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MTOR signaling is essential for the development of thymic epithelial cells
and the induction of central immune tolerance
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ABSTRACT
Thymic epithelial cells (TECs) are critical for the establishment and maintenance of appropriate
microenvironment for the positive and negative selection of thymocytes and the induction of central
immune tolerance. Yet, little about the molecular regulatory network on TEC development and function is
understood. Here, we demonstrate that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) is
essential for proper development and functional maturation of TECs. Pharmacological inhibition of MTOR
activity by rapamycin (RPM) causes severe thymic atrophy and reduction of TECs. TEC-specific deletion of
Mtor causes the severe reduction of mTECs, the blockage of thymocyte differentiation and output, the
reduced generation of thymic regulatory T (Treg) cells and the impaired expression of tissue-restricted
antigens (TRAs) including Fabp2, Ins1, Tff3 and Chrna1 molecules. Importantly, specific deletion of Mtor in
TECs causes autoimmune diseases characterized by enhanced tissue immune cell infiltration and the
presence of autoreactive antibodies. Mechanistically, Mtor deletion causes overdegradation of CTNNB1/
Beta-Catenin due to excessive autophagy and the attenuation of WNT (wingless-type MMTV integration
site family) signaling in TECs. Selective inhibition of autophagy significantly rescued the poor mTEC
development caused by Mtor deficiency. Altogether, MTOR is essential for TEC development and maturation
by regulating proliferation and WNT signaling activity through autophagy. The present study also implies
that long-term usage of RPM might increase the risk of autoimmunity by impairing TEC maturation and
function.

Abbreviations: 3-MA: 3-methyladenine; AIRE: autoimmune regulator (autoimmune polyendocrinopathy
candidiasis ectodermal dystrophy); BCA: bicinchoninic acid; BrdU: 5-bromo-2'-deoxyuridine; BSA: bovine
serum albumin; cTECs: cortical thymic epithelial cells; CMC: carboxymethyl cellulose sodium; DAPI: 4’6-
diamidino-2-phenylindole; DC: dendritic cell; DN: double negative; DP: double positive; DVL2: dishevelled
segment polarity protein 2; EDTA: ethylenediamine tetraacetic acid; FBS: fetal bovine serum;
FOXP3: forkhead box P3; FTOC: fetal thymus organ culture; KRT: keratin; IgG: immunoglobulin G; IL2RA/
CD25: interleukin 2 receptor, alpha chain; LTBR: lymphotoxin B receptor; LY75/CD205: lymphocyte antigen
75; mAbs: mouse antibodies; MHC II: major histocompatibility complex class II; mTECs: medullary thymic
epithelial cells; MTOR: mechanistic target of rapamycin (serine/threonine kinase); MTS24: mouse thymic
stroma 24 (mAb against PLET1); OCT: optimum cutting temperature; QA2/QA-2: Qa lymphocyte antigen 2
region; RIPA: radioimmunoprecipitation assay; RPM: rapamycin; RTEs: recent thymic emigrants; SD-
PAGE: SD-polyacrylamide gel electrophoresis; SELL/CD62L: selectin, lymphocyte; SP: single positive;
TCRB: T cell receptor beta chain; TECs: thymic epithelial cells; TEPCs: thymic epithelial progenitor cells;
TNFRSF11A/RANK: tumor necrosis factor receptor superfamily, member 11a, NFKB activator;
Treg: regulatory T cell; TRAs: tissue restricted antigens; UEA-1: Ulex Europaeus Lectin 1; WNT: wingless-type
MMTV integration site family
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Introduction

As a primary lymphoid organ, the thymus provides a unique
microenvironment for the development and maturation of na€ıve

T cells [1]. Thymic epithelial cells (TECs) are essential for the
attraction of lymphoid precursors into the thymus and their sub-
sequent differentiation, proliferation and selection [1]. Based on
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their phenotypes and localization, TECs can be divided into cor-
tical TECs (cTECs) and medullary TECs (mTECs), which medi-
ate the positive and negative selection, respectively [2–4]. The
mTECs play a critical role for the induction of central immune
tolerance. By expressing the tissue-restricted antigens (TRAs) in
mTECs or dendritic cells (DCs), T cells that potentially recognize
these TRAs are eliminated whereas the T cells that do not have
high reactivity to these TRAs can survive and undergo further
maturation. Besides its role in eliminating autoreactive T cells,
mTECs are essential for the maturation of immunocompetent T
cells and the generation of thymic regulatory CD4+ IL2RA+/
CD25+ (interleukin 2 receptor, alpha chain) T (Treg) cells [5,6].

Multiple signaling pathways regulate the initiation and dif-
ferentiation of TECs. The forkhead family member transcrip-
tion regulator Foxn1 plays a crucial role in the differentiation
of mTECs and cTECs from thymic epithelial progenitor cells
(TEPCs) and in the maintenance of TECs [7]. The
TNFRSF11A/RANK (tumor necrosis factor receptor superfam-
ily, member 11a, NFKB activator), CD40 and LTBR (lympho-
toxin B receptor), which can activate the nonclassical and
classical NFKB pathway, are essential for the development and
maturation of mTECs and the expression of AIRE (autoim-
mune regulator [autoimmune polyendocrinopathy candidiasis
ectodermal dystrophy]) that induces the expression of a broad
range of TRAs [8–10]. The WNT signaling is also indispensable
for the development and maintenance of thymus homeostasis.
Absence of TEC-provided WNT ligand leads to thymus atro-
phy [11] and WNT4 could increase thymic cellularity through
the expansion of TECs and early thymic progenitors [12].
However, the mechanisms underlying the development and
maintenance of mTECs and cTECs are poorly understood.

The MTOR (mechanistic target of rapamycin [serine/threo-
nine kinase]) signaling pathway plays key regulatory roles in
cell growth, metabolism, autophagy and energy homeostasis
[13]. The significance of MTOR signaling in immune system
has been recently studied. For instance, MTOR signaling regu-
lates the effector/Treg cell lineage commitment and iNKT cell
development [14–16], the differentiation of memory CD8+ T
cells [17–19] and na€ıve T cell survival in the periphery [20,21].
In addition to its role in T cells, MTOR is essential for the
development of the large pre-B cells to small pre-B cells [22]
and promotes the generation of conventional dendritic cell
(DC) and plasmacytoid DC [23,24]. We have previously shown
that the TSC1-MTOR signaling axis controls macrophage
polarization [25]. Very recently, by deletion of either Rptor or
Rictor in TECs, it has been shown that either of MTORC1 or
MTORC2 signaling is important for thymopoiesis and proper
generation of multiple T cell lineages [26,27]. However, how
MTORC1 and MTORC2 together affect TEC differentiation
and the underlying molecular mechanisms are unknown. In
the present study, by using TEC-specific Mtor knockout mice
(Foxn1-Cre; Mtorflox/flox) which will affect both MTORC1 and
MTORC2 simultaneously, we found that MTOR signaling is
critically required for TECs, in particular mTECs, development
and maintenance. Very importantly, mice with TEC-specific
deletion of Mtor spontaneously develop severe systemic auto-
immune diseases, indicating that targeted inactivation of both
branches of MTOR signaling in TECs results in severely
impaired central tolerance induction. Collectively, we present

convincing evidence that MTOR is essential for mTEC devel-
opment, central immune tolerance induction via modulating
cell proliferation and autophagy.

