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Introduction

Neuropsychiatric disorders share common traits along a spec-
trum of genetic, neurobiological and clinical dimensions.1–3 
Mounting evidence for shared risk factors and neurobiological 
phenotypes has called for improved biological characterization 
across disorders.4,5 There are shared genetic risk factors across 
psychiatric disorders, including autism-spectrum disorders 
(ASD), attention-deficit/hyperactivity disorder (ADHD) and 
schizophrenia.1,6–8 Well-known epidemiological risk factors, 
such as perinatal hypoxia, antenatal maternal and postnatal in-
fections, and maternal smoking during pregnancy, have been 
described across ASD, ADHD, and schizophrenia.9–12 Neuro
biologically, there are indications of shared phenotypic traits 
that cut across diagnoses, with converging evidence of brain 
connectivity abnormalities across disorders13–18 showing al-
tered default, ventral attention, sensory and executive net-
works in individuals with ASD; the default mode, fronto

parietal and ventral attention networks in those with ADHD; 
and deficits in all of the mentioned networks in those with 
schizophrenia. In addition, previous studies have noted 
shared structural abnormalities across psychiatric disorders, 
with the anterior cingulate cortex and insula being identified 
as regional hot spots of structural and functional changes 
across most psychiatric disorders and corresponding to the 
salience or ventral attention network.19–21 Collectively, these 
shared risk factors and neurobiological differences suggest 
the possibility of common etiologies and susceptibilities to 
similar environmental exposures between disorders.

The likelihood for shared mechanisms between disorders 
is also shown by common neurocognitive and clinical deficits 
across disorders. For example, individuals with ASD, ADHD 
and schizophrenia share similar deficits in social cognition, 
language abilities and cognitive function.22,23 Those with ASD 
and schizophrenia further share somatomotor deficits, while 
those with ASD and ADHD share impairments in executive 
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Background: There is evidence suggesting neuropsychiatric disorders share genomic, cognitive and clinical features. Here, we ask if 
autism-spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) and schizophrenia share neuroanatomical variations. 
Methods: First, we used measures of cortical anatomy to estimate spatial overlap of neuroanatomical variation using univariate 
methods. Next, we developed a novel methodology to determine whether cortical deficits specifically target or are “enriched” within 
functional resting-state networks. Results: We found cortical anomalies were preferentially enriched across functional networks rather 
than clustering spatially. Specifically, cortical thickness showed significant enrichment between patients with ASD and those with ADHD 
in the default mode network, between patients with ASD and those with schizophrenia in the frontoparietal and limbic networks, and 
between patients with ADHD and those with schizophrenia in the ventral attention network. Networks enriched in cortical thickness 
anomalies were also strongly represented in functional MRI results (Neurosynth; r = 0.64, p = 0.032). Limitations: We did not account 
for variable symptom dimensions and severity in patient populations, and our cross-sectional design prevented longitudinal analyses of 
developmental trajectories. Conclusion: These findings suggest that common deficits across neuropsychiatric disorders cannot simply 
be characterized as arising out of local changes in cortical grey matter, but rather as entities of both local and systemic alterations 
targeting brain networks.
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function and emotion regulation.24 Finally, there are com-
monalities in symptom presentation. Patients with ASD and 
those who have negative symptoms of schizophrenia, for ex-
ample, show similar patterns of social withdrawal and poor 
eye contact.25 Up to 75% of indivdiuals with ASD have 
shown ADHD symptoms, including attention and motor 
control problems26 and overall hyperactivity. Individuals 
with ADHD have higher scores than healthy controls on 
3 core features of ASD: social impairment, communication 
impairment, and restricted and repetitive behaviours.27 
Symptoms of ADHD and ASD can be observed in patients 
with schizophrenia at a level that exceeds clinical thresh-
olds;28,29 conversely a subset of patients with ASD have been 
reported to exhibit schizophrenia-like positive symptoms,30 
although these findings remain controversial.31,32

