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Plant genomes encode a variety of short peptides acting as
signaling molecules. Since the discovery of tomato systemin,
a myriad of peptide signals, ranging in size, structure and
modifications, have been found in plants. Moreover, new
peptides are still being identified. Surprisingly, non-plant
organisms, especially pathogens, also produce peptides
which exert hormonal activities against host plants by hi-
jacking their endogenous reception systems. In this review,
we focus on short secretory peptides ranging from five to 20
amino acids. We first summarize recent advances in under-
standing relationships between the bioactivities and struc-
tures of plant peptide hormones. Subsequently, we
introduce the topic of peptides produced by non-plant or-
ganisms. Lastly, we describe artificial peptides synthesized in
laboratories, which possess intriguing bioactive properties
beyond those of natural peptide hormones.

Keywords: CLE � Ligand � LRR-RK � Pathogens � Peptide
hormone � Receptor.

Abbreviations: CEP, C-terminally encoded peptide; CIF,
Casparian strip integrity factor; CLE, CLAVATA3/EMBRYO
SURROUNDING REGION-related; CRP, cysteine-rich peptide;
IDA, INFLORESCENCE DEFICIENT IN ABSCISSION; LRR-RK, leu-
cine-rich repeat receptor kinase; PIP, PAMP-INDUCED PEPTIDE;
PSK, phytosulfokine; RGF, root meristem growth factor; SERK,
SOMATIC EMBRYOGENESIS RECEPTOR KINASE; TDIF,
tracheary element differentiation inhibitory factor.

Introduction

In this mini-review, we aim to discuss how molecular structures
of plant peptide hormones have been shaped and how one can
design artificial peptide hormones with novel biological func-
tions. Since the discovery of tomato systemin (Pearce et al.
1991), a number of different classes of peptide signals have
been identified. They act extracellularly through recognition by
their receptors on the plasma membrane of target cells. Based on
(i) mature peptide structures and (ii) modes of trafficking into
the extracellular space, these peptide signals, or plant peptide
hormones, are classified into three groups: secreted small pep-
tides, non-secreted small peptides and secreted cysteine-rich

peptides (CRPs) (Matsubayashi 2014). The first two are both
approximately 5–20 amino acids in length and do not undergo
intramolecular disulfide bonding while the CRPs consist of 50–
100 amino acids and have a relatively fixed structure due to
intracellular disulfide bridges (Ohki et al. 2011). In this mini-
review, we focus on the short peptides, all of which are perceived
by leucine-rich repeat receptor kinases (LRR-RKs). Interestingly,
such peptide signals are also made by phytopathogens to hijack
functions of host plants. In the first and second sections, we will
describe variations found in plants and parasitic phytopatho-
gens, respectively. Since this review focuses on molecular struc-
tures of peptides, especially in dicots, please refer to other
literature for the latest information and discussion on biological
functions of peptide signals in diverse plant species including
monocots (Grienenberger and Fletcher 2015, Higashiyama and
Takeuchi 2015, Je et al. 2016, Okamoto et al. 2016, Somssich et al.
2016, Zipfel and Oldroyd 2017, Stegmann et al. 2017). In addition
to the naturally occurring mechanisms shaping these peptide
hormones, we will introduce synthetic approaches to design
novel bioactive peptides in the last section.

Made in Plants

Peptide classes, receptors and structural insights

Small peptide signals of plants include systemin, PSK (phyto-
sulfokine), HypSys (hydroxyproline-rich glycopeptide sys-
temin), Pep1, CLE (CLAVATA3/EMBRYO SURROUNDING
REGION-related)/TDIF (tracheary element differentiation in-
hibitory factor), PSY (plant peptide containing sulfated tyro-
sine), CEP (C-terminally encoded peptide), RGF/CLEL/GLV
(root meristem growth factor/CLE-like/GOLVEN), PIP (PAMP-
INDUCED PEPTIDE), IDA (INFLORESCENCE DEFICIENT IN
ABSCISSION) and CIF (Casparian strip integrity factor) sub-
classes (Pearce et al. 1991, Matsubayashi and Sakagami 1996,
Pearce et al. 2001, Huffaker et al. 2006, Ito et al. 2006, Ohyama
et al. 2008, Ohyama et al. 2009, Matsuzaki et al. 2010, Okamoto
et al. 2013, Hou et al. 2014, Schardon et al. 2016, Doblas et al.
2017, Nakayama et al. 2017). They are encoded in the genome
as precursor proteins and mature into active forms via post-
translational processing including proteolytic cleavage by pro-
teases (Tamaki et al. 2013, Engineer et al. 2014, Schardon et al.
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2016) and modifications of specific residues by modifying en-
zymes (Hieta and Myllyharju 2002, Tiainen et al. 2005, Yuasa
et al. 2005, Komori et al. 2009, Ogawa-Ohnishi et al. 2013) such
as tyrosine sulfation, proline hydroxylation and hydroxyproline
arabinosylation.