Results

RPM treatment caused thymus atrophy

As an immunosuppressive drug, rapamycin (RPM) selectively
inhibits the activity of MTOR and is widely used after trans-
plantation to prevent organ rejection [28]. To assess the influ-
ences of RPM on the development of TECs, we treated C57BL/
6 mice with RPM for 7 d. We found that mice exhibited a
severe thymic atrophy (Figure 1A) and the thymus weight and
thymocyte number decreased significantly (P<0.001,
Figure 1B, C) after RPM treatment. Moreover, we found that
the absolute cell number of TECs decreased significantly after
RPM treatment, though the frequency of TECs tended to
decrease but did not reach statistical significance (Figure 1D, E,
and Figure S1A). The TECs are composed of mTECs and
cTECs. Our results showed that RPM treatment reduced the
percentage of mTECs and increased the percentage of cTECs
(P<0.01, Figure 1F, G). However, the cell number of mTECs
decreased significantly whereas the cell number of cTECs had
no change after RPM treatment (P<0.001, Figure 1H), indicat-
ing that RPM treatment selectively impacts mTECs in mice.

The functional mature mTECs show high level expression of
major histocompatibility complex class II (MHC II), CD40,
CD80 and express the transcriptional regulator AIRE [10].
After RPM treatment, the percentage and cell number of MHC
IIhigh, CD40+, CD80+ and AIRE+ mTECs decreased signifi-
cantly (P<0.01, Figure 1I to K, and Figure S1A, B). The CD80+

AIRE+ mTECs are crucial for inducing immunological toler-
ance [29]. RPM treatment dramatically reduced the percentage
and cell number of CD80+ AIRE+ mTECs (P<0.001, Figure 1L
to N), implying the increased risk of suffering from autoimmu-
nity with long-term RPM treatment. Meanwhile, the percentage
and absolute cell number of CD80+ MHC IIhigh mTECs also
significantly decreased after RPM treatment (P<0.001,
Figure S2A, B). As a result, the frequencies of double-negative
(DN), double-positive (DP), CD4+ single-positive (SP) and
CD8+ SP thymocytes remained unchanged but the absolute
numbers of DN, DP, CD4+ SP and CD8+ SP thymocytes
reduced markedly upon RPM treatment (P<0.05, Figure S2C,
D). Altogether, these observations suggest that a short-term
inhibition of MTOR activity blocked the development of
mTECs and caused thymic atrophy.

Mtor in TECs is essential in embryonic thymic development

The thymic atrophy caused by RPM treatment may be due to
the effects of RPM on TECs and/or thymocytes. To study the
intrinsic role of Mtor on TEC growth, development and func-
tion and based on the findings that RPM might inhibit both
MTORC1 and MTORC2 signaling branches, we investigated
mice with a targeted inactivation of MTOR activity specifically
in TECs, in which both MTORC1 and MTORC2 activity will
be blocked simultaneously in TECs. For this purpose, we
crossed mice with loxp-flanked Mtor alleles (Mtorflox/flox) to
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mice expressing the Cre recombinase under the Foxn1 pro-
moter (Foxn1-Cre) to obtain the Foxn1-Cre; Mtorflox/flox condi-
tional knockout mice (designated as Mtor cKO mice
henceforth).

First, we assessed the effects of Mtor inactivation on TEC
development at embryonic stage. At embryonic d 16.5 (E16.5),
the size of Mtor cKO thymi was reduced as compared to their
littermate controls (Figure 2A), and consistently the absolute
numbers of total thymocytes decreased significantly (P<0.01,
Figure 2B). The total number of TECs was also significantly
decreased after TEC-specific deletion of Mtor, although the fre-
quency of TECs decreased slightly (P<0.05, Figure 2C, D and
Figure S3). Given the facts that the differentiation of cTECs
and mTECs had initiated at E16.5 [30], we found that both the
percentages and absolute numbers of mTECs were reduced
dramatically in Mtor cKO mice (P<0.01, Figure 2E, F).
Although the absolute number of cTECs decreased significantly
(P<0.01, Figure F), the percentage of cTECs had a slight reduc-
tion without statistical significance (Figure 2E). Interestingly,
the reduction of mTECs was more severe in comparison to
cTECs. TECs expressing a high level of MHC II are more
mature than those with low expression of MHC II [30], we

found that the frequency and cell number of MHC IIhigh TECs
in fetal Mtor cKO mice decreased significantly in comparison
to littermate controls (P<0.001, Figure 2G, H, and Figure S3).
Altogether, these results suggested that the development and
differentiation of TECs, especially the mTECs, were largely
impacted in the absence of MTOR signaling. LY75/CD205+

(lymphocyte antigen 75) TECs represent the TEC progenitors
that could differentiate into cTECs and mTECs in vivo [31],
TEC-specific deletion ofMtor also reduced the LY75+ TEC pro-
genitors (P<0.01, Figure 2I, J, and Figure S3), indicating that
Mtor is essential for the development and maintenance of
TECs including their progenitors.

TEC-specific deletion of Mtor caused severe thymic atrophy

Next, we examined the effects ofMtor deficiency on TEC devel-
opment and differentiation after birth. At 2 wk of age, the
thymi of Mtor cKO mice were much smaller as compared to
control thymi (Figure 3A), the ratio of thymus weight to body
weight and the absolute thymocyte numbers decreased dramat-
ically in Mtor cKO mice (P<0.001, Figure 3B). Anatomically,
the thymus can be divided into KRT5 (keratin 5)-expressing

Figure 1. Inhibition of MTOR activity caused thymus atrophy. (A) Representative picture of thymi from mice treated with rapamycin (RPM) or carboxymethyl cellulose
sodium (CMC) for 7 d. Scale bar: 5 mm. The ratio of thymus weight to body weight (B) and thymocyte number (C) of control (n = 4) and RPM-treated mice (n = 5). (D) Rep-
resentative flow cytometry data and frequency of TECs in control mice (n = 4) and RPM-treated mice (n = 5). TECs were defined as PTPRC¡ EPCAM+ cells. (E) Cell numbers
of TECs in control mice (n = 4) and RPM-treated mice (n = 5). Representative FACS plots (F) and frequency (G) of mTECs and cTECs in control mice (n = 4) and RPM-treated
mice (n = 5). mTECs were defined as PTPRC¡ EPCAM+ UEA-1+ ENPEP¡ cells and cTECs as PTPRC¡ EPCAM+ UEA-1¡ ENPEP+ cells. (H) Absolute cell numbers of mTECs and
cTECs in control mice (n = 4) and RPM-treated mice (n = 5). Representative FACS plots (I) and quantification (J) of mTECs from control mice (n = 4) and RPM-treated mice
(n = 5) for the staining of MHC II, CD40, CD80 and AIRE. (K) Absolute cell numbers of MHC IIhigh, CD40+, CD80+ and AIRE+ mTECs isolated from control mice (n = 4) and
RPM-treated mice (n = 5). FACS plots (L) and frequency (M) of mTECs with the phenotype of CD80+ AIRE+ from control mice (n = 4) and RPM-treated mice (n = 5). (N)
Absolute cell numbers of CD80+ AIRE+ mTECs from control mice (n = 4) and RPM-treated mice (n = 4). ��P<0.01 and ���P<0.001 compared with the control group.
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medulla and KRT8-expressing cortex. We observed a more
severe reduction of the medulla compartment in Mtor cKO
mice, as shown by staining with H&E or with antibodies against
KRT5 and KRT8 (Figure 3C, D).

