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Replication checkpoint-mediated symmetric DNA synthesis: beginning to understand
mechanism
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Beginning in the 1950’s, Arthur Kornberg’s research on DNA
polymerases, followed by the efforts of many others, provided a
seminal understanding of catalytic DNA synthesis [1], a funda-
mental process enabling the anti-parallel strands of the DNA
double helix to be copied by DNA polymerases with a single
polarity. A leading strand, copied in a relatively continuous
manner, and a lagging strand, copied in a discontinuous manner
as a series of Okazaki fragments, resolved the issue. Building
upon this work, Bruce Alberts proposed the “trombone model”
over 35 years ago to visualize the apparent coordination between
leading- and lagging-strand synthesis at the replication fork [2].

Although the emerging story of coordinated semi-conserva-
tive DNA replication is satisfying, it is now evident that during
conditions of replication stress (invoked by nucleotide deple-
tion, DNA damage, secondary DNA structure, oncogene acti-
vation, etc.), the scenario is more complex than previously
thought. Fork dynamics and the cellular response dictate
sophisticated mechanisms to ensure fork integrity, resumption
of DNA synthesis, and ultimately genomic stability. During
replication stress, the DNA replication checkpoint response
mediated by apical kinases (S. cerevisiae Mec1, human ATR)
and effector kinases (S. cerevisiae Rad53, human CHK1) adjusts
cell cycle transitions (including entry into mitosis), suppresses
firing of new replication origins, elevates the deoxynucleotide
(dNTP) pool, and modulates gene gating proposed to relieve
topological stress [3]. In addition, replication stress may
directly affect replication fork DNA architecture through
remodeling events and by altering interactions of proteins that
stably or transiently associate with the replisome [3]. These
aspects of fork dynamics are still not well understood.

A very recent study by Zhiguo Zhang of Columbia University
and colleagues, appearing in the October 19, 2017 issue of
Molecular Cell, has provided a fresh perspective on how the
DNA replication checkpoint pathway plays a role in the coordi-
nation of leading- and lagging-strand synthesis during hydroxy-
urea (HU)-induced replication stress which depletes the dNTP
pool [4]. Using a clever experimental strategy to measure
nascent leading and lagging strands in wild-type and rad53-1

mutant checkpoint defective yeast cells, the authors convincingly
show that a deficiency in the replication checkpoint results in
asymmetric DNA synthesis with extended DNA synthesis com-
plementary to the lagging-strand template, but not the leading-
strand template. Concurrently, the exposed single-stranded
DNA present in the leading-strand template is coated by Repli-
cation Protein A (RPA), which normally provides an early signal
for the replication checkpoint. In rad53-1 checkpoint defective
cells, the replication fork helicase known as minichromosome
maintenance protein complex (MCM) and associated DNA
polymerase epsilon (e) move ahead of the newly synthesized
DNA (without continuing to catalyze polynucleotide synthesis),
which is likely to further contribute to fork asymmetry under
the condition of HU-induced replication stress. Finally, the
authors provide evidence that increasing the dNTP level in the
HU-treated rad53-1 mutant cells effectively suppressed the unco-
ordinated leading- and lagging-strand synthesis.

The significance of this work lies in the demonstration that
eukaryotic cells rely on a checkpoint mechanism to prevent
uncontrolled asymmetric DNA synthesis at the fork, presum-
ably by inhibiting MCM-catalyzed unwinding of the parental
duplex. However, the suppressive effect of activated Rad53 on
MCM helicase activity was not formally shown in the study.
Nonetheless, this work provides new insight to a cellular path-
way whereby replication fork catastrophe is avoided and geno-
mic integrity is maintained, even under adverse conditions of
compromised DNA synthesis. However, like many innovations,
this study raises some important unanswered questions per-
taining to the mechanism whereby eukaryotic cells ensure coor-
dinated leading- and lagging-strand synthesis during
replication stress (Figure 1).

Although there has been a plethora of studies on the S-phase
checkpoint and pathways to maintain the replication fork and
ensure chromosomal stability, truly mechanistic insights have
been lagging (so to speak) in the field. This latest advance by Gan
et al. [4] should inspire new efforts and innovative experimental
strategies to characterize the precise molecular pathways responsi-
ble for promoting coordinated DNA synthesis of the leading- and
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lagging-strands during replication in vivo, a process so fundamen-
tal to DNA biology but still difficult to fully comprehend.
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Figure. 1. A recent advance by Gan et al. [4] on the role of the replication check-
point in coordinating leading- and lagging-strand synthesis during replication
stress raises new and provocative questions in the field.
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