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Abstract

Gliomas are primary malignancies of the brain. Tumors are staged based on malignancy, nuclear
atypia, and infiltration of the surrounding brain parenchyma. Tumors are often diagnosed once
patients become symptomatic, at which time the lesion is sizable. Glioblastoma (grade 1V glioma)
is highly aggressive and difficult to treat. Most tumors are diagnosed de novo. The gold standard
of therapy, implemented over a decade ago, consists of fractionated radiotherapy and
temozolomide, but unfortunately, chemotherapeutic resistance arises. Recurrence is common after
initial therapy. The tumor microenvironment plays a large role in cancer progression and its
manipulation can repress progression. The advent and implementation of immunotherapy, via
manipulation and activation of cytotoxic T cells, have had an outstanding impact on reducing
morbidity and mortality associated with peripheral cancers under certain clinical circumstances.
An arsenal of immunotherapeutics is currently under clinical investigation for safety and efficacy
in the treatment of newly diagnosed and recurrent high grade gliomas. These immunotherapeutics
encompass antibody-drug conjugates, autologous infusions of modified chimeric antigen receptor
expressing T cells, peptide vaccines, autologous dendritic cell vaccines, immunostimulatory
viruses, oncolytic viruses, checkpoint blockade inhibitors, and drugs which alter the behavior of
innate immune cells. Effort is focusing on determining which patient populations will benefit the
most from these treatments and why. Research addressing synergism between treatment options is
gaining attention. While advances in the treatment of glioma stagnated in the past, we may see a
considerable evolution in the management of the disease in the upcoming years.
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Glioma

Gliomas are primary malignancies of the central nervous system (CNS), accounting for 80%
of all malignant CNS tumors that are diagnosed in the USA (1; 2). In 2017 the NCI
estimated that CNS malignancies constitute 23,800 cases with 16,700 deaths attributable to
these diseases per year. The incidence is relatively similar world-wide with a marginally
higher rate of diagnosis in men (3). Reported risk factors for the development of glioma are
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pre-natal X-rays and prior radiotherapy for acute lymphoblastic leukemia, but are both rare
occurrences and have been contested (4; 5). Peak disease incidence increases with age, but
pediatric forms are commonly diagnosed as well. However, the origin and presentation of
pediatric gliomas differ from the adult ones, as pediatric tumors often originate in the brain
stem, whereas adult gliomas generally develop in the frontal regions of the brain (1).

Gliomas derive from a cancerous glial cell of either ependymal cell (ependymoma),
oligodendroglial (oligodendrogliomas), or astrocytic (astrocytomas) origin and sometimes
present with gene signatures of multiple cell types (oligoastrocytomas/mixed gliomas).
Astrocytomas are generally more commonly diagnosed, and different subtypes of glioma are
more common in specific age groups (6). Following the older scheme of tumor
classification, gliomas are graded on a scale of -1V by the World Health Organization
(WHO) depending on tissue histology and the tumor’s invasion into surrounding tissue.
Aggressive forms of grade 111 and all grade 1V gliomas are classified as high grade gliomas
(HGG). Grade Il tumors are referred to as ‘anaplastic’ while Grade IV gliomas are referred
to as Glioblastoma multiforme (GBM) (7). GBM is highly invasive, well vascularized, and
almost always fatal.

More recently, gliomas have been classified differently based on TCGA criteria into
proneural, neural, classical, and mesenchymal subtypes based on the mutations and
molecular signatures the tumors carry. Classical gliomas often present with epidermal
growth factor receptor (EGFR) mutations, amplification of chromosome 7, and have genetic
signatures most indicative of astrocytic origin. Proneural tumors commonly have isocitrate
dehydrogenase 1 (IDH1) and platelet derived growth factor receptor A (PDGFRA)
mutations and express genes indicative of oligodendroglial origin. Neural gliomas express
genes primarily seen in neuronal cell types. Finally, mesenchymal tumors often present with
neurofibromin 1 (NF1) mutations and are characterized by gene signatures of astrocytes,
oligodendrocytes, and neurons. (8). Gliomas are most often discovered when neuroimaging
is performed on patients who present with new onset chronic headaches, new onset seizures,
new neurological deficits, and signs of increased intracranial pressure. In this review, we
summarize progress in glioma immunotherapy and provide a list of ongoing
immunotherapy-based clinical trials.

