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Abstract
Study Objectives:  The current definition of sleep arousals neglects to address the diversity of arousals and their systemic cohesion. 
Autonomic arousals (AA) are autonomic activations often associated with cortical arousals (CA), but they may also occur in relation to 
a respiratory event, a leg movement event or spontaneously, without any other physiological associations. AA should be acknowledged 
as essential events to understand and explore the systemic implications of arousals.

Methods:  We developed an automatic AA detection algorithm based on intelligent feature selection and advanced machine 
learning using the electrocardiogram. The model was trained and tested with respect to CA systematically scored in 258 (181 
training size/77 test size) polysomnographic recordings from the Wisconsin Sleep Cohort.

Results:  A precision value of 0.72 and a sensitivity of 0.63 were achieved when evaluated with respect to CA. Further analysis indicated 
that 81% of the non-CA-associated AAs were associated with leg movement (38%) or respiratory (43%) events.

Conclusions:  The presented algorithm shows good performance when considering that more than 80% of the false positives (FP) 
found by the detection algorithm appeared in relation to either leg movement or respiratory events. This indicates that most FP 
constitute autonomic activations that are indistinguishable from those with cortical cohesion. The proposed algorithm provides an 
automatic system trained in a clinical environment, which can be utilized to analyze the systemic and clinical impacts of arousals.
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Statement of Significance
Autonomic arousals have been postulated to be related to the cardiovascular and neurocognitive dysfunction associated 
with sleep-disordered breathing, independent of their relation to cortical arousals. However, most studies to date have 
explored experimentally induced autonomic arousals only in healthy/control populations. We developed an arousal 
detector that can learn the complex decision-making patterns of human scorers through application of state-of-the-
art machine learning to the polysomnogram’s RR tachogram in a population-based sample, with a variety of sleep 
disorders. The finding that many autonomic arousals were associated with leg movement or breathing events, despite a 
lack of an electroencephalographic correlates, suggests that future explorations of the pathophysiologic consequences 
of autonomic arousals may help us to improve management of patients with sleep-disordered breathing.
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Introduction
Arousals in sleep are naturally occurring microevents, which 
reflect the reversibility of sleep. Despite their vital function, 
arousals have been found to be associated with the pathophysi-
ology of several sleep disorders [1]. The American Academy of 
Sleep Medicine (AASM) states that scoring of arousals must be 
attained through electroencephalographic (EEG) analysis and 
cannot be based on alternative biosignals alone [2]. However, 
this definition neglects to address the diversity of arousals and 
their systemic cohesion. In fact, experimentally induced sleep 
fragmentation has shown evidence of autonomic arousals (AA) 
without EEG correlates [3, 4]. Moreover, in studies intentionally 
limiting the number of cortical arousals (CA), AA were sufficient 
to diminish the restorative value of sleep in healthy individu-
als [5]. Moreover, in clinical populations, obstructive breathing 
events and snoring have been associated with AA, even in the 
absence of CA [6, 7]. To date, a complete analysis of the physi-
ological impacts of naturally occurring AA in a clinical setting 
is still missing. Before this can be achieved, however, there is 
an unmet need for agreeing on the manifestations of AA and a 
clear definition of them.

Analysis of heart rate variability (HRV) has been used for dec-
ades to assess changes in the autonomic nervous system (ANS), 
which maps the balance between the parasympathetic nervous 
system (PNS) and sympathetic nervous system (SNS). HRV has 
been used as the primary marker of the systemic manifesta-
tion of CA [1, 4, 7–11] and has the potential to shed new light 
on the systemic impacts of arousals and sleep fragmentation, 
through more meaningful associations with clinical outcomes. 
Furthermore, it is widely known that manual scoring of arous-
als has low interscorer agreement [11], and it is time-consuming 
and expensive. There is an unmet need for the development of 
automatic systems to substitute or assist human scorers in the 
scoring process such that a consistent, objective, and fast analy-
sis can be achieved.

Very few attempts at automatic detection of HRV-based 
arousals have been made. Basner et al. addressed this problem 
by presenting a semiautomatic electrocardiographic (ECG)–
based arousal detection algorithm [10]. The algorithm could 
detect 68% of CA; however, as mentioned above, the criteria for 
CA may be insufficient for capturing all the electrophysiological 
changes that define an arousal. Furthermore, the algorithm was 
trained and tested in a setup where external stimuli were intro-
duced to provoke arousal; therefore, it is uncertain how well it 
would behave in a clinical environment. Finally, the RR tacho-
gram required editing by visual inspection; thus, the algorithm 
was only semiautomatic.