Receptors for these peptides have been identified genetically
and biochemically (Butenko et al. 2014). The major receptor
class is the LRR-RKs (Shiu and Bleecker 2001). LRR-RKs are
single transmembrane domain kinases containing extracellular
LRRs which can participate in versatile molecular recognition.
The receptors for CLE/TDIF (Hirakawa et al. 2008, Ogawa et al.
2008), IDA (Santiago et al. 2016), CEP (Tabata et al. 2014), Pep1
(Yamaguchi et al. 2006), RGF (Shinohara et al. 2016), PIP1 (Hou
et al. 2014) and CIF (Doblas et al. 2017, Nakayama et al. 2017)
are in the subclass XI of the LRR-RK family, while the PSK re-
ceptor PSKR is in the subclass X (Matsubayashi et al. 2002).
Binding of the peptide hormones to their receptors is thought
to recruit additional co-receptors for the activation of down-
stream signaling events by transphosphorylation between
kinase domains in proximity (Fig. 1A). Co-crystal structures
of several peptide–receptor pairs have been solved recently
(Song et al. 2016a). The extracellular region of the receptors
contains an LRR, which forms a superhelix structure providing
the structural backbone to form an interaction surface for a
corresponding peptide ligand. In each peptide–receptor com-
plex, a peptide molecule is stretched along the inner surface of
the superhelix (Fig. 1B). Generally, peptide ligands act as a
molecular glue to stabilize the interaction between each cor-
responding receptor and its co-receptor (Fig. 1A, B) (Tang et al.
2015, Morita et al. 2016, Santiago et al. 2016, Song et al. 2016b,
Zhang et al. 2016). Interestingly, in the case of PSK perception
by PSKR, the peptide binding to the receptor triggers its allo-
steric change, which allows the binding of the co-receptor SERK
(SOMATIC EMBRYOGENESIS RECEPTOR KINASE) to PSKR
(Wang et al. 2015). In some cases, LRR-RKs may work with
other classes of proteins to perceive peptide signals and/or
trigger intracellular signaling, such as single transmembrane
LRR proteins harboring only extracellular LRRs without intra-
cellular kinase domains (Jeong et al 1999, Nadeau and Sack
2002) and transmembrane kinase proteins containing only
intracellular kinase domains without extracellular LRRs
(Müller et al. 2008) (Fig. 1C). However, the mechanisms of
direct peptide recognition and signal transduction by these
proteins remain to be understood precisely (Bleckmann et al.
2010, Kinoshita et al. 2010, Zhu et al. 2010, Nimchuk et al. 2011,
Bommert et al. 2013, Stahl et al. 2013, Ishida et al. 2014).

At the binding surface of the peptide hormone and receptor,
both the main and side chains of the peptide form multiple
hydrogen bonds and/or hydrophobic contacts with the receptor.
In some cases, side chain modifications of peptide ligands directly
interact with receptor residues such as the PSK–PSKR pair that
involves two sulfate groups of PSK in the interaction surface
(Wang et al. 2015). The sulfate group of RGF1 is recognized by
the RxGG motif that is conserved among RGF receptors (Song
et al. 2016b). The hydroxyproline residue of IDA peptide forms
hydrogen bonds with the receptor (Santiago et al. 2016). In con-
trast, hydroxyprolines of CLE peptides do not directly interact to

their receptors (Morita et al. 2016, Zhang et al. 2016). Further
arabinosylation of hydroxyprolines is found in some CLEs, and the
arabinosylation is important for bioactivity (Ohyama et al. 2009,
Okamoto et al. 2013, Xu et al. 2015). A proposed role for the