Current Management of Glioma

The current standard therapy consists of resection, when possible, followed by concomitant
radio- and chemotherapy with temozolomide (TMZ), but is far from optimal in combating
disease progression. This therapy and dosing regimen were implemented in 2005 and have
yet to be revised, despite advancements in cancer therapeutics (9). Average time of survival
after GBM diagnosis and treatment with the gold standard therapy of temozolomide and
fractionated radiation is dismal, ranging between 12 to 15 months (10).

Resection to gain a negative tumor margin is nearly impossible as the tumors are highly
infiltrative and often invade vital brain regions. Patients incur frequent complications of both
the disease and its treatment, including seizures, neurological symptoms, hydrocephalus, and
the adverse effects of chemotherapy. Thus, there is substantial need to identify more
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effective and specific targets for treatment. Apart from cytotoxic and anti-angiogenic
therapies, modulation of the immune system is a promising approach, as innate and adaptive
immunity play crucial roles in cancer progression and patient survival (11).

The Blood Brain Barrier and Angiogenesis in Glioma

The blood brain barrier (BBB), which is composed of tight junctions made by endothelial
cells, pericytes, and astrocytes, serves to keep the CNS as an immune-privileged
environment, in that cells of the peripheral immune system are excluded from entry unless a
perturbation to the BBB occurs. The breakdown of the BBB in glioma is a well-documented
occurrence, however, due to high concentrations of soluble factors secreted from the tumors,
such as VEGF and MMPs, which compromise endothelial tight junctions, degrade
proteoglycans in the surrounding extracellular matrix, and allow for the infiltration of
various immune cells and blood derived factors (12; 13). This leakiness may be exploited to
deliver drugs to the tumor, which might not have otherwise crossed the BBB. There is
heterogeneity, however, in BBB leakiness in glioma with some areas more susceptible to
drug penetrance, whereas other portions remain rather impermeant.

Aberrant neovascularization is a hallmark of GBM, another explanation why the BBB is so
abnormal in the disease (14). Tissue edema and interstitial pressure increase as the tumors
expand. Functional MRI revealed that blood flow rate is increased to the tumoral area
relative to the surrounding healthy brain tissue in patients (15). Vessels present in glioma
biopsies are often described as tortuous and differ from normal vasculature in their integrity
and composition. In GBMs the vessels have significantly larger diameters than normal blood
vessels in the brain and are suboptimal for the efficient flow and distribution of blood.
Pericytes that surround endothelial cells are sparser along blood vessels, resulting in
increased leakiness. Due to this uneven distribution of blood flow through tumors, certain
regions are prone to outgrowing their blood supply leading to tissue necrosis and hypoxia.
Tumor hypoxia, in turn, leads to glycolytic metabolic shifts in cancer cells and the attraction
of various cell populations to infiltrate the tumor.

The tumor microenvironment

Tumors represent a complex ecosystem populated by tumor stem cells, stromal cells, blood
vessels, infiltrating monocytic populations, and resident immune cells (See Figure 1).
Microglia, the resident macrophages of the CNS, are responsible for combating infection
and responding to injury. Microglia, unlike macrophages in the rest of the body, derive from
a population of yolk-sac progenitors and migrate to the CNS early in development. After
populating the CNS, the resident pool of microglia is replenished over time by a resident
pool of stem cells, rather than via the bone marrow, as most other monocytic populations do
(16).

In glioma, bone marrow derived monocytes (BMDMs) are mobilized and migrate into the
tumor following the secretion of chemotactic factors such as colony stimulating factor 1
(CSF1) and CCL2 by tumor cells (17). Once recruited to the tumor interior, BMDMs
develop immunosuppressive phenotypes and secrete growth factors and cytokines, which
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help to nurture the growth and spread of the tumor (18). Due to gene expression similarities
between microglia and macrophages, it is often difficult to differentiate whether
peripherally-derived BMDMs or microglia constitute the bulk of Glioma Associated
Macrophages (GAMs). Additionally, there are frequently regional variations within tumors
in the distribution of immune infiltrate, since the microenvironment encountered at a
necrotic core of a tumor is different than its invasive edge in cellular, cytokine, or metabolic
activity (18).