Given the overlap in risk factors and clinical features, we 
sought to determine if there is also convergence of structural 
brain alterations across disorders. We further postulate that 
these alterations may take 2 different neural topologies. The 
first, more classical, form would show a convergence of 
neuroanatomical deficits localized to specific neuroana
tomical subregions, indicating “mass-action” homologous 
deficits across disorders. Here, we use the term “mass action” 
referring to focal neuroanatomical differences that colocalize 
within patient groups compared with a control group, 
thereby resulting in group differences that can be identified 
using a parametric statistical test. The second representation 
is a more distributed topology, where subtle alterations may 
exist at a local level, yet these alterations may be system
atically pervasive across specific neural pathways, resulting 
in preferential alterations (or enrichment) in specific func-
tional networks of the brain. We use the term “distributed 
topology” to refer to a set of neuroanatomical group differ-
ences that may colocalize within a more broadly defined 
area, such as resting-state networks (RSNs), thereby possibly 
impacting brain function related to network function. These 
distributed differences will therefore not necessarily be de-
tectable using standard parametric statistical tests and may 
require novel methods to elucidate group differences across a 
network. Thus, if common neuroanatomical deficits indeed 
exist, understanding their putative involvement within the 
context of known brain networks is critical to our under-
standing of these disorders and discovery of cross-disorder 
phenotypes. We further refine the question by setting criteria 
that should be required of true overarching phenotypes, in-
cluding consistent alterations across disorders, replication 
across studies and convergent findings across neuroimaging 
modalities. Here, we attempt to fulfill these requirements by 
examining cortical topography of cortical thickness (CT) and 
surface area (SA) across patients with ASD, ADHD and 
schizophrenia and performing 3 different analyses as follows.

To determine if deficits across disorders could be localized 
to a subset of neuroanatomical structures, we examined neuro
anatomical differences between cases and controls across all 
3 disorders. We further explored neuroanatomical conver-
gence using conjunction analysis examining shared deficits.

To determine if deficits across disorders specifically im-
pacted functional brain networks, we investigated whether 

the neuroanatomical anomalies were enriched in canonically 
defined RSNs involved in cognitive control, affect regulation, 
and attention and motor control. To perform this analysis, we 
developed a statistical tool derived from a commonly used 
method in genomics — gene-set enrichment analysis33 
(GSEA) — used to test for enrichment of gene lists with bio-
logical pathways. Here, we adapted this methodology for 
studying the enrichment of neuroanatomical deficits within 
functional networks; in the present work, we refer to this 
analysis as “network-set enrichment analysis” (NSEA).

Finally, to determine the validity of our findings, we inves-
tigated whether the neuroanatomical anomalies we found 
align with previous findings from functional neuroimaging 
studies. We performed this analysis using the Neurosynth 
database, thereby aiming to build structure–function homol-
ogy between our structural findings and previous functional 
MRI (fMRI) results.

Based on previous work, we expected to find shared 
neuroanatomical differences in the anterior cingulate cortex 
and insula.19–21 In the NSEA analysis, we hypothesized that 
the default mode, ventral attention and limbic networks 
would show common alterations across disorders, based on 
the aforementioned anterior cingulate cortex and insula    be-
ing involved in these networks as well as previous studies of 
individual disorders.13,15–18 Finally, we expected to find corre-
spondence between the NSEA and Neurosynth findings in 
terms of the networks affected, but not with respect to local 
differences.

Methods

Data acquisition and processing

We processed T1-weighted MRIs from 32 sites (Appendix 1, 
Table S1 and S2, available at jpn.ca/170094-a1) and multiple 
online resources using the CIVET pipeline version 1.1.12 for CT 
and SA estimation. Individuals were generally free of major 
medical or neurologic disorders and psychiatric disorders 
other than the primary diagnosis (Appendix 1, Table S3). 
About 12.6% were discarded owing to significant movement 
artifacts, failed registrations and errors in cortical classifica-
tion, resulting in final case–control sample sizes of 545 con-
trols versus 486 patients with ASD, 334 controls versus 
263 patients with ADHD, and 399 controls versus 376 pa-
tients with schizophrenia (n = 2403). Demographic and site-
wise information is outlined in Appendix 1, Tables S1–S3, 
and age distributions are shown in Appendix 1, Figure S1.