The study of Pillar et al. and Pillar et al. of Refs. 12 and 13 
introduced and elaborated, respectively, on the use of a rule-
based method to detect AA using peripheral arterial tonometry 
(PAT) recordings from participants suffering from obstructive 
sleep apnea [12, 13]. A  correlation of 0.82 and 0.87, respec-
tively, was achieved between such events and CA. Although the 
method is demonstrated in a clinical environment, only people 
with obstructive sleep apnea were considered, thereby limiting 
its application in broader populations, e.g. people with leg move-
ments. Furthermore, the method relies on PAT recordings, which 
are not routinely performed, thereby limiting its applications.

The purpose of this study is to use the existing gold-standard 
diagnostic method—the polysomnogram (PSG) and manually or 

automatically scored sleep stage data—to develop an automatic 
detection algorithm for the detection of AA in a clinical setting, 
i.e. from participants suffering from a variety of sleep disor-
ders and heart diseases. We adapted the approach of modeling 
and detecting autonomic behavior during CA [10, 12], since CA 
have shown significant correlation with autonomic activations 
and their cohesion occurs with consistent onset [4, 9, 10]. It is 
important to note that even without an EEG change that is suf-
ficient for scoring an arousal by the AASM criteria [2], EEG spec-
tral power density has been noted to change in association with 
the physiologically important sympathetic surges that cause 
AA [5, 7]. The detection algorithm performance will be meas-
ured against the current gold standard of EEG-based arousals 
(according to the AASM criteria), but will also be compared to 
other physiologically relevant sleep-disorder phenomena, to 
determine whether ANS analysis may provide an alternative, 
complementary metric of sleep health.

Methods

Datasets

As none of the databases available had all the required anno-
tations to allow the development of both an automatic ectopic 
beat and arousal detection algorithms, two distinct databases 
were used. Sample size and demographics information for both 
databases are presented in Table 1.

The MIT BIH arrhythmia database (MITDB) was chosen to 
develop a functional ectopic beat detection algorithm. The 
MITDB includes a subset of forty-six 30 min recordings from over 
4000 long-term Holter recordings that were collected between 
1975 and 1979 by the Beth Israel Hospital Arrhythmia Laboratory 
[14]. The 23 first recordings, i.e. 100–124, are considered to repre-
sent usual variations in heart rhythm encountered at a routine 
arrhythmia clinic. Twenty of these 23 recordings were used for 
the development, training, and testing of an ectopic beat detec-
tion algorithm, and three were excluded due to the presence of 
paced beats. Inclusion criteria were limited to focus on the most 
common types of ectopic beats, i.e. atrial premature beats (APB) 
and ventricular premature beats (VPB).

The Wisconsin Sleep Cohort (WSC) [15] was used to develop, 
train, and test our new arousal detection algorithm. The WSC is 
a longitudinal study of population-based sample of randomly 
selected Wisconsin state employees, a subset of who are suf-
fering from a variety of sleep pathologies ranging from normal 
to severe cases. These recordings have all been annotated by 
either of two specialized medical personnel for sleep stages, 
respiratory events, leg movement events, and arousals accord-
ing to the AASM criteria [2]. Furthermore, a subgroup of 306 ran-
domly selected recordings from the WSC were annotated with 
arousal subgroup to indicate if they appeared spontaneously or 
in response to a respiratory or a leg movement event. Forty-eight 
recordings were excluded from the study if more than 50% of the 
ECG-channel had signal loss. The remaining 258 recordings were 
included for AA algorithm training and testing. Therefore, the 
participants included in this study were randomly selected and 
were not excluded based on any medication or medical comor-
bidity. The University of Wisconsin–Madison Health Sciences 
and Stanford University Institutional Review Boards approved 
the study (Stanford #19207).
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Signal acquisition

The MITDB provides ECG data in lead 2 configuration along with 
another lead of varying types. Clearly, more ECG leads improve 
classification; however, the WSC recordings follow standard PSG 
requirements provided by the AASM [2]; thus, only lead 2 con-
figuration was used from both databases.

The ECG signal in the WSC was digitized with a sampling 
frequency, fs, of 200 Hz, whereas in the MITDB, fs = 360 Hz. In the 
WSC, Grass Comet montages were used with a pre-bandpass 
filter of 0.3–35 Hz. In the MITDB, a pre-filter of 0.1–100 Hz was 
used.

Automatic RR Tachogram Extraction 
Algorithm
The RR tachogram directly presents information on duration 
and variation between heart beats, i.e. the HRV, and contains 
the necessary information to identify AA. Our automatic RR 
tachogram extraction algorithm includes an initial bandpass 
filtering of the ECG signal followed by three processing sub-
modules: an R peak detection, an artifact detection, and an 
ectopic beat detection module. An artifact-free and ectopic 
beat–free RR tachogram was then extracted by cubic spline 
interpolation and resampling. The first block receives the 
bandpass filtered ECG signal, xn, and the output of the algo-
rithm module was the RR tachogram (Figure 1). Specifics of the 
automatic RR tachogram extraction algorithm can be found in 
Supplementary Material.