Classically, almost all chemotherapeutics were designed against and have targeted the rapid
growth and division of cancer cells by hindering vital cellular processes. Aside from TMZ,
the cytotoxic agents procarbazine, lomustine and vincristine have been used for the
treatment of certain subtypes of low grade glioma (19; 20). Newer treatment modalities have
targeted hyperactive receptor tyrosine kinases (RTKSs) and/or the neovascularization of
tumors by inhibiting angiogenesis, but have often failed to show clinical efficacy over the
current standards of care because tumor cells upregulate the activity of other complementary
pathways. For example, VEGF-A overexpression is well documented in glioma and has
received a great deal of attention as a therapeutic target in recent years. Phase 111 clinical
trials were performed in 2014, evaluating concomitant Avastin (bevacizumab, an anti-VEGF
antibody) with TMZ and RT as first line defense for newly diagnosed glioma. While
increasing PFS significantly, the trials failed to meet pre-defined criteria for success and
failed to show any increase in overall survival time (OST) for patients (21). However,
individual patients responded quite well, showing that some may serve to benefit from the
adjuvant therapy. Anti-angiogenic therapy was recently shown to bolster the efficacy of
certain immunotherapeutics, which has necessitated further exploration of the use of such
drugs in combination with other treatment modalities in a case-specific manner for GBM.
Indeed, concomitant treatment with bevacizumab is a component to many ongoing clinical
trials (See Table 1).

The potential to harness the body’s own immune defenses against aberrant tumor growth has
become a promising alternative to the exclusive use of cytotoxic chemotherapeutic treatment
modalities. Ultimately the eradication of tumors is dependent on the activity of the adaptive
immune system to recognize the irregularity of tumor neo-antigens, overcome the
immunosuppressive nature of the tumor microenvironment, and mount an effective immune
response against in the tumor. Many of these therapies have shown promise on their own but
may be more efficacious in combination with other immunotherapies or classical
chemotherapeutic regimens.

Antibody Drug Conjugates

Chemotherapeutics can be directly targeted to tumor associated antigens (TAAS) in the form
of antibody drug conjugates (ADCs), which increases their specificity and decreases
potential off-target effects. For example, ABT-414 is an anti-EGFR antibody conjugated to
the cytotoxin, monomethyl auristatin F, and is currently in phase Il evaluation for newly
diagnosed GBM with EGFR amplification (NCT02573324) (22). Radioactive lodine 131 is
another cytotoxic agent being utilized in clinical trials evaluating its use when linked to anti-
Ganglioside G2 and administered intracranially (NCT00445965) for GD2-overexpressing
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GBMs as well as when conjugated to anti-B7-H3 and administered intrathecally for B7-H3
expressing GBMs (NCT00089245). In the case of radioactive iodine 131, the damage
delivered to tumors serves to potentiate immune responses in a similar fashion that targeted
radiotherapy is believed to (23). ADCs offer more precision than older chemotherapeutics,
but their specificity allows for the potential survival of cancer cells when expression of the
targeted TAA is downregulated.

CART Cell Therapy

The power of harnessing cytotoxic T cells (CTLs) to kill tumors has been most successfully
demonstrated in the treatment of leukemia, where T cells engineered to express high affinity
chimeric antigen receptor (CAR) directly target cancer antigens, which are not expressed or
expressed at very low levels by other cells of the body (24). A pilot study (NCT02209376)
for CAR-T therapy was explored recently for GBM using T cells engineered to recognize
EGFRvIII, a mutated fragment of Epidermal Growth Factor Receptor (EGFR) which
represents the most common mutation found in classical GBM (8; 25). All patients showed
signs of CAR-T expansion 7-10 days after infusion, and five patients who had resection of
their tumors for pathological evaluation had CAR-T cells present in the biopsies. In another
report, a patient with recurrent GBM expressing high levels of IL-13Ra.2 was administered
CAR-T cells against this antigen, intraventricularly, and was reported to have sustained
immune infiltrate in the cerebrospinal fluid (CSF) and disease remission for 7.5 months (26).
Although this was a single isolated case, a phase I clinical trial is currently being conducted
to assess the efficacy of this therapy in a similar patient population (NCT02208362).