Neuroimaging 

The CIVET pipeline performs intensity nonuniformity correc-
tion,34 transformation of all MRI data to Montreal Neurological 
Institute (MNI) space, classification of grey/white matter 
voxels,35 and a surface-based reconstruction of white matter 
and pial surfaces (about 80 000 vertices).36 Cortical thickness 
is estimated between homologous vertices on both surfaces 
using the t-link distance.37 Surface area is then estimated as 
an average of the 3 triangles in the surface mesh connected to 



Neuroanatomical phenotypes across psychiatric disorders

	 J Psychiatry Neurosci 2018;43(3)	 203

each vertex. Reconstructions of the cortical surface were vis
ually inspected by an expert rater (M.T.M.P.), and individ
uals whose scans failed quality control, including those with 
motion artifacts, were excluded from further analysis.

We examined 2 different measures of brain structure, 
namely CT and SA, as they are genetically independent38 and 
arise through neurobiologically distinct events, show sepa-
rate developmental trajectories39 and are differentially af-
fected by disorders,40 collectively suggesting they should be 
considered separately.41

Cross-disorder comparisons using meta-analysis 

We used techniques similar to meta-analytic techniques used 
in recent studies by large consortia (i.e., ENIGMA). However, 
in this case the critical differences are that the image process-
ing, quality control and summary statistics are not performed 
by multiple sites;42,43 instead they are all performed by an in-
dividual group to maintain homogeneity. Using these data, 
we performed the following analysis on the effect of diagno-
sis on CT and SA using multiple linear regression accounting 
for effects of age and sex as covariates. Sites were generally 
well-matched across controls and patients for age (Appendix 1, 
Fig. S1) and sex (Appendix 1, Table S1). For the purposes of 
this work we chose to examine only the linear associations 
with age for 2 reasons. The first was that the reasonable age 
range across sites that extends into adulthood and linear tra-
jectories of cortical thickness have been well-described in 
adulthood, middle age and beyond.44–46 The second was be-
cause of newer work that showed neuroanatomical age-
related trajectories, under the influence of proper quality con-
trol measures, trend toward being substantially more linear 
than originally thought.44 Statistical analysis was conducted 
per site to account for intersite differences in both image ac-
quisitions and age differences across samples. Cohen d effect 
sizes of diagnosis, representing partial regression coefficients, 
were calculated per site and pooled in random-effects meta-
analysis using the same methods used in previous work,47,48 
allowing us to perform meta-analysis over every vertex 
(81 924 vertices). We conducted meta-analyses for each disor-
der individually, for pairs of disorders (ASD and ADHD, 
ASD and schizophrenia, and ADHD and schizophrenia), and 
across all 3 disorders. Analysis with multiple disorders was 
carried out by including sites containing the specified disor-
der groups within a larger meta-analysis. We used the false-
discovery rate (FDR)49 to control for multiple comparisons in 
each hemisphere (q < 0.05).

Based on the results of the meta-analysis, we examined ef-
fect size distributions across the cortex for all analyses. We 
assessed spatial similarity between disorders by correlating 
–log(p) using Pearson r. We used –log(p) because the meta-
analyzed Cohen d measures do not account for standard de-
viation of the effect sizes, whereas –log(p) provides a more 
intuitive measure of significance levels. This correlation also 
provides a measure of the similarity of the topography of our 
significant findings and shows whether brain regions are 
similarly affected across the cortex. We compared these cor-
relations across the whole cortex and further within individ-

ual RSNs for both CT and SA. The RSNs include the visual, 
somatomotor, dorsal and ventral attention, limbic, fronto
parietal and default mode networks, based on an existing 
parcellation derived by Yeo and colleagues50 (Appendix 1, 
Fig. S2). Within-RSN correlations will determine whether 
structural alterations arise within similar functional networks 
across disorders. This analysis further motivates our NSEA 
analysis, as it allows for the determination of whether RSNs 
are specifically targeted in individual disorders, across pairs 
of disorders, or across all disorders.