Fig. 1 A proposed action of a peptide hormone and its receptor–co-
receptor pair in the ‘molecular glue’ model. (A) A receptor (red) inter-
acts with its co-receptor (blue) only in the presence of a peptide
hormone (brown). Upon binding of the peptide, it is considered
that the receptor and co-receptor can phosphorylate each other, trig-
gering the intracellular signaling. (B) The co-crystal structure of the
IDA peptide (yellow) and LRR domains of its receptor HAESA (red)
and co-receptor SERK1 (blue) (PBD accession number: 5IYX) (Santiago
et al. 2016) is shown as an example of the peptide–receptor–co-re-
ceptor complex. The structure was illustrated using the NGL viewer in
the Protein Data Bank website. (C) LRR proteins without kinase do-
mains (green) may participate in direst recognition of ligands with
LRR-RK receptors (red). Also, transmembrane kinases without extra-
cellular domains (purple) may act to trigger intracellular signal trans-
duction co-ordinately with LRR-RK receptors (red).
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arabinosylation is to force a conformational distortion on the
peptide backbone in a highly directional manner, conferring a
significant increase in affinity for the corresponding receptors
(Shinohara and Matsubayashi 2013).

The reported co-crystal structures of subclass XI LRR-RKs and
their peptide ligands also show that the conserved RxR motifs of
the receptors are involved in the interaction with the free carb-
oxyl group of the last residue of TDIF/CLE41, Pep1, RGF1 or IDA
(Song et al. 2016a), which is in agreement with the report on the
SOL1 (SUPPRESSOR OF LLP1 1) protease required for the mat-
uration of functional CLE19 peptide by cleaving off the C-ter-
minal extension in its precursor (Tamaki et al. 2013).

Collectively, shapes of peptide hormones and their recogni-
tion by corresponding receptors have been co-ordinately ela-
borated during their molecular evolution.

Diversification under evolutionary constraints

All plant peptide hormone genes identified so far belong to gene
families. Each family contains small variations in the mature ligand
sequences. Such minor variations could be formed under certain
evolutionary pressures in their molecular evolution. The contri-
bution of each amino acid residue in peptide hormones can be
examined by analysis of structure–activity relationship using
mutated peptides. A typical method is alanine scanning in
which every residue of a peptide hormone is substituted one by
one with alanine. If the alanine substitution of a certain residue
affects the bioactivity, the side chain of the residue must play an
important role in exerting the specific bioactivity. For example,
the sixth glycine of TDIF/CLE41 peptide is important for its kinked
structure that is recognized by its receptor TDR/PXY, and indeed
the substitution of the glycine by alanine abolishes the bioactivity
(Ito et al. 2006, Morita et al. 2016).

On the other hand, some residues can play a role to avoid
activating unwanted signaling. Very recently, an intriguing

example of this case was reported (Hirakawa et al. 2017). The
CLE-family peptides are classified into two subfamilies; one
group (A-type) that can affect the shoot and root meristems
and the other (B-type) that affects the vascular meristem (Cock
and McCormick 2001, Ito et al. 2006, Whitford et al. 2008). B-
type CLEs have the characteristic serine residue at the 11th
position in the mature form (Fig. 2) that is conserved only
among the B-type peptides within the CLE family (Oelkers
et al. 2008, Hirakawa and Bowman 2015). Surprisingly, the mu-
tation of the 11th serine into histidine results in the acquisition
of the A-type activity without losing the original B-type activity
(Fig. 2). Such a striking property has been overlooked by the
previous alanine scanning, which classified the 11th serine as a
‘dispensable’ residue for bioactivity (Ito et al. 2006). These sug-
gest that the 11th serine may be kept unchanged to avoid
unwanted signaling which disrupts the well-organized signaling
network for growth and development.

Made in Pthogens

Homologs of plant peptide hormones are found in phytopatho-
gen genomes, which may be acquired either via convergent
evolution or by horizontal gene transfer from host plants
(Olsen and Skriver 2003). Parasitic nematodes enter the plant
root and alter its tissue structure to form feeding cells/tissues
such as syncytia and giant cells (Mitchum et al. 2012). For this
purpose, parasitic nematodes secrete effector proteins to hijack
developmental systems of host plants. The first example of
secretory peptide mimics produced by parasitic nematodes is
HgCLE1/syv46 of the soybean cyst nematode Heterodera gly-
cines, which shows similarity to the A-type CLE peptides of host
plants (Wang et al. 2001, Olsen and Skriver 2003). HgCLE1 is
expressed mainly in the esophageal gland and released into
plant cells via the stylet (Wang et al. 2005). The precursor