We found that the absolute number of TECs in Mtor cKO
mice decreased significantly while the percentage of TECs
showed only a slight but significant decrease in Mtor cKO mice
as compared to wild-type littermates (P<0.05, Figure 3E, F,
and Figure S4A). Furthermore, the cell size of Mtor cKO TECs
also decreased as shown by the forward scatter (P<0.001,
Figure S5A, B), supporting that MTOR is important for cell
size control. We further demonstrated that the percentage of
mTECs decreased dramatically in Mtor cKO mice whereas the
relative percentage of cTECs increased (P<0.001, Figure 3G,
and Figure S4A), which might be due to the reduction of
mTECs in all TEC compartments. Indeed, the absolute cell
number of mTECs decreased significantly but the number of
cTECs had no obvious change in Mtor cKO mice (Figure 3H).
As mentioned previously, mTECs represent a heterogeneous
stromal population, which has different expression levels of
MHC II, CD40, CD80 and AIRE. The frequencies of MHC
IIhigh, CD40+, CD80+ and AIRE+ mTECs are comparable
between WT and Mtor cKO mice (Figure 3I, J, and Figure S4),

but the cell number of these mature mTECs was reduced signif-
icantly (P<0.01, Figure 3K). Collectively, these results showed
that TEC-specific deletion of Mtor caused significant reduction
of mature mTECs, which are critical for the induction of central
immune tolerance.

The decreased TEPCs and the poor proliferative ability of
mTECs in Mtor cKO mice

MTOR signaling is critical for the maintenance of progenitor
and stem cells in various tissues. MTOR is involved in the
maintenance of neural stem and progenitor cells [32] and con-
trols the survival of retinal progenitor cells under hypoxic and
superoxide stress [33]. In addition, MTOR regulates the prolif-
eration of megakaryocyte progenitors and their differentiation
at its late stages [34]. It has been shown that the monoclonal
antibody MTS24 (mouse thymic stroma 24) marks TEPCs that
could differentiate into both mTECs and cTECs [35,36]. We
found that both the frequency and cell number of MTS24+

TECs decreased significantly after TEC-specific deletion of
Mtor (P<0.01, Figure 4A, B, and Figure S6A), which is consis-
tent with the reduction of LY75+ progenitor cells at the embry-
onic stage. Furthermore, in the in vitro TEC culture system, the

Figure 2. The development of embryonic thymi was blocked with TEC-specific deletion of Mtor. (A) Representative picture of embryonic thymi from WT and Mtor cKO
mice embryos. Scale bar: 1 mm. (B) Absolute cell numbers of embryonic thymi from WT (n = 4) and Mtor cKO embryos (n = 4). (C) Representative flow cytometry plots
and frequency of TECs in control (n = 4) and Mtor cKO embryo (n = 4) thymi. (D) Absolute cell numbers of TECs in control (n = 4) and Mtor cKO embryo (n = 4) thymi. (E)
Representative flow cytometry data and frequency of mTECs and cTECs from thymi of WT (n = 4) and Mtor cKO embryos (n = 4). (F) Absolute cell numbers of mTECs and
cTECs from control (n = 4) and Mtor cKO embryo (n = 4) thymi. (G) FACS plots and quantification of MHC IIhigh TECs from the thymi of control (n = 4) and Mtor cKO
embryos (n = 4). (H) Absolute cell numbers of MHC IIhigh TECs from the thymi of control (n = 4) and Mtor cKO embryos (n = 4). (I) FACS plots and quantification of LY75+

cells within TECs from control (n = 4) and Mtor cKO embryo (n = 4) thymi. (J) Absolute cell numbers of LY75+ TECs from control (n = 4) and Mtor cKO embryo (n = 4)
thymi. �P<0.05, ��P<0.01 and ���P<0.001 compared with control group.
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clone-forming ability of Mtor cKO TECs was severely impaired
as shown by the reduced colony sizes compared with control
TECs (Figure 4E). Thus, MTOR is required for the mainte-
nance and self-renewal or proliferation of TEPCs.

Given that MTOR regulates cell proliferation and growth
[37], we thus assessed the proliferation of TECs in Mtor cKO
mice using the 5-bromo-2'-deoxyuridine (BrdU) incorporation
assay. Indeed, the proliferation of mTECs decreased dramati-
cally while the proliferation of cTECs decreased to a slight
degree in Mtor cKO mice as compared to wild-type mice
(P<0.001, Figure 4C, D, and Figure S6B). We also used an
MKI67/KI-67 staining assay to examine the proliferation of
mTECs and cTECs after inhibition of MTOR activity with
RPM and similar results were obtained (P<0.001, Figure S7A,
B). Therefore, Mtor deficiency caused the poor proliferative
ability of TECs, especially the mTECs.

Mtor regulates the expression of CTNNB1/Beta-Catenin
through autophagy

The differentiation of mTECs depends on TNFRSF11A and
LTBR [8]. We found even higher percentages of Mtor cKO
mTECs expressing TNFRSF11A and LTBR than controls
(P<0.05, Figure S8A, B), suggesting that the defect of mTECs

in Mtor cKO mice may be unlikely caused by impaired
TNFRSF11A and LTBR expression.

It is well known that MTOR inhibits autophagy induction
[38]. Gao et al report that autophagy can negatively regulate
WNT signaling [39], in the report, they demonstrate that the
enhanced autophagy promotes the degradation of DVL2
(dishevelled segment polarity protein 2) and results in the
attenuation of WNT signaling [39]. Based on these findings, we
hypothesize that Mtor deficient TECs might display high con-
stitutive level of autophagy. We thus measured the autophagy
of TECs with specific deletion of Mtor by using a CYTO-ID
autophagy detection kit [40,41] Indeed, we observed an
increased CYTO-ID staining pattern in TECs with Mtor defi-
ciency, indicating that the autophagy of TECs in Mtor cKO
mice was increased as compared to wild-type TECs (P<0.001,
Figure 4F). Similar results were obtained by detecting a higher
level of autophagy of the in vitro cultured mTEC cell line 1C6
cells after inhibition of MTOR activity by RPM (P<0.001,
Figure S8C).