Automatic Arousal Detection System
Our automatic arousal detection system includes preprocessing, 
feature extraction, classification, and postprocessing of features 
from three modalities: the ECG, the RR tachogram, and hypno-
gram. An overview of the automatic arousal detection algorithm 
is presented in Figure 2.

Preprocessing

All modalities considered for feature extraction are first pro-
cessed using a preprocessing module, where segments are eval-
uated for removal if the heart rhythm is too unstable. Criteria 
for an unstable heart rhythm were inspired by Kleiger et al. [16] 
and any 30 s segment contained more than 20% ectopic beats 
(found as described in the previous section) and/or atrial fibril-
lation (AF) were discarded and were not evaluated for feature 
extraction. Detection of AF was carried out using the algorithm 
of Petrenas et al. [17]. All other segments were included for fea-
ture extraction.

Feature extraction

In all prior work, HRV features have been developed for screen-
ing purposes. Consequently, they were extracted from long time 
segments, often 5 min or longer, and compared between differ-
ent groups of participants [18]. CA introduce activations of the 
autonomic system that occur spontaneously. The HRV features 
we seek must therefore be adapted to have a good time resolu-
tion so that we could capture abrupt shifts in autonomic bal-
ance. For this reason, we selected a sliding window with overlap, 
such that a time resolution of 1 s was achieved. Specifically, the 
SDNN feature (Table 2) was extracted from 0 to 30 s and assigned 
to time bin 15, and from 1 to 31 s and assigned to time bin 16, etc. 
Table 2 shows features extracted from the ECG, RR tachogram, 
and hypnogram, along with window lengths that have been 
used to compute them. References to original work(s) where 
they were used for sleep-related detection tasks are provided. 
All features were interpolated to match the 1 s time bins used 
for classification.

CWT features
Spectral features of the RR tachogram approximate the balance 
of ANS [18]. Inclusion of these features was important, since 
arousals are associated with an activation of the SNS. Spectral 
features were extracted with the continuous wavelet transform-
ation (CWT), using the morlet wavelet, since it has been shown 
to map changes in ANS well [19]. Ten levels of decomposition 

Table 1.  Demographics of participants in databases

Database N (male/female) Age: mean (SD) BMI: mean (SD)

MITDB 20 (9/11) 61 (17.5) —

WSC 258 (138/120) 65 (7) 31.7 (7)

MITDB = MIT BIH database [14]; WSC = Wisconsin Sleep Cohort [15]; N = number 

of participants; m = male; f = female; SD = standard deviation; BMI = body mass 

index.

Figure 1.  RR tachogram extraction algorithm overview. Input, xn, is the ECG sig-

nal, which is initially bandpass filtered and then processed in the three blocks: 

R peak detection, artifact detection, and ectopic beat detection. Output from the 

R peak detection block is used to store variables that contain dynamic informa-

tion, Rm, and morphological information for each heartbeat, HB segments, Cm, 

which is used to design a HB template, T. Based on this information, each Cm is 

firstly evaluated in the artifact detection block, updated, and then evaluated in 

the ectopic beat block. The final output is the RR tachogram extracted from the 

updated Rm, fs: samling frequency.



using two number of voices per octave created a satisfactory 
frequency resolution to fit usual frequency bands used for HRV 
analysis, which is very low frequency (VLF): 0.0033–0.04 Hz, low 
frequency (LF): 0.04–0.15 Hz, high frequency: 0.15–0.4 Hz, and 
total power (TP): 0.0033–0.4 Hz [18].

Hjorth parameters
The definition of arousals clearly states that during rapid eye 
movement (REM) sleep, arousal scoring must be accompanied by 
muscle activation [2]. Muscle activations may introduce move-
ment artifacts, which inflict and corrupt recorded signals dur-
ing PSG. This apparent movement artifact can, however, also be 
utilized as a descriptive feature. In this study, Hjorth parameters 
were introduced to extract artifactual movements from the ECG 

signal. Hjorth parameters are a set of nonlinear parameters that 
describe a different degree of signal complexity: activity is the 
variance of the signal; mobility can be interpreted as the mean 
frequency; and complexity is the change of mean frequency [20].

Sleep stages
Sleep stages were annotated in 30 s epochs and were translated 
into features by the one-hot representation. This representation 
has been widely used in machine learning and works by trans-
lating a categorical class into a set of numerical parameters by 
assigning 1 for the present category and 0 for all other categories 
[21]. The AASM definition clearly distinguishes arousals by sleep 
stages, which makes sleep stages a natural choice to include as a 
feature [2]. In recent years, HRV features have shown to be useful 
for the classification of sleep stages [22, 23]. We elected to col-
lect all non-rapid eye movement (NREM) stages in one feature, 
firstly because most HRV feature-based sleep stage classification 
algorithms are not sufficiently performing to distinguish the 
different NREM sleep stages, and secondly because the arousal 
definition provided by the AASM does not distinguish arousals 
emerging from different NREM sleep stages.

