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Hypothalamic GRP78, a new target against obesity?
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ABSTRACT
The chaperone GRP78 (glucose related protein 78), also called BiP (binding immunoglobulin protein)
is a key regulator of endoplasmic reticulum (ER) stress. We recently described that over-expression
of GRP78 specifically in the ventromedial nucleus of the hypothalamus (VMH) releases
hypothalamic ER stress in rodent obese models leading to weight loss, reduced hepatic steatosis
and improved insulin and leptin sensitivity. The action of GRP78 is mediated by a feeding-
independent mechanism involving increased sympathetic tone, augmented brown adipose tissue
(BAT) thermogenesis and induction browning of white adipose tissue (WAT).
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Obesity is the consequence of elevated energy intake
relative to energy expenditure. In the developed world,
the prevalence of obesity and its related pathologies has
increased over the last 30 years and has now reached
pandemic proportions [1,2]. Thus, improving our under-
standing of the physiological mechanisms that regulate
body weight and energy balance has become a great
challenge for the scientific community.

Over last years, accumulating evidence has demon-
strated that energy balance can be regulated by periph-
eral signals acting on the central nervous system (CNS),
including the hypothalamus [3-5]. The number of stud-
ies on this topic is continuously increasing to identify
new therapeutic approaches against obesity, but the pre-
cise molecular mechanisms involved remain still uncer-
tain. Increased energy expenditure could be a target to
reduce body weight [6,7], and in recent years there has
been an increasing interest in the activation of the ther-
mogenic process, especially the central control of brown
adipose tissue (BAT) activity [8,9], but also in the activa-
tion of beige/brite adipocytes in the white adipose tissue
(WAT), a process known as browning [7,10-12]. Theo-
retically, activation BAT and/or browning may represent
a therapeutic strategy to combat obesity, therefore both
tissues have been widely studied as promising targets
against obesity and related disorders.

The hypothalamus in one of the main regulators of
BAT and browning. Particularly, the ventromedial
nucleus of the hypothalamus (VMH) has been shown to

be widely involved in the regulation of both processes in
response several peripheral signals [12-21]. Although
recent data have demonstrated that AMP-activated pro-
tein kinase (AMPK) is a key regulator of thermogenesis
in the VMH [5,22], there is still a black hole in the
understanding of the molecular mechanism operating in
this nucleus.

The endoplasmic reticulum (ER) is a cellular place
where proteins are matured, assembled and folded, and
any alteration in ER homeostasis disturbs this protein
processing, leading to accumulation of unfolded pro-
teins, which triggers the unfolding protein response
(UPR) [23-26]. Increasing evidence has shown a strong
interaction between ER stress and the pathology of obe-
sity. ER stress is closely related with obesity-associated
insulin resistance in peripheral tissues, such as pancreas
and liver [27-33]. Current evidence also indicates that
obesity and overnutrition-induced inflammation causes
ER stress in the hypothalamus, inducing insulin and lep-
tin resistance and, ultimately, weight gain [18,21,34-39].
Of note, improving protein folding (i.e. chemical chaper-
ones) recovers leptin and insulin signaling, normalizing
body weight [34-37,39]. Current evidence has also shown
that central ceramide-induced lipotoxicity induces ER
stress leading to weight gain, glucose intolerance and
decreased sympathetic tone and BAT thermogenesis
[18,40]. Of note the central action of ceramides can be
reversed by decreasing ER stress, specifically into the
VMH [18].
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Despite the evidence linking hypothalamic ER stress
to several metabolic actions, its potential role in the con-
trol of white fat browning and its physiological relevance
remains unknown. Recent data from our group have
helped to better understand the link between hypotha-
lamic ER stress, BAT thermogenesis and WAT browning
[21]. Specifically, we show that the chaperone GRP78
(glucose related protein 78), also called BiP (binding
immunoglobulin protein), which is located upstream of
the UPR pathway [23,25,26], acts within the VMH to
exert a beneficial effect on obesity. Notably, this fact was
confirmed in several types of models, such as short-term
(2 months) and long-term (6 months) high fat diet
(HFD)-induced obese rats, as well as in a genetic model,
namely obese Zucker rats (OZR) [21]. In all these
paradigms, the mechanism was common, showing
feeding-independency and sympathetic control.
Moreover, the fact that it also operates in OZR suggest
independency of leptin signaling [21]. These results
reveal that, like BAT activation, white fat browning is
regulated by ER stress within the VMH and fit with the
idea that stimulation of this process protects from diet
induced obesity [21]. The relevance of this result is inter-
esting because, besides decreased body weight, targeting
of GRP78 elicited a marked overall improvement of the
metabolic phenotype of HFD obese rats, as demonstrated
by decreased adiposity, improved leptin signaling and
increased insulin sensitivity (Figure 1) [21].

Despite the initial enthusiasm following the identifica-
tion of BAT in adult humans [41-45], further data demon-
strated that human BAT is mainly composed by beige/brite
adipocytes cells rather than brown cells [46,47]. Browning
of white fat has therapeutic potential to promote body fat
reduction. Although several mechanisms have been

proposed [12,48,49], the neuronal pathways within the
CNS controlling WAT browning have remained largely
unknown. Our study provides novel evidence that amelio-
ration of ER stress in the VMH by GRP78 is a central
mechanism regulating WAT browning. Overall, these data
suggest that targeting the hypothalamic control of WAT
browning may be a potential strategy against obesity and
associated comorbidities. In this sense, chemical chaper-
ones, which are a common agent for mitigating ER stress
[21], have the potential to improve leptin resistance in over-
nutrition and overweight. For example, tauroursodeoxy-
cholic acid (TUDCA) or 4-phenyl butyric acid (4-PBA),
which ameliorate ER stress and enhances leptin sensitivity
in vitro and in vivo [21,35,36], can strengthen weight loss
and anorectic effects when co-administered with exogenous
leptin [36]. Furthermore, 4-PBA and TUDCA have been
approved by the U.S. Food and Drug Administration
(FDA) and have high safety profiles in humans [50,51],
thus providing an emerging therapeutic approach for meta-
bolic diseases. Considering that our data also demonstrate
that TUDCA induces BAT and browning in our HFD
obese rats [21], therefore it is tempting to speculate that
similar effects could be found in humans, a hypothesis that
deserves further investigation.
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Figure 1. GRP78 in the VMH modulates BAT and WAT. Over-expression of GRP78 specifically in the VMH ameliorates hypothalamic ER
stress in rodent obese models leading to weight loss, reduced hepatic steatosis and improved insulin and leptin sensitivity. The action
of GRP78 in the VMH is mediated by a feeding-independent mechanism involving increased tone of the sympathetic nervous system
(SNS), increased BAT thermogenesis and stimulation browning of WAT.
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