The WNT signaling pathway plays important roles in regu-
lating the expansion and differentiation of TECs. In the absence
of WNT ligand, CTNNB1 is associated with a cytoplasmic
complex containing CSNK1A1, GSK3B, AXIN1 and APC,
which promotes phosphorylation of CTNNB1 leading to its

Figure 3. TEC-specific deletion of Mtor caused severe thymic atrophy. (A) Representative thymus pictures of 2-wk-old Mtor cKO and wild-type littermate control mice.
Scale bar: 5 mm. (B) The ratio of thymus weight to body weight and total thymocyte numbers in 2-wk-old WT (n = 7) and Mtor cKO mice (n = 8). (C) H&E staining of the
thymi from 2-wk-old WT and Mtor cKO mice is shown. Scale bars: 1000 mm. (D) Frozen thymic sections derived from 2-wk-old Mtor cKO mice and littermates for the
expression of KRT5 (red) and KRT8 (green). Scale bars: 300 mm. (E) Flow cytometric profiles and frequency of TECs (PTPRC¡ EPCAM+) isolated from 2-wk-old Mtor cKO
mice (n = 5) and WT littermates (n = 7). (F) Absolute cell numbers of TECs isolated from 2-wk-old Mtor cKO mice (n = 5) and littermates (n = 7). (G) Representative flow
cytometry data and frequency of mTECs and cTECs from 2-wk-old WT (n = 14) and Mtor cKO mice (n = 11). (H) Absolute cell numbers of mTECs and cTECs from 2-wk-old
WT (n = 14) and mutant mice (n = 11). (I) Flow cytometric staining of MHC II, AIRE, CD80 and CD40 within mTECs from 2-wk-old WT (n = 5) and Mtor cKO mice (n = 5). (J)
Frequency of MHC IIhigh, CD80+, CD40+ and AIRE+ mTECs from 2-wk-old WT (n = 5) and Mtor cKO mice (n = 5). (K) Absolute cell numbers of MHC IIhigh, CD80+, CD40+ and
AIRE+ mTECs from 2-wk-old WT (n = 5) and Mtor cKO mice (n = 5). �P<0.05, ��P<0.01 and ���P<0.001 compared with control group.
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degradation [42]. Binding of WNT ligand to their receptors
activates DVL2, which then inhibits the ability of GSK3B lead-
ing to accumulation of free and unphosphorylated CTNNB1 in
the cytoplasm, which then translocates to the nucleus [43]. The
absence of Wnt4 suppresses fetal and postnatal thymic expan-
sion and leads to decreased TEC numbers [12]. Conditional
ablation of Ctnnb1 in KRT5+-TECs and their progeny cells
results in thymic atrophy, decreased percentage of mTEC and
increased percentage of cTEC [44]. In line with the increased
autophagy in Mtor cKO TECs, the expression of CTNNB1, a
downstream molecule of WNT signaling, was decreased in
mTECs ofMtor cKO mice as compared to wild-type littermates
(P<0.001, Figure 4G, Figure S6D). We then measured the
expression of DVL2, phosphorylated CTNNB1 and active
CTNNB1 by western blots in the 1C6 mTEC cell line upon
inhibition of MTOR activity by RPM. The expression of
MAP1LC3A-II/LC3A-II was increased upon RPM treatment,
indicating the autophagy increased with MTOR inhibition in
the 1C6 mTEC cell line (Figure 4H). In addition, we noticed
that the expression of DVL2 and active CTNNB1 decreased
and meanwhile the expression of phosphorylated CTNNB1,
the inactive form of CTNNB1, increased markedly (Figure 4H).

Collectively, these data indicated that inhibition of MTOR
activity attenuated WNT signaling via increasing autophagy
pathway.

To investigate whether the marked reduction of mTECs
in Mtor cKO mice is mediated by enhanced autophagy, we
examined whether inhibition of autophagy can rescue the
reduction of mTECs caused by Mtor deficiency. With an in
vitro fetal thymus organ culture (FTOC) system, we demon-
strated that adding the autophagy inhibitor 3-methyladenine
(3-MA) partially but significantly rescued the reduction of
mTECs in Mtor cKO mice by inhibition of autophagy
(P<0.001, Figure 4I, J, and Figure S6E), indicating that the
increased autophagy in TECs with Mtor deficiency indeed
contributed to the reduction of mTECs. Furthermore, the
expression of CTNNB1 in KRT5-positive mTECs was also
partially rescued upon inhibition of autophagy by 3-MA
(P<0.05, Figure 4K, L).

Thymocyte development was blocked in Mtor cKO mice

TECs are critical for the development, differentiation and mat-
uration of thymocytes [5]. We thus further explored the

Figure 4. TEC-specific deletion of Mtor caused increased autophagy and attenuation of WNT signaling. (A) Representative FACS plots and frequency of TECs for the stain-
ing of MTS24 in 2-wk-old WT (n = 4) and Mtor cKO mice (n = 4). (B) Absolute cell numbers of MTS24+ TECs from 2-wk-old WT (n = 4) and Mtor cKO mice (n = 4). (C) 1-
wk-old Mtor cKO mice (n = 3) and littermate controls (n = 3) were injected intraperitoneally with BrdU (BD Biosciences, 1 mg per mouse). Twenty-four h after injection,
the nuclear staining of BrdU in mTECs and cTECs were shown. (D) The frequency of BrdU+ mTECs and cTECs. (E) Representative pictures of cultured primary TECs from
newborn WT and Mtor cKO mice. Scale bars: 200 mm. (F) Representative flow cytometry plots and frequency of TECs for the staining of CYTO-ID in WT (n = 4) and Mtor
cKO mice (n = 4). (G) Representative flow cytometry plots and frequency of mTECs and cTECs for the staining of CTNNB1 in WT (n = 3) and Mtor cKO mice (n = 3). (H)
Western blot results for the expressions of LC3, DVL2, CTNNB1 and phosphorylated CTNNB1 in 1C6 mTEC cells in the absence (left line) or presence (right line) of 2 mM
RPM for 24 h. The expression of these proteins under RPM treatment was normalized to the ones without RPM treatment. (I) Representative FACS plots for the expression
of UEA-1 in TECs of WT (n = 4) and Mtor cKO (n = 3) E16.5 thymi treated with 1.5 mM 3-MA for 4 d. (J) Statistical analysis of the frequency of mTECs in TECs of WT (n = 4)
and Mtor cKO (n = 3) E16.5 thymi treated with 1.5 mM 3-MA for 4 d. (K and L) E16.5 WT and Mtor cKO thymi were treated with 1.5 mM 3-MA for 4 d and the expression
of CTNNB1 in KRT5+ mTECs was detected by immunofluorescence. Scale bars: 50 mm. ��P<0.01 and ���P<0.001 compared with control group.
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functional consequences of impaired mTEC development in
Mtor cKO mice by examining the development of thymocytes.
Compared with control mice, Mtor cKO mice displayed a
remarkable reduction of the cell numbers of CD4+ SP, CD8+