We conducted meta-regression analysis to examine the ef-
fect of site demographics, such as mean age, sex distribution 
and MRI field strength, on effect sizes of diagnosis (case v. 
control) within each disorder. Similar to the meta-analysis, 
this analysis was conducted per vertex and corrected for 
multiple comparisons using FDR. Findings surviving q < 0.05 
were deemed significant. This analysis examines whether pa-
tient groups with larger age distributions (e.g., the schizo-
phrenia group being older than the ASD and ADHD groups) 
have substantial effects on the results. By accounting for site-
wise demographics, such as mean age and sex distribution, 
we explored whether differences in brain maturation or sex 
differences may further drive similarities or differences in 
effects across disorders.

Cross-disorder conjunction analysis 

We conducted conjunction analysis to examine spatial over-
lap between pairs of disorders and across all 3 disorders by 
thresholding surface maps at the top 20%, 15%, 10% and 5% 
of vertices based on ranked p values. We used this analysis to 
determine if there was a shared topographical patterning 
across disorders. We did not use absolute p value thresholds, 
as applying a single threshold to multiple analyses (i.e., from 
ASD, ADHD and schizophrenia analyses) would result in a 
differing number of vertices that pass the threshold. Thresh-
olding individual analyses by rank order does not eliminate 
the need for p value thresholds and multiple comparisons, 
but simply allows for a method of comparing topographical 
overlap across disorders despite power differences due to 
sample size. We estimated the significance of the 3-way over-
lap using permutation testing with 10 000 iterations, using 
resampling without replacement.

Automated meta-analysis of fMRI studies and cross-modal 
convergence 

We examined whether the neuroanatomical results derived 
through the above analyses aligned with functional findings. 
We used the Neurosynth database (http://neurosynth.org/), 
as it enables large-scale, automated meta-analysis of previ-
ously published fMRI studies.51 We searched the Neurosynth 
database in March 2016, using the terms “autism,” “schizo-
phrenia” and “ADHD.” We further confined studies, exclud-
ing participants at genetic risk (e.g., unaffected siblings), and 
included results where only functional MRI data were in-
cluded. This resulted in 148 studies of ASD, 73 studies of 
ADHD and 249 studies of schizophrenia (supplementary 
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data set). The automated meta-analysis in Neurosynth identi-
fies voxels significant after multiple testing correction using 
FDR at q = 0.01, presented as a brain map of z scores indicat-
ing likelihood of differential activation. These maps were di-
lated 3-fold using a median dilation approach (as imple-
mented in mincmorph: https://github.com/andrewjanke​
/mincmorph) to allow reasonable anatomic overlap across 
disorders without infringing across anatomic boundaries 
(Appendix 1, Fig. S3). Using these maps, we took the follow-
ing steps to assess cross-modal convergence. First, dilated 
maps were binarized and combined to estimate shared func-
tional changes. Second, we estimated the overlap between 
anatomic differences with these functional maps. We used 
the hypergeometric distribution to assess significance of 
overlap.52 This provides a quantitative summary of the de-
gree to which shared anatomic change aligns with shared 
functional change. Third, binarized maps were projected 
onto known functional networks based on previous parcella-
tions to facilitate interpretation. We estimated the degree to 
which each disorder showed atypical activity within each 
network after adjusting for network size to determine associ-
ations between our structural findings and meta-analysis–
derived functional findings. These were compared with find-
ings from our NSEA analysis.