Time domain
Time domain features serve to give contextual information 
about variability and dynamics of the heart rate [18]. Apart from 
traditional time domain features (Number 1–11, Table  2), four 
additional features were extracted (Number 12–15, Table 2), the 
mean average deviation (MAD), and a novel feature developed 
and assigned with the name median signed local deviation 
(MSLD), characterized by

	 MSLD RR RR RR( ) = −( )small large



	

where ( )•  is the median operator, index descriptions of RRsmall 
and RRlarge indicate window size used to extract RR intervals, and 
RR intervals from a smaller window are compared with a larger 
window (window sizes are presented in Table 2). These features 
give a signed estimation of local deviations from the median, 

Table 2.  Arousal detection features

Type Feature Number

Time domain RR, 18 SDNN, 18 SDSD, 18 RMSSD 18 1–4
Range(RR), 18,19 MAD(RR) 18,19 5–6
( ,[ . , . , . , . , . ])RR 0 10 0 25 0 50 0 75 0 90  18,19 7–11
MSLDshort(RR), MSLDlong(RR), LR, 10 LRback, 10 12–15

Frequency 
domain

HF, 18 LF, 18 VLF, 18 TP, 18 all from CTW 16–19

Hjorth 
parameters

Activity, 20 mobility, 20 complexity20 20–22

Sleep stage p(wake), p(NREM), p(REM) 23–25

Features used for arousal detection. Features 1–11 were computed for 30 s win-

dows. Features 12–13 were computed for local windows of length 5 s and 15 s 

and global windows of length 30 s and 180 s, respectively. Features 14–15 were 

computed on a beat-to-beat basis. Features 16–25 were calculated in 1 s bins.

RR = RR interval; ( )⋅  = mean; SDNN = standard deviation of RR; SDSD = stand-

ard deviation of RR differences; RMSSD = root mean square of successive RR 

differences; MAD = mean absolute difference; MSLD = median signed local 

difference; LR = likelihood ratios; HF = high frequency; LF = low frequency; 

VLF = very low frequency; TP = total power; CTW = continuous wavelet trans-

formation; NREM = non-rapid eye movement; REM = rapid eye movement.

Figure 2.  Arousal detection algorithm overview. From the sleep recording, the 

PSG, the following is inputted for preprocessing and then feature extraction in 

the arousal detection block: the ECG, xn, the RR tachogram, RR (Figure  1), and 

hypnogram. A neural network is then trained and tested on recordings from the 

WSC. The output is the posterior probability of an arousal, p(Arousal|xn). In the 

postprocessing step, a threshold is used to categorize the posterior probability 

into binary categories: arousal or no arousal. Finally, wake stages are removed. 

fs: samling frequency.
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such as the tachycardia-bradycardia seen during AA, while 
keeping the sign to allow heart rate increases and decreases to 
be distinguished.

Likelihood ratios (LR) were developed to detect tachycar-
dia associated with AA. Two versions of the LR feature were 
extracted, one as calculated in [10], and the other implemented 
to work in the opposite direction of the RR time series. The latter 
allowed for a detection of bradycardia often following the tachy-
cardia associated with an arousal.

Transformation and Normalization

Relative changes rather than absolute changes must be calcu-
lated within participants, as one participant might have a natu-
rally higher baseline heart rate than another. The logarithmic 
operator can be used to transform the features from absolute to 
relative values,

	 log logx y
x
y

( ) − ( ) = 







log
	

Normalization of features is important to develop generic 
detection algorithms that can work on big data set with partici-
pants having different physiological states and various medical 
conditions. A min–max normalization was deemed an inappro-
priate choice, since it is very sensitive to noise. Thus, soft nor-
malization was performed for each participant, using 0.1 and 
0.9 quantiles,

	 X
X X

X X
normalised

intra

intra intra
=

− [ ]
[ ]( ) − [


 
( , . )

, . ( , .

0 1

0 9 0 1]]) 	

All features but sleep stage features were log transformed and 
normalized.

Classification

Neural networks are powerful machine learning tools that can 
learn high dimensional patterns using nonlinear transforma-
tion. A feed forward neural network (FFNN) was considered for 
the classification task of detecting AA. A  nonrecurrent neural 
network was considered sufficient, since temporal information 
was already incorporated in the features.