While there seems to be some applicability of CAR-T for therapy, most immunotherapeutic
approaches, which have been explored more thoroughly for glioma treatment, exploit the
body’s own immune system to educate and mobilize the patient’s own CTLs to target and
eradicate the tumor. These early reports of the potential efficacy of CAR-T merit further
exploration in patient populations with well-defined target cancer antigens.

Vaccine Development

Tumor vaccination relies upon the presence of highly immunogenic neo-antigens expressed
by tumor-derived cells, and their capacity to elicit a long lasting anti-tumor, CTL-mediated
response. Gliomas typically have a low mutational burden, relative to other cancers such as
melanoma or non-squamous cell lung cancer (NSCLC), and thus the number of neo-antigens
to vaccinate against are much lower (27). Moreover, gliomas typically vary widely in which
mutations they carry, making genetic screening and personalized vaccination for each
individual a necessity if therapy is to be efficacious. Rindopepimut, for example, was a
vaccine developed against EGFRVIII, the same antigen used for the aforementioned CAR-T
trial (28). While the vaccine was well tolerated and showed some efficacy in conjunction
with TMZ treatment in early clinical trials, phase 11 trials were halted due to the
unlikelihood that the vaccine would meet criteria for therapeutic efficacy (29).

More recently, the prospect of multi-target personalized cancer vaccination is being
investigated for a broader range of patients and enhanced clinical efficacy. Two clinical trials
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are currently assessing the efficacy of vaccines derived from heat shock protein-peptide
complexes purified from patients” own tumor lysate (NCT01814813, NCT03018288). These
peptide complexes have the capacity to elicit MHC I-dependent CTL responses against
TAAs with few adverse or unintended events (30). Additionally, clinical trial NCT03018288
is including a cohort of patients treated with antibody-mediated PD1 blockade to discern any
additive effect the two therapeutic strategies may have. Other clinical trials are assessing
Gliovac, a personalized vaccine for first or secondarily relapsing GBM, developed from a
patient’s own autologous TAAs and allogeneic TAAs from the GBMs of other patients. The
vaccine was efficacious and well tolerated in phase I clinical trials, and is currently
recruiting patients for a phase |1 trial (31). These vaccination methods have shown some
promise in early clinical trials and will be exciting to follow up in the future.

Vaccination relies on the fact that dendritic cells (DCs) successfully present antigen and
educate a patients’ T cells to attack the cells expressing this antigen. An additional approach
is removing their DCs and exposing them to the antigen directly (DC vaccination). By
pulsing patient DCs with tumor neo-antigens and a cocktail of inflammatory cytokines, the
DC cells are educated to present tumor neo-antigens to T cells and induce an adaptive
immune response against tumor cells that express them (32). The argument has been made
that using antigens present in glioma-derived cells which are killed under cell stress
conditions may be more efficacious over simply lysing tumor cells or using synthesized/
recombinant antigens for the culture with DCs. Educating DCs with glioma cells undergoing
immunogenic cell death via treatment with hypericin and photodynamic therapy (PDT) to
induce toxic levels of intracellular reactive oxygen species in the tumor cells, has been
shown to be associated with better DC maturation and education over simply exposing DCs
to crude glioma cell debris. Mice receiving DC vaccinations from DCs exposed to
immunogenically killed glioma cells have been shown to have significantly increased
survival times (33). PDT has been investigated as an adjuvant therapy to radiation and
chemotherapy, has been shown to be well tolerated, and is approved as an intraoperative
treatment in Japan for malignant brain tumors (34).