Enrichment in the variation of cortical anatomy within RSNs 

The previous analyses that were undertaken were to deter-
mine whether cortical differences across disorders are the 
product concordant “mass-action” type of differences that 
co-localize neuroanatomically. However, normative and ab-
normal neural development has often been thought to mir-
ror the development of functional RSNs.53,54 Given that our 
disorders of interest are often thought to be the product of 
compromised neurodevelopmental processes, we developed 
a technique that would examine network-level enrichment 
of neuroanatomical deficits assuming deficits would be per-
vasive within a functional network, but would not necessar-
ily follow the “mass-action” type of deficit.

In order to achieve this, we adapted statistical methods 
from GSEA. In its original implementation, GSEA tests 
whether sets of individual genes are collectively enriched in 
biological pathways. Its basis rests on the assumption that 
true biological effects may be only modest in single genes 
and therefore may not remain significant after correction for 
multiple testing.33 Such analyses of single genes do not take 
into account systematic, network-wide alterations in bio
logical pathways, which GSEA aims to address. In our im-
plementation of this work, we specifically ask if the ana-
tomic differences seen in individuals with ASD, ADHD and 
schizophrenia were more likely to over-represent systematic 
perturbations within distinct RSNs previously identified50 
(Appendix 1, Fig. S2).

Network enrichment analysis methods used in this study 
are directly analogous to those used in GSEA, adopting more 
recent innovations of GSEA used for interpretation of 
genome-wide association studies.55,56 The following is an out-
line of the analytic approach for NSEA (Fig. 1).

Similar to GSEA, a ranking metric was devised for order-
ing vertices based on strength of association to phenotype —
in this case, the association between diagnosis and cortical in-
tegrity (CT and SA). The –log10(p) was multiplied by the 
sign of the effect size (Cohen d), and 81 924 vertices across 
both hemispheres were then sorted in decreasing order to 
yield list L, where the most positive effects are located at the 
top and negative effects at the bottom of L (Fig. 1).

The enrichment score (ES) per network is computed by a 
walk down L. During the walk, for every network running 
sums are increased if the vertex encountered belongs to the 
network (Fig. 1, red arrows) and decreased for every other 
network encountered (Fig. 1, blue arrows). The increment is 
equal to the absolute value of the ranking metric at the ver-
tex. The decrement is a constant that ensures the running 
sum at the end of the walk is zero. The ES is then the maxi-
mum deviation from zero occurring during the walk, com-
puted individually per network.

Positive enrichment indicates systematic cortical thicken-
ing, where vertices are clustered near the top of L. The ES 
initially increases during the walk, followed by a gradual 
decrease until the end of the walk.

Negative enrichment indicates systematic cortical thin-
ning, where vertices are clustered near the bottom of L. The 
ES initially decreases past zero during the walk, and once it 
reaches the cluster of vertices near the bottom of L, the ES 
would then increase sharply (assuming there is enrichment 
of negative effects in the given network) until it reaches the 
end of the walk.

The significance of the ES is evaluated by permutation test-
ing, where the ranking metric is randomly shuffled and the 
ES is computed repeatedly across 10 000 permutations. This 
produces null distributions of ES per network, and nominal 
p values are calculated based on the following formula:

Here, m refers to the number of values along the null distri-
bution that are greater or less than the actual ES (depending 
on its direction), and n indicates the number of permuta-
tions.57 Normalized ES (NES) is calculated based on the ratio 
of ES to the mean ES across all permutations.

Multiple testing correction was then applied using FDR 
across all NSEA analyses, including 7 networks × 2 measures 
(CT and SA) × 7 analyses (individual, paired, all combined), 
resulting in 98 tests, where q < 0.05 was deemed significant 
after correction.

The goal of this analysis was to move away from tradi-
tional vertex-based methods in order to better investigate 
large-scale network-wide neuroanatomical alterations, to 
better situate structural findings within previous studies 
examining functional connectivity within these disorders 
using fMRI, and to obtain an improved understanding of 
structure–function homologies.

In post hoc analysis, we examined characteristics of net-
works with high and low NES with differing levels of sig-
nificance. We additionally examined whether NES, ES or 
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p values were associated with network size. Finally, we ex-
amined whether different dilations of the Yeo 7-network 
parcellation produced inconsistent findings in NSEA by re-
peating the analysis in the nondilated parcellation and 
across 1–3 dilations separately (Appendix 1, Fig. S2).