SP, DP and DN thymocytes, albeit the frequency of CD4+ SP
and CD8+ SP thymocytes only decreased slightly (P<0.05,
Figure 5A, B; P<0.01, Figure 5C, and Figure S9A). After nega-
tive selection, thymocytes undergo further maturation in the
thymus before they egress as na€ıve T cells to the periphery [45].
This postselection maturation process is marked by phenotypic
and functional changes, including the downregulation of both
CD24A/CD24 and CD69 expression and increased expression
of SELL/CD62L (selectin, lymphocyte) and QA2/QA-2 (Qa
lymphocyte antigen 2 region) [46–48]. In the thymi of Mtor
cKO mice, the frequency of mature thymocytes (T cell receptor
beta chain [TCRB]high CD24low SELLhigh) decreased signifi-
cantly and the frequency of immature thymocytes (TCRBhigh

CD24high SELLlow) increased in both CD4+ SP and CD8+ SP
thymocytes as compared to wild-type mice (P<0.01,
Figure 5D, E, and Figure S10A). Meanwhile, the frequency of

TCRBhigh CD24high CD69high in both CD4+ SP and CD8+ SP
thymocytes increased in Mtor cKO mice (P<0.05, Figure
S10B) while the expression of QA2 in both CD4+ SP and
CD8+ SP thymocytes decreased markedly in Mtor cKO mice
(P<0.05, Figure S10C). Altogether, these findings suggested
that the developmental defect of mTECs caused by Mtor
deletion significantly blocked the maturation of CD4+ SP and
CD8+ SP thymocytes.

In addition, thymic medulla provides crucial microenviron-
ments for the development of FOXP3 (forkhead box P3)-
expressing regulatory T cells (Tregs) which is essential for the
induction of central immunological tolerance [3,49]. We found
that both the percentage and absolute cell number of CD4+

CD8¡ FOXP3+ Treg cells were reduced remarkably in the
thymi of Mtor cKO mice (P<0.001, Figure 5F to H, and Figure
S9C). The mature CD4+ CD8¡ IL2RA+ FOXP3+ Treg cells
develop from CD4+ CD8¡ IL2RA+ FOXP3¡ precursors in thy-
mus [50], so we investigated the ratio of CD4+ CD8¡ IL2RA+

FOXP3¡ Treg precursors to mature CD4+ CD8¡ IL2RA+

FOXP3+ Treg cells and found this ratio increased significantly

Figure 5. Development of thymocytes was blocked in Mtor cKO mice. (A) Representative flow cytometry profiles of thymocytes for the expression of CD4 and CD8 derived
from 2-wk-old Mtor cKO mice (n = 6) and littermate controls (n = 6). (B) Statistical analysis of thymocytes for distribution of CD4 SP, CD8 SP, DP and DN from 2-wk-old
Mtor cKO mice (n = 6) and littermate controls (n = 6). (C) Absolute cell numbers of CD4 SP, CD8 SP, DP and DN thymocytes from 2-wk-old Mtor cKO mice (n = 6) and litter-
mate controls (n = 6). (D) Flow cytometry profiles of CD4+ CD8¡ TCRBhigh or CD4¡ CD8+ TCRBhigh thymocytes for the expression of CD24 and SELL. (E) Frequency of
mature thymocytes of 2-wk-old Mtor cKO mice (n = 4) and littermate controls (n = 4). Mature thymocytes are CD24low SELLhigh TCRBhigh CD4+ CD8¡ or CD4¡ CD8+. Flow
cytometry profiles (F), frequency (G) and absolute numbers (H) of thymic Treg cells from 2-wk-old WT (n = 4) and Mtor cKO mice (n = 4). (I) Flow cytometry profiles of thy-
mic Treg precursors (CD4+ CD8¡ IL2RA+ FOXP3¡) in 2-wk-old WT (n = 7) and Mtor cKO mice (n = 7). (J) The ratio of thymic CD4+ CD8¡ IL2RA+ FOXP3¡ Treg precursors to
mature CD4+ CD8¡ IL2RA+ FOXP3+ Treg cells in 2-wk-old WT (n = 7) and Mtor cKO mice (n = 7). Flow cytometry profiles (K) and the frequency (L) of SELL+ CD45RBint

recent thymic emigrants (RTEs) in the spleen of 4-wk-old WT (n = 3) and Mtor cKO mice (n = 3). After gating on CD4+ cells, RTEs are SELL+ CD45RBint. Flow cytometry plots
(M), frequency (N) and absolute cell numbers (O) of CD4+ and CD8+ T cells in the spleen of 4-wk-old WT (n = 3) and Mtor cKO mice (n = 3). �P<0.05, ��P<0.01 and
���P<0.001 compared with control group.
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in Mtor cKO mice (P<0.01, Figure 5I, J, and Figure S9C), indi-
cating the development of CD4+ CD8¡ IL2RA+ FOXP3+ Treg
cells was blocked at the Treg precursor stage which might due
to the impaired thymic medulla microenvironments.

Functional mature na€ıve T cells egress from thymus and
populate the peripheral lymphoid organs. To this end, we mea-
sured the recent thymic emigrants (RTEs) with the phenotype
of CD3E/CD3+ CD4+ SELL+ CD45RBint in the spleen [51]. We
found that the RTEs decreased considerably in Mtor cKO mice
as compared to their littermate controls (P<0.01, Figure 5K, L,
and Figure S9D). Meanwhile, both the percentages and cell
numbers of CD4+ and CD8+ T cells were distinctly reduced to
a large extent in the spleen of Mtor cKO mice (P<0.001,
Figure 5M to O). Thus, we conclude that the function of the
thymus was severely impaired after TEC-specific deletion of
Mtor, as evidenced by the decreased output of mature T cells
into the peripheral tissues.

Mice with TEC-specific deletion of Mtor spontaneously
develop autoimmune disease

Mature mTECs expressing TRAs are essential for the induction
of central immune tolerance to the peripheral tissue antigens.