The optimal route of DC administration for effective therapy is still under investigation,
although intranodal injection has been shown to be superior in eliciting potent CTL
responses in the treatment of other cancers (35). DCVax-L, developed by Northwest
Biotherapeutics, showed safety and efficacy in Phase I and 1l trials, and is currently under
examination in phase Il clinical trials for the treatment of newly diagnosed GBM (36).
Another DC vaccine, ICT-107, is currently under investigation in phase 11 trials as well. The
vaccine contains autologous DCs pulsed with only a subset of commonly overexpressed
TAAs: HER2, TRP-2, gp100, MAGE-1, IL13Ra2, and AIM-2 (37). DC vaccination has
shown some promise in prolonging overall survival time (OST) and increasing progression
free survival (PFS) times for patients (38). The phase 11 trials currently being performed
should prove to be quite informative. DC vaccination could also synergize well with other
immunotherapeutic treatment modalities.
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Viral Therapy

Another immunotherapeutic approach, which has been explored and shown to have
promising efficacy for patients is the use of modified oncolytic viruses. For example,
exploiting the fact that glioma stem cells upregulate the poliovirus receptor, CD155, a
genetically engineered poliovirus, PVSRIPO, was designed to efficiently and specifically
target cancer cells, thus causing immunogenic cell death, leading to the release of tumor-
derived debris and viral antigen, which, in turn, is taken up by DCs and presented to T cells
to initiate an anti-tumoral immune response to both the viral and tumoral antigens. Clinical
trials thus far have demonstrated safety and efficacy and are currently being evaluated
further in recurrent GBM (39; 40).

Other groups have researched the potential for viral vectors to deliver suicide genes to
glioma-derived cells. The basis of these suicide gene therapies is that they render the cells
susceptible to a toxic metabolite that the cells produce when encountering a particular
substrate. In the case of most genetic therapies, glioma-derived cells selectively receive a
viral thymidine kinase (TK) gene and patients are administered either ganciclovir (GCV) or
valacyclovir, irreparably damaging the DNA of the cells expressing the viral TK, leading to
cell death, and hopefully eliciting a T-cell mediated immune response. For example,
adenoviral vectors delivering Herpes Simplex Virus TK (HSVTK) with GCV administration
have shown promise for patients in Phase Il clinical trials for the treatment of recurrent
GBM by significantly extending PFS and OS (41).

The potential for viruses to induce potent immunostimulatory effects has also been explored
using modified adenovirus expressing 1L12 with activator ligand veledimex to potentiate its
effects (42). IL12 is believed to exert its effects by polarizing GAMs to more anti-
tumorigenic phenotypes (43). A phase | trial is currently evaluating the safety and efficacy of
this therapy for recurrent HGG (NCT02026271). Aside from these few examples,

genetically modified HSV, reovirus, Newcastle disease virus, other adenoviral vectors, and
measles are currently being evaluated in clinical trials for glioma therapy as well (40). The
potential for this form of therapy to synergize with PD-1 blockade is currently under phase |
investigation with the modified oncolytic adenovirus, DNX-2401 (NCT02798406). It would
be interesting to see how additional therapies may synergize in the future.

Checkpoint Blockade Inhibitors

A key to the success of most immunotherapeutic treatment modalities is making sure that the
therapeutics actually reach and are well sustained within the tumor microenvironment. The
importance in converting the tumor microenvironment from an immunosuppressive,
nutrient-depleted environment to one which can promote a robust anti-tumoral T cell
response is becoming a critical point to address in the successful design and implementation
of immunotherapeutics for patients. It has been observed that macrophage and tumor cell
populations upregulate cell surface receptors, particularly PD-L1, which block checkpoint
receptors on the surfaces of T cells. These checkpoint receptors, the most well defined being
PD-1, CTLA-4, and LAG-3, are expressed by T cells to dampen potentially unwanted T cell
receptor (TCR) activation by inappropriate antigen presentation e.g. a cell surface antigen
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expressed by a non-tumorigenic cell in one’s own body (44; 45). Cancer cells, as a natural
defense mechanism, upregulate checkpoint blockade ligands to shutdown T cells which may
have had the potential to elicit an attack on the cancer cells initiated by their recognition of
neo-antigens which had been recognized as ‘foreign’. This observation is well documented,
particularly in cancers, such as NSCLC and melanoma, where mutational burden is quite
high (27). In addition to preventing the activation of checkpoint blockade to promote CTL
functionality, depleting T regulatory cells (Tyegs) to reduce immunosuppression from the
tumor microenvironment is touted as another potential therapeutic angle. For example, anti-
CTLA4 and OX-40 antibodies used in pre-clinical cancer models have been shown to lead to
local depletion of Tyegs from tumors, resulting in enhanced systemic anti-tumor immunity
(46).