Results

We focussed on cross-disorder comparisons of neuroanatom-
ical alterations and combined effects of all 3 disorders (Fig. 1), 
and we further examined if structural findings from univari-
ate meta-analyses and NSEA showed cross-modal overlap 
with Neurosynth-derived maps. Findings within single 
(Appendix 1, Fig. S4) and paired-disorder (Appendix 1, Fig. S5) 
analyses largely replicate findings from previous work. Com-

pared with controls, patients with ASD showed increased 
CT, those with ADHD showed a thinner cortex, and those 
with schizophrenia showed marked cortical thinning (Fig. 2A 
and Appendix 1, Single-disorder effect of diagnosis).

Cross-disorder analyses

We then compared between-disorder similarities using cor
relations between –log(p) values from single-disorder meta-
analyses. Global correlations for CT and SA indicated that 
patients with ADHD and those with schizophrenia showed 
the greatest similarity in terms of brain regions affected 
(Appendix 1, Fig. S6). Patients with ASD had negative cor
relations for CT and SA with both schizophrenia and ADHD, 
indicating that ASD affects different brain regions than 

Fig. 1: Graphical representation of network-set enrichment analysis (NSEA) using 2 hypothetical disorders and corresponding arrays. In both 
disorders, vertices are ordered using the ranking metric described: –log(p value) × sign(Cohen d), derived from case–control meta-analysis 
statistics within each disorder. Examining the enrichment score (ES) curves of the default mode network across Disorders A and B: A shows 
an initially decreasing ES due to default mode network vertices lacking enrichment (clustering) near the top of the ranked list, whereas B 
shows increasing ES due to highly enriched arrangement in ranked list L near the top.
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ADHD and schizophrenia and in opposite directions (thick-
ening in patients with ASD v. thinning in those with ADHD 
and schizophrenia).

Combining all 3 disorders in a single case–control meta-
analysis to determine possible convergence in cortical altera-
tions yielded sine regions that survived FDR correction 
(Fig. 2B). For CT, we found nominally significant decreases in 
the left (q < 0.20) and right (q < 0.05) hemispheres, respectively, 
in the anterior and isthmus cingulate, entorhinal and parahip-
pocampal gyri, and increased CT in the left pre- and postcen-
tral gyri (Fig. 2B). We found significantly decreased SA (q < 
0.05) in the left paracentral, precentral, postcentral, medial 
temporal and lateral occipital cortices and in the right superior 
frontal, angular and middle frontal cortices and temporal poles 
(Fig. 2B). Overall, there was more convergence between disor-
ders for SA than CT. However, forest plots of site-wise effect 
size distributions show inconsistencies across diagnoses that 
suggest opposite disorder-specific effect size directions and 
may be biased, particularly in the left precentral and right 
parahippocampal regions for CT and in the right angular and 
superior frontal regions for SA (Appendix 1, Fig. S7).

We examined overlap of significant vertices between dis-
orders via conjunction analysis to better understand the pos-
sibility of overlapping cortical topographies across patients. 

In general, pairs of disorders and all 3 disorders show min
imal overlap between vertices, even with liberal p value 
thresholds (Fig. 3). For CT, we found that at a generous 
threshold of top 20% significant p values (regardless of effect 
direction), there was minor overlap among all disorders in 
the left orbitofrontal, bilateral medial frontal, posterior cin-
gulate and superior temporal gyri (Fig. 3A). Much of this 
overlap persisted until the 10% threshold, with the only re-
maining overlap in the left superior temporal gyrus. For SA, 
there was minor overlap among all disorders in the right an-
gular and inferior temporal gyri, which persisted until the 
15% threshold (Fig. 3B). Between pairs of disorders, the 
overlap between ADHD and schizophrenia was the greatest 
for both CT and SA. The 3-way overlap for CT and SA at all 
thresholds was not significant after permutation testing with 
10 000 iterations (all p > 0.05).