We therefore measured the expression profile of various TRAs
in TECs from Mtor cKO mice and control mice. As expected,
Mtor-deficient TECs express markedly reduced TRAs including
Fabp2, Ins1, Tff3 and Chrna1 as compared to wild-type coun-
terparts (P<0.001, Figure 6A), although Mucl2 was expressed
at similar level as detected by real-time PCR (Figure 6A). The
poor expression of TRAs due to Mtor deficiency in TECs might
predict the susceptibility to the development of autoimmune
diseases. We then investigated the T cell activation state, patho-
logical tissue changes and the presence of auto-antibodies in
Mtor cKO mice. First, we found that both CD4+ and CD8+ T
cells fromMtor cKO mice displayed significantly lower propor-
tions of SELL+ CD44¡ na€ıve T cells and higher proportions of
CD44+ activated or memory T cells in spleen as compared to
wild-type littermates (P<0.001, Figure 6B, C, and Figure S11),
implying the higher activation status of T cells in these Mtor
cKO mice. Secondly, we noticed that the body weight of Mtor
cKO mice was lower than wild-type littermate controls with
age (P<0.05, Figure 6D). Importantly, 6- to 8-mo-old Mtor
cKO mice displayed signs of reduced general health including
hunched posture, decreased activity and hair slip, while their
wild-type littermates were healthy. As expected, substantial
mononuclear cell infiltrations were present in the liver, lung,

Figure 6. TEC-specific deletion of Mtor caused severe autoimmune disease. (A) Expression of the indicated TRAs in Mtor cKO mice (black bars), relative to expression found
in WT littermates (white bars). (B) Flow cytometry plots of splenic CD4+ or CD8+ T cells for the cell surface staining of CD44 and SELL from 4-wk-old WT (n = 4) and Mtor
cKO mice (n = 4). (C) Frequency of na€ıve (SELL+ CD44¡) and activated (CD44+) cells in splenic CD4+ or CD8+ T cells from 4-wk-old WT (n = 4) and Mtor cKO mice (n = 4).
(D) The body weight curve of WT and Mtor cKO mice at the indicated age. (E) Paraffin-embedded sections of organs from 6- to 8-mo-old WT (n = 4) and Mtor cKO mice
(n = 4) were stained with H&E and evaluated for the presence of infiltrates by light microscopy. Individual scores (n = 6 for WT; n = 6 for Mtor cKO) and means (bars) are
indicated. Scale bars: 200 mm. (F) Sera of 6- to 8-mo-old WT (n = 4) and Mtor cKO (n = 4) mice were used to stain HEp-2 cells, and the presence of antinuclear antibodies
(ANAs) was revealed by anti-mouse IgG-Alexa Fluor 488 antibody and fluorescence microscopy. Scale bars: 200 mm. (G) Tissue-reactive autoantibodies in the sera of 6- to
8-month-old WT (n = 4) and Mtor cKO mice (n = 4) were examined using various tissue sections of rag2¡/¡ mice. �P<0.05, ��P<0.01 and ���P<0.001 compared with con-
trol group. Scale bars: 200 mm.
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pancreas and colons of 6- to 8-mo-old Mtor cKO mice
(P<0.01, Figure 6E). Moreover, 6- to 8-mo-old Mtor cKO
mice had high levels of antinuclear antibodies (Figure 6F and
Figure S12A) and various tissue-cell-reactive autoantibodies
(Figure 6G and Figure S12B), which were rarely observed in
age-matched wild-type control mice. There were also substan-
tial CD3+ T cell infiltrations into the liver, colon, kidney and
lung of old Mtor cKO mice as compared to age matched litter-
mate controls (Figure S12C). Taken together, our data support
the fact that mice with TEC-specific Mtor deficiency develop
severe autoimmune diseases, likely due to the impaired mTEC
differentiation and/or Treg development.

Discussion

In the present study, we uncovered that MTOR signaling criti-
cally regulates the development and maintenance of TECs, and
in particular mTECs, which are essential for the induction of
central immune tolerance. More importantly, TEC-specific
Mtor deficiency leads to spontaneous development of autoim-
mune diseases with age. Mechanistically, Mtor is essential to
maintain TEC proliferation and keep proper activation of
WNT signaling in TECs by blocking autophagy-mediated deg-
radation of DVL2 and CTNNB1 (Figure S13).

RPM critically modulates the differentiation of T cells, B
cells and the production of inflammatory cytokines in innate
immune cells [22,52,53]. It is known that RPM treatment pre-
vents the proliferation of thymocytes and causes thymic involu-
tion [54], but the effect of RPM on TECs has not been fully
studied. Here, we show that RPM treatment results in the
reduction of mTECs, in particular the AIRE+ mTECs, which
could mediate central tolerance induction. These findings were
further proven with TEC-specific Mtor-deficient mice and col-
lectively demonstrate that the MTOR signaling pathway criti-
cally regulates the development and maintenance of TECs in a
cell-intrinsic manner.

The development and homeostasis of TECs are tightly con-
trolled. The NFKB signaling pathway is important for matura-
tion of mTECs and WNT signaling promotes the expansion
and functional maintenance of TECs. MTOR signaling plays
critical roles in cell proliferation, differentiation, autophagy and
metabolism, but the importance of MTOR signaling in TECs
and its functional consequences on T cell development and tol-
erance has not been sufficiently investigated. Here, we found
that MTOR signaling played important roles in the develop-
ment of TECs both at the embryonic and postnatal stages. In
the embryonic 16.5 thymi, TEC-specific deletion of Mtor
resulted in the decrease of both mTECs and cTECs and the
reduction of LY75+ TEPCs. We also found that the TEPCs
detected by the MTS24 antibody decreased significantly in
postnatal Mtor cKO mice, which is consistent with previous
reports showing that MTOR is essential for the maintenance of
stem and progenitor cells in various tissues [32–34]. Mtor defi-
ciency in TECs led to the marked reduction of mTECs as com-
pared to cTECs, implying that mTECs development, functional
maturation and maintenance require proper MTOR activity.

Intriguingly, we showed that deletion of Mtor led to
enhanced autophagy in TECs which resulted in the attenuation
of WNT signaling by degradation of DVL2 and CTNNB1. In

the FTOC system, treatment of Mtor cKO thymi with autoph-
agy inhibitor 3-MA could largely rescue the decrease of
mTECs, demonstrating that the reduction of mTECs was, at
least in part, caused by enhanced autophagy. The significance
of WNT signaling in TEC biology has been well described
[12,44]. Heinonen and colleagues have demonstrated that
Wnt4 regulates the expansion of TECs and the ratio of medul-
lary-to-cortical TEC and absence of Wnt4 results in thymic
atrophy [12]. Liang et al. have shown that Ctnnb1 is required in
KRT5-expressing TECs for thymic homeostasis and function.
Conditional ablation of Ctnnb1 in KRT5-expressing TECs
results in thymic atrophy [44]. Altogether, we conclude that
Mtor deletion in TECs lead to severe thymic atrophy through
autophagy-dependent degradation of DVL2 and thus attenu-
ated CTNNB1 signaling.