One criticism of the use of checkpoint blockade inhibitors and immunotherapy in glioma is
that oftentimes the mutational burden and therefore the number of neo-antigens present to
elicit an anti-tumorigenic immune response is limited. It is known, however, that GBM cells
in subsets of patients often upregulate checkpoint blockade proteins, such as PD-L1, which
serve to protect the cancer cells from any adaptive anti-tumorigenic response which could
have been mounted.

Targeting PD-1, PD-L1, and CTLA-4 using neutralizing antibodies in addition to
stereotactic RT +/— TMZ in pre-clinical mouse models has shown efficacy in greatly
extending life expectancy of GL261-bearing mice where PD-L1 expression is high in the
tumors (47). The reality for patients however is that gliomas generally present as ‘immune
cold’ tumors in that there is generally very little T cell infiltration and few cells express PD-
L1. However, PD-L1 expression has been reported in a subset of glioma biopsies, which has
been correlated with more aggressive tumors and worse prognosis for these patients (48).
Other groups have had similar findings that higher levels of PD-L1 expression are correlated
with more aggressive tumors and poorer patient outcomes in GBM (48). Likewise, TAMs
have also been seen to represent a large pool of PD-L1 expressing cells with the potential to
anergize T cells, which enter the tumor microenvironment (48; 49). Stereotactic RT is well
documented to enhance immune infiltration into the microenvironment of HGGs by
inducing immunogenic cell death in the tumors, making the combined use of RT and
checkpoint blockade inhibitors a promising therapeutic avenue. As a proof of principle,
treatment with pembroluzimab, a PD-1 blocking antibody, was reported to cause massive
lymphocytic infiltration of tumor tissue and radiographic tumor reduction in the case of a
patient with a hyper-mutated GBM (50). A phase Il clinical trial evaluating the efficacy of
durvalumab which targets PD-L1 in recurrent GBM is ongoing and may benefit patients
with a select immune signature in their tumors (NCT02336165). An important point to
address for the future is how to profile which patients will benefit the most from this type of
treatment as to not waste time or treat likely non-responders. Finding therapeutic synergism
with checkpoint blockade inhibitors is of fundamental importance and is being explored in
numerous clinical trials at the moment (See Table 1).
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Targeting Innate Immune Cells in the tumor microenvironment

In addition to tumor cells upregulating cell surface ligands which directly render immune
cells anergic, the tumor microenvironment contains high levels of inhibitory cytokines, such
as IL-10 and Transforming growth factor B (TGFp), which are secreted both by cancer cells
and innate immune cells such as TAMs and myeloid derived suppressor cells (MDSCs),
which constitute large cytokine reservoirs. These cytokines drive a senescent phenotype in T
cells and polarize certain subsets to an immunosuppressive Treg phenotype. These TAMs are
also responsible for the secretion of MMPs and other proteases which serve to remodel the
stroma surrounding tumoral cells and allow for their spread and invasion. TAMs also serve
to recruit endothelial cells to the microenvironment via the secretion of angiogenic factors,
which cause blood vessel branching and tumor neovascularization [41].