Architecture
For each time bin, the input was a vector of 25 features. This 
input was fed to a single hidden layer with bias and tanh 
activation function, which served as the active part for the 
nonlinear transformation. An output layer served to assign a 
posterior probability to each of two classes, given by the soft-
max activation function. The hidden layer contains a number 
of hidden units (HU) that each allows for a nonlinear trans-
formation of the data. Naturally, more HU will lead to a more 
flexible model. Three different models were trained and eval-
uated with N =  [50, 200, 500] HU. Cross entropy is useful for 
classification problems and was used as loss function, since 
it gives penalty that increases exponentially the further away 
the output probability is from the target class. Weights were 
optimized using the scaled conjugated gradient, which is a 
fast, automatic back-propagation solution that avoids user-
dependent settings [24].

Participants and regularization
The 258 participants from the WSC (Table  1) were randomly 
divided into a training set (181 participants, 70%) and test set 
(77 participants, 30%). Nonoverlapping segments of 10  min of 
nonwake periods were extracted from each participant. These 
were shuffled between participants and collected into mini-
batches of size 10 in both the training and test set. To ensure 
model generalization and to avoid over-fitting to the training 
set, data regularization was introduced by batch normalization 
and by using an early stopping criterion, where the training was 
stopped if the test error did not improve through 20 iterations. 
Furthermore, generalization was strengthened by the large 
amount of data in this study.

Targets
Targets must include part of the signal of interest to detect. 
Autonomic activations have been found to begin prior to and 
to last longer than, associated CA, with duration of autonomic 
activation varying with CA duration [9]. All annotations pro-
vided by specialized medical personal were of the arbitrary 
minimum 3 s duration in concordance with the AASM [2] and 
were localized at the beginning of a CA. To capture autonomic 
activations associated with CA, arousal annotations from 12 
randomly selected participants were extracted, comprising 
1180 arousals. The median of all events along with the 0.2 
and 0.8 quantiles was calculated and is presented in Figure 3. 
From this figure, it is possible to extract information on 
median heart rate responses during CA. Clearly, this response 
lasts longer in the RR tachogram than what the annotation 
captures. By visual inspection and assuming that the annota-
tions are localized at the beginning of an arousal, targets were 
designed to begin 2 s prior to the beginning of the annotation 
and to end 10  s after the annotation stopped (Figure  3, red 
horizontal line). Furthermore, 20 s following an arousal were 
not considered in the loss function (Figure  3, grey horizon-
tal line). This can be justified, since some AA last longer than 
this fixed target size. There is no benefit from penalizing the 
model from such events, if they are in fact genuine autonomic 
activations.

Postprocessing

The output from the neural network is the probability of an 
arousal occurring at each time bin, given by

	 0 1≤ ≤p Arousal n( | )x
	

Arousals occur in events of various lengths. A  threshold was 
fixed to segment the output into a binary vector of events,

	 A
if p Arousal

otherwisen
n= ( ) >




1

0

|x θ

	

The threshold will be determined based on the performance 
metrics discussed in a later section.

Arousal length
Different minimum arousal lengths are considered to control 
the minimum arousal intensity required to be considered an AA.



Removal of stable wake periods
Arousal events are transitions from sleep towards wakefulness; 
thus, periods of stable wake are not of interest. Wake periods 
lasting more than 1  min were therefore partly removed by 
retaining the first 30 s and removing the rest. This was done to 
enable the capturing of arousals in the transition towards wake. 
In this study, wake periods were removed by using hypnogram; 
a step that could easily be replaced later by an automatic sleep 
stage classifier.

Validation

To evaluate the performance of a time series event detection 
algorithm, it only makes sense to focus on events that have been 
annotated or detected by the model, and not areas where no such 
events are present. To validate the performance, precision (P+) and 
sensitivity (Se) were considered. Se describes the fraction of anno-
tated arousals that have been detected, whereas P+ describes the 
fraction of detected arousals which are indeed annotated.

Both Se and P+ are important performance metrics. The 
F-score combines these and is given by

	 F
P Se

P Se
β β

β
= + ( ) +

+

+
( )

•

•
1 2

2

	

where β  can be chosen to put more emphasis on either Se or P+. 
There exists no formula for the optimal choice of β ; it should 
be chosen based on the application of the model. Some false 
positives (FP) are expected, since prior knowledge indicates that 
AA may occur without concomitant cortical activation; thus, β  
was chosen to emphasize Se, thereby reducing influence of FP. 
A  value of β = 0 6.  was chosen to evaluate the performance of 
the model. All manually scored arousals are arbitrarily anno-
tated to last the minimum 3  s, required in the AASM scoring 
guidelines [2]. The autonomic response to CA might not be at 
the exact same location as the annotation. A window starting 
2 s before the beginning of an annotation and 10 s after the end 
was considered in the evaluation process to search for an auto-
nomic response corresponding to the modified target presented 
in Figure 3.