The key role of TECs is to support proper development and
maturation of thymocytes. Consistent with the impaired
medulla compartment in Mtor cKO mice, we indeed observed
a decreased frequency of CD4+ SP and CD8+ SP thymocytes
and the blocked maturation of CD4+ SP or CD8+ SP cells as
assessed by the expression of CD24, SELL, CD69 and QA2.
The thymic medullary microenvironment also provides essen-
tial niches for the development of thymic Treg cells [55,56].
We showed that the development of CD4+ CD8¡ IL2RA+

FOXP3+ Treg cells was partially blocked at the CD4+ CD8¡

IL2RA+ FOXP3¡ precursor stage. Autoreactive TCR clones are
eliminated in thymus by negative selection, the decreased quan-
tity of mTECs and their impaired maturation might lead to the
escape of autoreactive T cells to peripheral tissues [3]. Indeed,
6- to 8-mo-old Mtor cKO mice developed severe autoimmune
diseases characterized by the intensive infiltration of immune
cells in various tissues and the presence of autoantibodies
against nuclear antigens. It is thus likely that the poor induction
of TRAs in mTECs together with the decreased production of
immunosuppressive CD4+ CD8¡ IL2RA+ FOXP3+ Treg cells in
the thymus contribute to the development of autoimmune dis-
eases in mice with a TECs-specificMtor deletion.

In summary, our present study provides new insights to our
understanding of the molecular mechanisms governing the
homeostasis and functional maturation of TECs, which is
closely related to proper cellular immunity and host immune
tolerance.

Materials and methods

Mice

TEC-specificMtor conditional knockout mice were obtained by
crossing Mtorflox/flox mice with Foxn1-Cre mice. Foxn1-Cre-
negative, Mtorflox/flox littermates served as control. Mtorflox/flox

mice were a gift of Dr. Zhongzhou Yang from Center of Model
Animal Research at Nanjing University, China [25,57]. Foxn1-
Cre mice were a gift of Dr. Yu Zhang from Peking University
Health Science Center, Beijing, China. All mice for this study
were maintained under pathogen-free conditions. All animal
experiments were performed in accordance with the approval
of the animal Ethics Committee of Institute of Zoology, Beijing,
China.
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Abs and flow cytometry

For all staining, the samples were first incubated with 2.4G2
before staining with fluorochrome-conjugated antibodies. Fluo-
rescein-labeled (Vector Laboratories, FL-1061) and rhodamine-
labeled (Vector Laboratories, RL-1062) Ulex Europaeus Agglu-
tinin I (UEA I) was purchased from Vector Laboratories.
MKI67/KI-67-PE (556027) and Alexa Fluor 488 mouse anti-
CTNNB1/BETA-CATENIN (562505) were purchased from
BD Biosciences. The following antibodies were purchased from
BioLegend or eBioscience: PerCP/Cy5.5, FITC, PE, PE/CY7,
APC, APC/CY7, Brilliant Violet-421 or Alexa Fluor 647-conju-
gated anti-PTPRC/CD45 (BioLegend, 103132; clone 30-F11),
EPCAM/CD326 (BioLegend, 118215; EPCAM, clone G8.8),
I-A/I-E (BioLegend, 107632; clone M5/114.15.2), CD40 (BioLe-
gend, 124610; clone 3/23), CD80 (eBioscience, 12-0801-82;
clone 16-10A1), ENPEP/LY51 (BioLegend, 108312 and 108314;
clone 6C3), AIRE (eBioscience, 50-5934-80; clone 5H12),
TNFRSF11A/RANK (eBioscience, 12-6612-82; clone R12-31),
LTBR (BioLegend, 134403; clone 5G11), CD4 (BioLegend,
100406 and 100412 and 100414; clone GK1.5), CD8 (BioLe-
gend, 100710; clone 53–6.7), CD24 (eBioscience, 11-0242-82;
clone M1/69), SELL/CD62L (eBioscience, 12-0621-82; clone
MEL-14), IL2RA/CD25 (eBioscience, 12-0251-82; clone
PC61.5), FOXP3 (eBioscience, 11-5773-82; clone FJK-16s),
CD45RB (eBioscience, 11-0455-82; clone C363.16A), CD44
(BioLegend, 103055; clone IM7), LY75/CD205 (eBioscience,
12-2051-82; clone 205yekta), CD69 (eBioscience, 48-0691-82;
clone H1.2F3), QA2 (BioLegend, 121709; clone 695H1-9-9),
TCRB (BioLegend, 109222; clone H57-597). MTS24 Ab was
kindly offered by Prof. Richard Boyd (Monash University). Sur-
face staining of cell suspensions was performed in phosphate-
buffered saline (PBS; ZSGB-BIO, ZLI-9062) containing 0.1%
BSA (Solarbio, A8020), 0.02% NaN3 at 4

oC. Intracellular stain-
ing for FOXP3, AIRE, CTNNB1 and MKI67 was performed
using fixation buffer (eBioscience, 00-5123-43 and 00-5223-56)
and permeabilization buffer (eBioscience, 00-8333-56) accord-
ing to the manufacturer’s protocol and previous experience
[58]. Briefly, cells were fixed with 250 mL fixation buffer per
1 £ 106 cells on ice for 30 min. Cells were then washed twice
with perm wash buffer and then stained with diluted antibod-
ies. The flow cytometry was performed with a Gallios Flow
Cytometer (BeckMan Coulter, Brea, California, USA).

Rapamycin treatment in vivo

Rapamycin (Sigma-Aldrich, 37094) was dissolved in carboxy-
methyl cellulose sodium (CMC; Sigma-Aldrich, C5013) [59].
Four-wk-old C57BL/6 mice were injected intraperitoneally
with RPM (1.5 mg/kg body weight) or CMC every day for 7 d
as described previously [60].

Thymic stromal cell isolation

Thymic stromal cells from postnatal thymi were isolated as pre-
viously described [9,61]. In brief, freshly dissected thymi were
cut into pieces and washed with DMEM (Hyclone Laboratories,
SH30022.01B) medium with 2% fetal bovine serum (FBS;
Gibco, 16000–044) several times to remove most thymocytes.

The thymic fragments were then incubated at 37�C for 10 min
in 2 ml solution of 1 mg/ml collagenase D (Sigma-Aldrich,
C0130; equivalent to 0.1% [w/v]) with 20 U/ml DNAse I
(Sigma-Aldrich, D5025). Enzymatic treatment was repeated
3 times (the final incubation with collagenase-dispase [Sigma-
Aldrich, 11097113001; equivalent to 0.1% {w/v}] enzyme mix-
ture) until all fragments dispersed. Gentle agitation was per-
formed periodically at middle- and end-points of each
digestion. Cell suspensions from each digestion were pooled in
PBS (ZSGB-BIO, ZLI-9062) containing 1% FBS and 5 mM eth-
ylenediamine tetraacetic acid (EDTA; Sigma-Aldrich, ED) to
neutralize digestion and remove cell aggregates. Cells were cen-
trifuged, resuspended in DMEM with 2% FBS medium, and fil-
tered to remove clumps. Phenotypes of TECs were analyzed by
FACS staining.

Culture of TECs

For primary TEC culture, thymi from WT and Mtor cKO neo-
natal mice were digested as mentioned above. Small thymic
fragments from each step were collected and pooled. Fragments
were allowed to settle and washed twice with CnT07 medium
(CELLnTEC, CnT-BM.4). The remaining thymic explants were
plated in 24-well plates with CnT07 medium and cultured at
37�C with 5% CO2 for 2 or 3 d, during which TECs outgrew
other stromal cells [9].