In the context of glioma, it has been shown that glioma associated microglia and
macrophages (GAMs) play vital roles in supporting tumor growth. GAMs are known to
comprise up to 30% of the cellular bulk of gliomas upon biopsy (51). GAMs, similarly to
TAMs in peripheral tumors, develop immunosuppressive phenotypes characterized by high
expression of TGFp, IL10, CXCL10, and CCR2. Patients whose tumors have high
expression of these cytokines have been found to have poorer OS and PFS (52). Our group
as well as others have shown that GAMSs are vital to tumor support. Using HSV-TK
expressing microglia and macrophages within gliomas and focally eradicating them with
GCV infusion, our group showed that tumors developed poorly in mice that lacked these cell
populations, and the animals had significantly extended survival times (53). Other groups
have shown that pharmacological depletion of GAMSs from tumors, in a similar fashion,
helps to slow tumor progression. Du et al. demonstrated that hypoxia inducible factor 1
alpha (HIF1a) is a critical transcription factor upregulated in gliomas, and results in
attraction of BMDMs to tumors, while its inhibition abrogates BMDM accumulation,
associated with less neovascularization and a less invasive phenotype of the tumors (54).
PLX3397 is a CSF1R and c-Kit inhibitor, which selectively kills CSF1R-expressing
macrophages and microglia (55). It was shown that mice given oral PLX3397 exhibited less
GAM infiltrate in tumors and less invasive tumors, overall. The drug was shown to slow
glioma recurrence after focal irradiation of the tumors in mouse xenograft models (56). The
drug went to Phase I clinical trials for the treatment of recurrent GBM, was well tolerated
orally, but failed to show any benefit for patients in terms of PFS at 6 months when dosed
orally at 1000mg/day as a single agent (57). PLX3397 is currently being tested for use in
adolescent GBM (NCT02390752) and drugs with similar mechanisms are currently under
investigation for combination therapy with other treatment modalities (See Table 1).

A similar approach to the use of CSF1R inhibitors is the depletion and prevention of
MDSCs from migrating to and accumulating in tumors. Capecitabine is a thymidylate
synthase inhibitor which is theorized to preferentially target the replication of MDSCs (58).
The drug is currently under evaluation in combination with bevacizumab for GBM
(NCT02669173).

Some investigators have approached the therapeutic potential of manipulating GAMs
towards acquiring an anti-tumorigenic phenotype and promoting an adaptive immune
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response. It was demonstrated that another CSF1R inhibitor, BLZ945, slowed GBM
progression in a proneural inducible GBM mouse model and in a xenograft mouse model.
Interestingly, this drug’s efficacy was attributed to causing an anti-tumorigenic shift in the
GAMs populating tumors, primarily by selectively eliminating microglia while blocking
pro-tumorigenic polarization of infiltrating macrophages. Gene signatures of macrophages in
treated animals were found to parallel gene signatures from TCGA data from patients with
pro-neural GBMs who had better survival outcomes. The authors concluded that the
predominant phenotype of GAMSs within tumors may be a better predictor of patient
outcome rather than total GAM density (59). In a similar fashion, Kloepper et al. showed
that the administration of a bispecific antibody against Ang-2 and VEGF was able to
promote an anti-tumorigenic polarization of GAMs in both a syngeneic orthotopic and a
xenograft murine glioma model (60). Another group showed that non-toxic doses of
Amphotericin B had the potential to drive the anti-tumorigenic polarization of microglia and
macrophages and that its administration to glioma-bearing mice greatly extended their
survival (61). Another example, although hard to scale to human patients, was the use of a
microRNA, miR-142-3p, in mice, which selectively caused the death of immunosuppressive,
TGFBRI expressing GAMs while leaving other GAM populations untouched. These mice
exhibited significant reductions in tumor burden (62).

TGFpI and Il overexpression, especially that of isoform 11, has been correlated with poorer
clinical outcomes in subsets of glioma (63; 64). Autocrine signaling within cancer cells
serves to enhance epithelial to mesenchymal transition (EMT) and increases the invasive
phenotype of tumor cells. TGFP potentiates angiogenesis and is an immunosuppressive
cytokine, which polarizes Tyegs and attracts and polarizes immunosuppressive GAMs (65;
66). It can downregulate perforin, granzyme A/B, IFNy, and FasL expression by CTLs,
which are all mediators of CTL-mediated cytotoxicity (67). Downregulation of the
expression of TGFBRII in human xenograft-derived gliomas has been shown to reduce their
tumorigenicity (68). Inhibition of TGFB-dependent pathways using TGFBRII inhibitors in
GAMs has been shown to prevent their immunosuppressive polarization (69). Blocking
TGFp-mediated signaling using systemically administered neutralizing antibodies was
efficacious in slowing glioma progression in immunocompetent mice, partially by
preventing the immunosuppressive polarization of GAMs (70). For the treatment of glioma,
clinical trials are ongoing, evaluating the TGFBRI small molecule inhibitor, LY2157299, for
efficacy in combination with the standard of care. The drug is generally well tolerated and
has shown efficacy in about 20% of patients (71).