Results

Network

The log-likelihood of three different FFNN models with 50, 200, 
and 500 HU performed with test error 0.0871, 0.0866, and 0.0867, 
respectively. It seemed appropriate to select the model contain-
ing 200 HU, since a less complex model (50 HU) scored a higher 
test error, indicating that the model was not flexible enough, 
whereas the more complex model (500 HU) scored a similar test 
error, suggesting no further improvement in performance.

Optimal postprocessing parameters

The F-score was used to determine an optimal threshold and an 
optimal arousal duration. Figure 4 (right) shows the F-score for 
different threshold and minimum arousal duration. The highest 
F-score of 0.70 was achieved with a threshold of θ = 0 1.  and mini-
mum arousal length of 15 s.

Performance

Using optimal postprocessing parameters, performance metrics 
resulted in P+ = 0.72 and Se = 0.63 (Figure 4, left). From Figure 4, 
it is clear that P+ improved significantly when removing short 
duration arousals, indicating that increasing minimum arousal 
length removes more FP than true positives (TP).

Figure 5 shows a scatterplot of performance metrics for every 
participant used in the test set. It is noted that most points are 
gathered in the upper right quadrant. An observation is that 
no participants have 100% Se or P+. Assuming a perfect model 
where all AA are identified, the former case (Se) suggests that 
no participant has a perfect correlation between CA and AA, 
whereas the latter case (P+) indicates that some AA occur with-
out cortical activations.

Sleep stages

Boxplots of Se with respect to arousal sleep stage are shown 
in Figure 6 (left). The model performs very well in REM sleep 
compared with NREM. This suggests that autonomic activa-
tions in REM sleep introduce larger heart rate changes than 
in other stages.

Arousal type

Boxplots of Se with respect to arousal subtype are shown in 
Figure 6 (right). Clearly, arousals in response to a leg movement 
or respiratory event are better detected in comparison to spon-
taneous events, a result that might be explained by the fact that 
respiratory events and leg movement events are already associ-
ated with tachycardia independent of CA [25, 26]. In this case, 
these events might lead to larger impacts on the heart rate com-
pared with spontaneous arousals.

False positive

It was of interest to explore the 28% FP that were present with 
the chosen post-processing parameters. Of these, 38% fell into a 
leg movement event, and 43% fell into a respiratory event. This 
confirms that autonomic activations occur without concomitant 
cortical stimulation.

Figure 3.  RR tachogram at time-locked arousals. Median, 0.2 and 0.8 quantiles 

of RR tachogram time-locked to annotated arousals from 12 randomly selected 

participants, comprising 1180 arousal events. The targets used for the loss func-

tion are indicated with a red line and has a 15 s duration, followed by a 20 s 

window not included to update the loss function in order to prevent overpenali-

zation of the model.
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Discussion
This study presents an algorithm that, when provided with raw 
PSG data and manually or automatically scored sleep stage data, 
allows for automatic detection of AA by adapting the approach 
of modeling and detecting autonomic behavior during CA, and 
choosing the post-processing parameters such that the influ-
ence of FP events is reduced, thereby providing for a multivari-
ate definition of AA. The algorithm was trained and tested on 
recordings from the WSC and included participants suffering 
from a variety of sleep and cardiac disorders. The detection 

algorithm includes a module for automatic extraction of an arte-
fact- and ectopic-beat-free RR tachogram. Ectopic beats were 
detected by development of a model trained and tested on ECG 
recordings from the MITDB. Using CA as gold-standard, arousals 
were detected with P+ = 0.72 and Se = 0.63. The postprocessing 
parameters were chosen to put more emphasis on Se, thereby 
reducing influence of FP.

P+  =  0.72 shows that 28% of AA occur without sufficient 
cohesive CA. It is well-known that both leg movement and res-
piratory events introduce tachycardia that appears with and 
without concomitant cortical responses [25, 26]. In this study, 
we found that 38% of FP appeared in relation to leg movement 
events, and 43% appeared in relation to respiratory events. This 
indicates that most (81%) FP are likely genuine AA triggered 
without associated CA, although it may also reflect the fact 
that the current definition of arousals does not capture the full 
spectrum of EEG disturbances that may occur (e.g. duration and 
change of frequency). Alternatively, it may be that the reticu-
lar activation systems present dynamic monitoring-activations 

Figure 4.  Performance metrics. Performance metrics displayed for different minimum arousal lengths (in seconds) indicated by the different colors. Left: Precision, P+, 

vs. Sensitivity, Se. Right: F-score and threshold, θ. The threshold for the final model is chosen from these performance metrics and is indicated with a dot. As shown, a 

threshold of θ = 0.1 and minimum arousal length of 15 s is chosen.

Figure 5.  Performance by participant. Scatterplot of performance metrics shown 

for every participant used in the test set (77 participants). Sizes of scatter-dots 

are relative to the number of arousals present per participant.