Fetal thymus organ culture

Embryos from time-mated females (morning of plug control
correspond to E0.5) were harvested at E16.5, thymic lobes were
isolated, placed on the top of Nuclepore filters (Whatman,
110409) placed in DMEM medium containing 10% FBS with
or without 1.5 mM 3-MA (Sigma-Aldrich, M9281) for 4 d. Sub-
sequently the fetal thymi were digested in collagenase D and
DNase I for 45 to 60 min, filtered, centrifuged and stained for
flow cytometric analysis.

Immunohistology and Immunofluorescence

For analysis of thymic medulla and cortex by immunohistol-
ogy, thymi from Mtor cKO mice and littermate control mice
were fixed in 4% formalin and embedded in paraffin blocks.
Sections (5 mm) were stained with H&E and examined by light
microscopy (Olympus IX71, Tokyo, Japan). For immunofluo-
rescence, serial sections (6 mm) from optimum cutting temper-
ature (OCT; SAKURA, 4583)-embedded frozen thymi were
fixed in 4% polyoxymethylene (Solarbio, P1110) and blocked in
PBS-1% BSA, washed in PBS-0.05% Tween (TeaSen,
60305ES76) and incubated with antibodies. The processed sec-
tions were stained with primary antibodies as follows: rabbit
anti-KRT5 (Covance, PRB-160P; clone AF 138) diluted by
1:400 and rat anti-KRT8 (DSHB, AB 531826; Troma-I) diluted
by 1:200. The secondary antibodies were as follows: Alexa Fluor
594-conjugated donkey anti-rabbit IgG (H+L) (Jackson Immu-
noResearch Laboratories, 711-586-152) diluted by 1:400 and
Alexa Fluor 488-conjugated donkey anti-rat IgG (H+L) (Jack-
son ImmunoResearch Laboratories, 712-546-150) diluted by
1:400. Nuclei were stained with 4’6-diamidino-2-phenylindole

514 Z. LIANG ET AL.



(DAPI; Sigma-Aldrich, D9542). Images were acquired with a
laser scanning confocal microscope (Zeiss LSM710, Oberko-
chen, Germany).

Detection of inflammatory cell infiltration and
autoantibodies

The organs of 6- to 8-mo-old mice were harvested and fixed in
4% paraformaldehyde, embedded in paraffin (Leica, 39601095),
sectioned (5 mm), and stained with H&E [62]. Sera from 6- to
8-mo-oldMtor cKO and littermate control mice were prepared.
For the detection of autoantibodies, serial frozen sections of the
lung, pancreas, salivary gland, liver and kidney from rag2¡/¡

mice and cultured HEp-2 cells were incubated with diluted sera
in PBS (1:30) followed by Alexa Fluor 488-conjugated donkey
anti-mouse IgG (H+L) antibodies (Jackson ImmunoResearch
Laboratories, 715-546-150; 1:300).

BrdU incorporation assays

For BrdU labeling, 1-wk-old Mtor cKO and littermate control
mice were injected intraperitoneally with BrdU (BD Biosciences,
1 mg per mouse). Twenty-four h after injection, thymic lobes
were digested and thymic stromal cells were enriched for flow
cytometric analysis. BrdU incorporation was detected with an
APC-BrdU flow kit (BD Biosciences, 552598) according to the
manufacturer’s protocol (BD PharmingenTM BrdU Flow Kits
Instruction Manual). Briefly, after staining cell surface antigens,
cells were fixed and permeabilized with the provided buffer,
then cells were incubated with 100 mL of diluted DNase for 1 h
at 37oC, and appropriate amounts of APC anti-BrdU antibodies
were added and incubated for 20 min at room temperature.

Quantitative RT-PCR

RNA was purified from WT and Mtor cKO TECs sorted with a
MoFlo XDP cell sorter (Beckman Coulter, Brea, CA, USA) and
characterized as PTPRC/CD45¡ EPCAM+. Total RNA was
extracted using MicroElute Total RNA Kits (Omega Bio-tek,
R6831) and reverse transcription was performed with Super-
Script III Reverse Transcriptase (Invitrogen, 18080–093)
according to manufacturer’s instructions. Briefly, oligos were
mixed together with dT (Thermo Fisher Scientific, 18418-012),
dNTP (Invitrogen, 18427-013), and RNA; then the mixture
was heated at 65oC for 5 min and incubated on ice for at least 1
min; 5XFirst-Strand Buffer, DTT, and SuperScriptTM III RT
were subsequently added and incubated at 50oC for 30 to
60 min. Real-time PCR was performed using multiple kits
(TaKaRa SYBR Premix Ex TaqTM, RR420) on a CFX96 appa-
ratus (Bio-Rad Laboratories, Hercules, CA, USA). The primers
using in this study are listed in Table 1.

Western blot assay

The 1C6 mTEC cell line was cultured in DMEM medium with
10% FBS in 12-well plates. Cells were treated with 2 mM RPM
for the indicated time. Then cells were washed with cold PBS,
lysed in Radio-Immunoprecipitation Assay (RIPA) buffer
(50 mM Tris-HCl, pH 7.4, 1% NP-40 [Abcam, ab142227],

0.25% Na-deoxycholate [Macklin, S817543], 150 mM NaCl,
1 mM EDTA, pH 7.4) with a protease inhibitor cocktail (Sigma-
Aldrich, P8340). Protein concentration was determined using a
bicinchoninic acid (BCA) assay. Proteins were analyzed by SD
(Sigma-Aldrich, L5750)-polyacrylamide gel electrophoresis (SD-
PAGE) and transferred onto PVDF membranes (Merck Milli-
pore, IPFL00010). Each polyvinylidene fluoride membrane was
blocked with 5% nonfat dried milk (OXOID, LP0031) for 1 h
and then incubated with primary antibodies overnight on a
shaker at 4oC. The HPR-coupled anti-mouse (KPL, 074–1806)
or anti-rabbit (KPL, 070–1506) secondary antibodies were then
added, and were detected through chemiluminescence (Merck
Millipore, WBKLS0500) [63]. ACTB was used as a protein load-
ing control. The primary antibodies used for western blot are as
follows: Anti-LC3A/B (Sigma-Aldrich, L7543) diluted by 1:1000;
DVL2 (30D2) rabbit monoclonal antibody (Cell Signaling Tech-
nology, 3224) diluted by 1:1000; non-phospho (active) CTNNB1
rabbit monoclonal antibody (Cell Signaling Technology, 8814;
D13A1) diluted by 1:1000; phospho-CTNNB1 antibody (Cell
Signaling Technology, 9561) diluted by 1:1000; anti-ACTB
(Sigma-Aldrich, A5441) diluted by 1:20,000.

Statistical analysis

All data are presented as the means§SD. A Student unpaired t
test for comparison of means was used to compare groups. A P
value of<0.05 was considered statistically significant.
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