In all these cases, efficacy was partially attributed to subversion of the communication
between glioma cells and GAMs. While many of these approaches have shown some
preclinical efficacy, most attention is given to T-cell targeted therapies. It may be reasonable
to approach some of these GAM-targeting drugs as adjuvant therapies to synergize with the
more popular immunotherapeutics.

Finally, pleitrophic pathway modifiers (PPMs) are another class of drugs, which serve to
inhibit the function of immunosuppressive pathways in certain cells, thus shifting
polarization of these cells to more anti-tumorigenic extremes. CC122, for example works by
causing the degradation of Ikaros and Aiolos in cells leading to enhancement in the
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transcription of IFN response elements which all serve to boost anti-tumoral immunity (72).
CC122 is currently being evaluated in the treatment for certain advanced solid cancers,
including refractory GBM (NCT01421524). PPMs could synergize well with other
immunotherapeutics such as checkpoint blockade inhibitors in future trials.

Conclusions

While therapeutic interventions for HGG have remained at an impasse for the past decade,
the advent of immunotherapeutics holds great promise for the future. Judicious use of the
appropriate therapies and combinatorial approaches to capitalize upon multiple, exploitable
weaknesses in tumors will require significant amounts of clinical research going forward.
The permutations of all the possible combinatorial treatments, and the identification of
patient-specific neo-antigens make for a substantial level of research effort in such a short
time frame. Tumor and immune-profiling of patients on an individual basis should be critical
factors in devising the treatment plans these people are assigned to. Finally, cost, while not
discussed here, would be an important consideration in streamlining these therapies for
greater access to the people that need them most. Therapy may improve but at a steep price
that far exceeds the research and development costs that went into the less personalized
chemotherapeutics of the past.
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Figure 1. Immunosuppression within the tumor microenvironment
GBM cells express various autocrine growth factors which increase their own proliferation.

Additionally, GBM cells produce immunosuppressive cytokines which polarize T cells,
MDSCs, microglia, and DCs to more pro-tumorigenic phenotypes which also produce
immunosuppressive cytokines. Cytotoxic T cells (CTLs) receive inhibitory signals via
checkpoint blockade receptors expressed by other cells in the glioma microenvironment and
become anergic. DCs have a poorer capacity to elicit an immune response due to their pro-
tumorigenic polarization. Growth factors released by immune cells and GBM cells enhance
neovascularization of the tumor and increase blood vessel permeability allowing for
infiltration of the tumor by blood-derived monocytes which are attracted to the tumor by
various chemotactic factors released by GBM cells. Proteases released by the various
immune cells serve to remodel the stroma, leading to glioma’s invasion into the surrounding,
healthy CNS.
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Figure 2. Treatment M odalities for | mmunotherapy
Immunotherapeutics are designed to exert their effects on various cell types within the

glioma microenvironment. Anti-angiogenics block neovascularization of gliomas. Radiation
and cytotoxic chemotherapeutics exert their effects on rapidly dividing glioblastoma (GBM)
cells by causing irreparable DNA damage and/or inhibiting vital cellular processes.
Antibody drug conjugates deliver cytotoxic chemotherapeutics to cells with higher
specificity by targeting tumor associated antigens (TAAS). Oncolytic viruses and viruses
carrying suicide genes are targeted to GBM cells overexpressing particular receptors and
cause immunogenic cell death. Chimeric antigen receptor (CAR) T cells are engineered to
elicit efficient killing against cells expressing specific TAAs. Checkpoint blockade inhibitors
prevent T cell anergy by blocking inhibitory interactions between T cells and target cells.
CXCR4 and Csf1R inhibitors block bone marrow derived macrophages (BMDMs) and
microglia from migrating to tumors. Capecitibine depletes immunosuppressive MDSCs
(myeloid derived suppressor cells). Immunomodulatory agents and immunostimulatory
viruses enhance anti-tumorigenic polarization of various immune cells within the glioma
microenvironment. Vaccines and dendritic cell (DC) vaccines serve to elicit potent anti-
tumor effects by education and stimulation of anti-TAA cytotoxic T cells. GAM = glioma
associated microglia/macrophage.
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