Figure 6.  Arousal subtype. Left: Sensitivity of model with respect to sleep stage. 

Right: Sensitivity with respect to arousal subtype, i.e. leg movement (LM), respir-

atory event (RE), and spontaneous (Sp). The red line is the median and the edge 

of the boxes represents the 25 and 75 percentiles. Whiskers indicate nonoutlier 

extremes. Red crosses are outliers.



throughout the night in response to physiologic disruptions to 
sleep continuity, which do not necessarily involve a full-blown 
CA. This is fundamentally important to the assessment of sleep 
disorders by PSG, suggesting that manually scored, EEG-limited 
arousal scoring may not fully capture the adverse impact of 
sleep disorders.

Se = 0.63 shows that 37% of CA do not have sufficient cohe-
sive AA. This is clearly a consequence of the chosen post-
processing parameters, as a Se  =  0.9 can be achieved, just 
by changing the minimum duration limit to 0  s and θ = 0 05.  
(Figure 4). This also confirms the correlation between AA and 
CA intensity, i.e. duration [9]. However, choosing these param-
eters will consequently increase the amount of FP, achieving 
P+ = 0.45. Conveniently, as explained above, most FP appear in 
cohesion to a respiratory or leg movement event; hence, they 
are likely genuine autonomic activations. The high proportion 
of CA that did not have an associated AA points to a poten-
tially distinct physiologic phenomenonology, though, as men-
tioned, a more liberal parameter threshold results in much 
higher correlation, at the risk of increased FP. Toward this end, 
an exploration of clinically validating the overlapping CA and 
AA, as well as those that did not have cohesion, will further our 
understanding of the interaction between these phenomena. 
Furthermore, this may highlight that the arbitrarily chosen CA 
threshold of 3 s of EEG frequency changes, which was meant 
to ensure sufficient inter-rater reliability in scoring, may not 
prove to be optimal for defining a CA.

From a clinical standpoint, these findings are highly rele-
vant. The finding that arousals of various types correlate signifi-
cantly with clinical outcomes, most notably daytime sleepiness 
[11], suggests a need for better methods of arousal detection. 
Furthermore, the differential impact evidenced by objective 
worsening of daytime sleepiness induced by isolated AA points 
to a potentially hidden pathophysiology of sleep disorders [5]. 
Additionally, the pathophysiologic consequences of the SNS 
surges associated with sleep disruptions bear a clear connection 
to the cardiovascular morbidity and mortality of common sleep 
disorders, such as obstructive sleep apnea [11] and periodic limb 
movements of sleep [11]. In fact, recent evidence from studies 
targeting subphenotypes of obstructive sleep apnea has indi-
cated that comorbid medical issues (including hypertension, 
diabetes, and cardiovascular disease) are more probable in oth-
erwise asymptomatic patients [27], highlighting a role for more 
robust PSG analyses in the identification of clinically relevant 
sleep perturbations such as AA.

Basner et al. proposed a similar system, reporting a Se = 0.68, 
P+  = 0.64, and specificity, Sp  = 0.95 [10]. Reporting Sp in arousal 
detection results in model interpretation difficulties, due to a 
large class imbalance between event (Arousal) and no event (No 
arousal). Basner et al. solved the imbalance problem by randomly 
selecting control arousals such that they had no overlap with 
arousal scorings, wake epochs, and signal loss (including a safety 
margin of 60  s), and so the ratio between actual arousals and 
control arousals was 0.5. However, this design choice biases the 
model towards areas with stable sleep conditions and neglects 
to address areas with natural variability. In general, the design 
choices are very different for the two systems, which makes it 
difficult to compare. Basner et  al. tested their algorithm using 
only 56 participants and used external stimuli to provoke arous-
als, which makes it uncertain how well it models naturally occur-
ring arousals. They tested their model using healthy participants, 

not suffering from heart diseases or sleep disorders. On the other 
hand, they reported performance by not excluding wake epochs. 
This contrasts with the proposed algorithm that was tested 
using the WSC, a population-based study known to include par-
ticipants having various sleep disorders and arrhythmias [15]. 
Furthermore, it was tested in a clinical environment on naturally 
occurring arousals, but FP during wake epochs were removed. 
Overall, Basner et al. present a simple system, which is easy to 
reproduce, and only needs 2 min of manual editing for removing 
signal loss. The presented algorithm is automatic, but more com-
plex, as model flexibility was prioritized to capture the diversity 
of AA in a clinical study. One could argue that this work should 
at least be as good as the system presented by Basner et al., since 
their algorithm was included as input feature. Ultimately, better 
performance is reported by tuning the postprocessing parame-
ters presented in Figure 4, e.g. a Se = 0.8, P+ = 0.64.

