene coexpression data from different coex-

pression platforms in the same species, we used genes that were in common

between the coexpression platforms. Then, the top three coexpression rela-

tionships from every analyzed gene were used as the edge for this assessment.

This edge criterion is also used in the network drawing functions in ATTED-II.

The Jaccard coefficient between the two sets of edges was used as the repro-

ducibility score.

Discriminative power of gene coexpression data
for the identification of gene pairs with common
functional annotations

To validate the biological significance of coexpressed gene data, we used the

enrichment of gene pairs sharing common functional annotations relative to

other pairs. For coexpression data in Arabidopsis, GO Biological Process an-

notations with<50 genes were used. All of the genes within each dataset were

divided into two groups, i.e. gene pairs sharing at least one GO annotation and

gene pairs without any common annotation. The difference in the distribu-

tions of the degrees of coexpression for the two groups was assessed using the

partial AUROC0.01, which is the area under a part of the receiver operating

characteristic curve with a false-positive rate of< 0.01 (McClish 1989). To

improve visibility, the partial AUROC0.01 multiplied by the square value of

the false-positive rate (10,000 in this study) was used as the function score,

so that the function scores using randomized gene–function associations were

always 0.5. To apply this evaluation method for coexpression data to any

species in ATTED-II, KEGG pathway annotations downloaded from KEGG

FTP were used (Kanehisa et al. 2016) (June 26, 2017). We selected KEGG

pathways associated with <100 genes with a relatively high information con-

tent. The genes associated with at least one selected KEGG pathway were then

used in this assessment.

Supplementary Data

Supplementary data are available at PCP online.
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Table 4 Comparison of calculation methods

Platform No. of genes No. of samples Q CQ CQB Combat effect Bagging effect

Ath-m 20,819 16,033 5.46 5.42 5.43 0.99 1.00

Gma-m 15,746 1,131 3.29 3.35 3.37 1.02 1.01

Mtr-m 20,376 975 3.41 4.32 4.43 1.27 1.03

Osa-m 19,867 2,250 4.60 4.92 4.98 1.07 1.01

Ppo-m 21,910 765 3.49 3.74 3.82 1.07 1.02

Sly-m 5,721 401 3.31 3.80 4.08 1.15 1.07

Vvi-m 9,421 314 3.93 4.22 4.47 1.07 1.06

Zma-m 10,777 806 4.00 4.46 4.62 1.12 1.03

Ath-r 22,760 2,120 4.56 5.12 5.17 1.12 1.01

Bra-r 28,978 188 4.54 4.63 4.77 1.02 1.03

Gma-r 8,373 599 6.56 7.60 7.64 1.16 1.01

Mtr-r 3,753 41 2.54 2.62 2.65 1.03 1.01

Osa-r 24,437 336 3.43 3.80 4.06 1.11 1.07

Sly-r 20,564 282 3.55 3.70 3.87 1.04 1.05

Vvi-r 18,587 346 3.21 3.07 3.10 0.96 1.01

Zma-r 32,274 1,794 3.98 4.35 4.42 1.09 1.01

Q, quantile normalization; CQ, ComBat-Quantile normalization; CQB, Bagging procedure for ComBat-Quantile normalized expression data.
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