Fig. 2 CLE peptide hormones made in plants, pathogens and laboratories. Amino acid sequences of representative CLE peptides are shown. CLE
peptides produced by plants and pathogens are classified into A and B types depending on their activities. CLE peptides in one group do not exert the
activity of the other group, indicating that there exists a strict specificity barrier (green) between the two groups. However, it was recently reported
that some artificial CLE peptides synthesized in laboratories show both activities beyond the specificity barrier (Hirakawa et al. 2017), as indicated by
open pink arrows. Solid pink arrows indicate the flows to design the synthetic bi-functional peptides. Black bold font indicates the characteristic 11th
residues. Pink bold font indicates swapped residues to create the bi-functional peptides. See the main text for a detailed explanation.
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protein of HgCLE1 peptide contains a domain essential for its
subcellular trafficking into the apoplast, allowing the nema-
tode-derived CLE peptide to interact with the extracellular do-
mains of target receptors in host plants (Wang et al. 2010,
Replogle et al. 2011). In addition to the A-type CLE peptides,
B-type CLE homologs were also reported recently in Heterodera
schachtii (Guo et al. 2017). Since A-type and B-type CLEs syn-
ergistically promote vascular thickening in plants (Whitford
et al. 2008), the nematodes may have exploited this synergistic
effect for maximizing their successful parasitism. Interestingly,
the CLE peptide sequences in nematodes are slightly different
from those of plant CLE peptides (Fig. 2; Yamaguchi et al. 2016),
which may reflect differences in maturation processes between
nematode and plant CLE peptides. In addition to short CLE
peptides, functional homologs of the CRP-type peptide hor-
mone RALF (rapid alkalinization factor) are also found in
fungal pathogens (Masachis et al. 2016, Thynne et al. 2016).
The significance of differences in peptide sequences between
homologs derived from plants and pathogens has not been well
understood. As yet uncovered constraints may have existed in
the evolution of the plant–pathogen interaction.

Made in Laboratories

As mentioned above, natural peptide hormones are made in
living organisms and have been optimally shaped under evolu-
tionary pressures. In contrast, chemical synthesis in laboratories
does not have such restrictions and thus could enable new
design principles for functional peptides. In theory, engineering
of artificial bioactive molecules could be accomplished for any
type of hormones. For example, one may imagine a molecule
which exerts both auxin and cytokinin activities by simply cou-
pling IAA and kinetin. However, considering the structural infor-
mation on the ligand-binding pockets of the auxin and cytokinin
receptors (Tan et al. 2007, Hothorn et al. 2011), this imaginary bi-
functional molecule is difficult to design. On the other hand,
synthesis of bi-functional peptides that bind and activate two
distinct CLE receptors was reported recently (Hirakawa et al.
2017). CLV3 and CLE25 both belong to the A-type CLE peptides
and affect the shoot and root meristems. They have four amino
acid substitutions compared with each other (Fig. 2).
Surprisingly, systematic swapping of these residues led to the
discovery of a synthetic peptide that exerts the B-type activity
in addition to the original A-type activity (Fig. 2: CLV3-KIN that
has the CLV3 backbone with K, I and N substitutions derived
from CLE25) by interacting with both A-type and B-type CLE
receptors. As mentioned above, TDIF/CLE41 can also acquire bi-
functionality by an amino acid substitution (Fig. 2: CLE41-H).
These studies suggest that building blocks for designing unnat-
ural bi-functional peptides (such as CLV3-KIN and CLE41-H)
exist in the natural diversity in the genome. Further identification
of such cryptic bioactivities will be a future challenge toward
engineering cell–cell signaling in plants.

Peptides are chains of amino acids linked by amide bonds
(peptide bonds). Peptide-like molecules with different main
chain structures are collectively called peptidomimetics.

Peptidomimetics have been developed especially in the field
of drug discovery, pursuing enhanced in vivo stability and ac-
tivity (Vagner et al. 2008). A previous study adopted this ap-
proach to understand the structure–activity relationship of CLE
peptides, and the ninth proline residue was substituted with a
series of N-modified peptoids, such as sarcosine (N-methylgly-
cine), to control the bioactivity (Kondo et al. 2011). Besides
peptoids, synthetic routes for new molecular designs of pepti-
domimetics have been explored not only for pure chemistry
but also for development of bioengineering approaches. By har-
nessing diversity in molecular structures of peptides/peptido-
mimetics, which may also include unnatural side chains, we
may be able to expand toolkits for peptide hormone studies
toward creating unprecedented bioactivities.
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