The study of Pillar et al. and Pillar et al. of Refs. 12 and 13 
introduced a rule-based method to detect AA using PAT record-
ings [12, 13]. A  correlation of 0.82 and 0.87, respectively, was 
achieved between such events and CA. No information about P+ 
was provided, which makes it difficult to compare with our own 
performance metrics. It is noted that their method relies on PAT 
recordings, which are not routinely performed, thereby limiting 
its applications.

All previous detection algorithms rely on rule-based classifica-
tion systems [10, 12], which are limited by their static design. On 
the other hand, supervised machine learning models, e.g. neural 
networks, have the capabilities to learn the complex patterns of 
human scorers in a clinical setting. Recent years have shown that 
machine learning approaches used in sleep medicine can provide 
reliable classification in other areas such as sleep stage classifica-
tion [22, 23]. In this study, we used a FFNN that was trained to 
detect AA. A FFNN treats every input as new and has no memory 
of the context in the time series. To compensate for this, temporal 
information was incorporated into the features. Alternatively, a 
recurrent neural network could have been implemented, provid-
ing the temporal context through the network itself.

Limitations

Feature selection in this model was unlikely affected by individ-
ual-specific or infrequent autonomic phenomena (e.g. Traub–
Hering–Mayer waves) or low-intensity, naturally occurring 
autonomic fluctuations (e.g. respiratory sinus arrhythmia), due 
to incorporation of both time- and frequency-domain features of 
HRV into our model parameters. If any of these phenomena sig-
nificantly contributed to autonomic arousals across individuals 
and events, they could have been selected as influential by the 
algorithm.

The performance of the algorithm is calculated using the 
hypnogram as input features so that periods with stable wake 
could be removed. In recent years, HRV features have proven 
useful for sleep stage classification [22, 23], and it would be 
of interest to include such a classifier as opposed to manual 
annotations in later implementations, potentially allowing for 
a more physiologic staging system than the classically con-
strained 30 s epoch. Although the algorithm is automatic and 
work without manual removal of artefacts and common ectopic 
beats and arrhythmias in the ECG signal, it cannot be used if 
only the ECG signal is available, since the outcome of the algo-
rithm still depends on visual scoring of the EEG. However, with 
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the abundance of automated, sleep-staging algorithms that are 
being developed (including one from our lab), this process is 
likely to be part of an automated analysis pipeline.

Analysis of HRV is affected by the presence of ectopic beats 
and arrhythmias. A study on the clinical utility of HRV stresses 
that analysis of HRV requires normal sinus rhythm and reason-
able signal quality, and that AF and ectopic complexes preclude 
its use [16]. In this study, AF and ectopic beats were accounted 
for by using models trained on recordings from participants with 
different physiological conditions than participants from the 
WSC. There is a need for scoring the heart beats and rhythms in 
the recordings from the WSC to optimally identify sinus rhythm.

As with other physiologic consequences of sleep distur-
bances (e.g. CA and desaturations), the AA themselves were not 
able to differentiate between distinct types of sleep disturbances 
(e.g. respiratory events, leg movements, CA, and spontaneous). 
Further work would be needed to analyze if AA occurring spon-
taneously, or in association with CA, leg movements, or respira-
tory events have differential implications for sleep recuperation 
and long-term health.

The proposed detection algorithm was evaluated in rela-
tion to CA annotations as there is no gold standard for AA [2]. 
Figure 3 shows that most CA lead to autonomic activations, jus-
tifying the use of CA as a gold standard. Still, the few CA that 
did not have cohesive AA, as well as the AA that occur with-
out cohesive CA will cause incorrect penalization of the model. 
Moreover, the postprocessing parameters, i.e. threshold of θ = 0 1.  
and minimum arousal length of 15  s, were chosen based on 
optimizing the F-score, consequently biasing the model towards 
longer CA and longer AA without cohesive CA. Ultimately, tun-
ing these model parameters should not be based on presence 
of CA but rather on an outcome measure such as sleepiness, 
daytime function, increased blood pressure, and cardiovascular 
morbidity and mortality. Ultimately, the manifestation, i.e. the 
duration and intensity, of AA should be based on their physio-
logical impacts for them to be considered as isolated events of 
importance. Furthermore, to uncover the complete autonomic 
response during AA different biosignals that have shown to cap-
ture autonomic activity should be considered in the analysis, 
such as, but not limited to PAT [12, 13], pulse plethysmography, 
pulse transit time, and electrodermal activity [1].

In conclusion, the presented algorithm shows good perfor-
mance when considering that more than 80% of the FP found by 
the detection algorithm appeared in relation to either leg move-
ment events or respiratory events, indicating that most FP con-
stitute autonomic activations that are indistinguishable from 
those with cortical cohesion. The proposed algorithm provides 
an automatic system trained in a clinically relevant environ-
ment, which can be utilized to analyze the systemic and clinical 
impacts of arousals.
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