Moderator analysis showed no significant effect of mean 
age, sex distribution, or field strength on diagnostic effect 
sizes after correction for multiple comparisons (up to q < 
0.20; Appendix 1, Figs. S8–10). A few regions were signifi-
cant at an uncorrected level of p < 0.05, but only within a few 
scattered regions, suggesting a random distribution that is 
not significantly affected by demographics (Appendix 1, 
Figs. S8–10).

Fig. 2: Cross-disorder comparisons and combined meta-analysis. (A) Distribution of Cohen d effects across single- and combined-disorder 
analyses. (B) Meta-analysis of combined-disorder effects (all 3) relative to healthy controls. Colour bars indicate the direction of effect (Cohen 
d), with warmer colours (red) indicating increased cortical thickness/surface area (CT/SA) and cooler colours (blue) indicating decreased CT/
SA compared with controls. Significance levels after false-discovery rate (FDR) correction (or lack thereof) are noted in the second panels. 
ADHD = attention-deficit/hyperactivity disorder; ASD = autism-spectrum disorder; SCZ = schizophrenia.
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Finally, examining overlap between structural findings and 
functional findings from Neurosynth automated meta-analysis 
showed minimal cross-modal convergence between structural 
and functional neuroimaging (Appendix 1, Searching for local 
convergence between imaging modalities and Fig. S11).

Characterizing network-wide effects of disorders

We applied NSEA to structural differences to assess network 
enrichment within and across disorders. With regards to CT, 
patients with ASD showed significant (q < 0.05) positive en-
richment (i.e., greater CT) across the default, frontoparietal, 
limbic and somatomotor networks (Fig. 4A). In contrast to 
patients with ASD, those with ADHD presented with signifi-

cant negative enrichment (decreased CT) across the default 
and ventral attention networks (Fig. 4A). Patients with 
schizophrenia presented with significant negative enrich-
ment in the dorsal attention, frontoparietal, limbic and ven-
tral attention networks (Fig. 4A).

Across disorders, patients with ASD and those with 
ADHD presented with significant enrichment in the default 
mode network (ASD: NES = 1.12; ADHD: NES = –0.94), but 
those with ASD showed positive and those with ADHD 
showed negative enrichment (Fig. 4A). Thus, although the 
direction of local change differed (increased CT in patients 
with ASD v. decreased CT in those with ADHD; Fig. 2A), 
both showed convergence at the network level. Patients with 
ASD and those with schizophrenia both showed significant 

Fig. 3: Conjunction analysis examining overlap between disorders by thresholding p values to the top 20%, 15%, 10% and 5% significant ver-
tices within each disorder for (A) cortical thickness, with p value thresholds as follows: p = 0.004 at 20%, p = 0.002 at 15%, and p < 0.001 at 
both the 10% and 5% thresholds for patients with autism-spectrum disorders (ASD); p = 0.07 at 20%, p = 0.06 at 15%, p = 0.040 at 10% and 
p = 0.023 at the 5% threshold for patients with attention-deficit/hyperactivity disorder (ADHD); and p < 0.001 at all thresholds for patients with 
schizophrenia (SCZ), and (B) surface area, with p value thresholds as follows: ASD p = 0.20 at 20%, p = 0.14 at 15%, p = 0.09 at 10% and 
p = 0.032 at the 5% threshold for patients with ASD; p = 0.12 at 20%, p = 0.09 at 15%, p = 0.05 at 10% and p = 0.028 at the 5% threshold for 
patients with ADHD; and p < 0.001 at all thresholds for patients with schizophrenia.
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Fig. 4: Assessing cross-modal homology comparing structural MRI to Neurosynth functional MRI (fMRI) findings at the network level. (A) 
Network-set enrichment analysis (NSEA) applied to single-disorder analyses for cortical thickness (CT) and surface area (SA), with Neuro-
synth comparisons. The Y axis indicates the normalized enrichment score (NES) for all meta-analysis results. Venn diagrams show networks 
that were significantly enriched across disorders. Correlations of Venn diagrams between CT and Neurosynth was significant (r = 0.64, p = 0.032), 
whereas the correlation between SA and Neurosynth was not significant (r = –0.48, p = 0.11). (B) The NSEA applied to combined disorder 
analyses and was compared with Neurosynth results. (C) Examining the dorsal attention SA network ES curves between patients with autism-
spectrum disorder (ASD) and schizophrenia (SCZ). The Y axis indicates ES, and the X axis indicates ranked vertices from both hemispheres.
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enrichment in the frontoparietal (ASD: NES = 1.22; schizo-
phrenia: NES = –0.80) and limbic (ASD: NES = 1.07; schizo-
phrenia: NES = –1.87) networks, but those with schizophre-
nia showed negative and those with ASD showed positive 
enrichment (Fig. 4A). Patients with ADHD and those with 
schizophrenia both showed significant negative enrichment 
for the ventral attention network (ADHD: NES = –0.78; 
schizophrenia: NES = –1.48). Common network-wide altera-
tions across disorders are further indicated in Venn diagram 
format (Fig. 4A); no single network was commonly enriched 
for effects across all 3 disorders for CT.

In examining SA enrichment, we found greater conver-
gence across disorders than in CT. In patients with ASD, sig-
nificant positive enrichment was seen for all networks except 
the default mode network (Fig. 4A), suggesting network-
specific patterns of cortical overgrowth. Patients with ADHD 
presented network-specific directions of enrichment; specif
ically, they showed significant negative enrichment in the 
somatomotor network (NES = –0.61) and positive enrichment 
in the visual network (NES = 0.30). Conversely, in compari-
son to patients with ASD and ADHD, those with schizophre-
nia presented with network-specific negative enrichment for 
the ventral attention (NES = –0.64) and visual networks 
(NES = –0.36). Patients with ASD and those with ADHD 
showed significant negative enrichment in the somatomotor 
network; those with schizophrenia also showed negative en-
richment, but this finding was not significant after permuta-
tion testing. Interestingly, although SA in the visual network 
was significantly enriched across all 3 disorders (Fig. 4), the 
within-network correlations across disorders were positive 
only for the ASD–ADHD pairing and negative for the ASD–
schizophrenia and the ADHD–schizophrenia pairings 
(Fig. 4B). The visual network, as defined in the present study, 
is broad and covers almost the entire occipital lobe 
(Appendix 1, Fig. S2) and divides into smaller networks in 
the 17-network cluster definition.50 This indicates that al-
though all 3 disorders do not affect a specific region within 
the visual network, different subcomponents of the extended 
visual network are affected in patients with schizophrenia 
compared with those with ASD and ADHD.

Searching for network-based convergence between imaging 
modalities

We compared the single-disorder NSEA to Neurosynth re-
sults. By denoting the top 3 network proportions within each 
analysis (Fig. 4A), we estimated highly represented networks 
per disorder and built a Venn diagram to show overlap. Over-
all, networks found to be significantly enriched in NSEA were 
also highly represented in Neurosynth (Fig. 4A). Networks 
with shared enrichment between disorders for CT and SA, 
such as the default mode, ventral attention and frontoparietal 
networks, were also highly represented in the Neurosynth 
Venn diagram (Fig. 4A). We tested for a possible correlation 
between Venn diagrams by assigning a numerical score to 
each network (0 = not significantly enriched in any disorder, 
1 = significantly enriched in 1 disorder, 2 = significantly en-
riched in 2 disorders, and 3 = significantly enriched across all 

disorders). We calculated Pearson correlations and estimated 
p values using permutation testing with 1000 permutations 
for CT and SA to void biases or a “lever effect.” The correla-
tion between CT and Neurosynth was significant (r = 0.64, p = 
0.032), whereas the correlation between SA and Neurosynth 
was not (r = –0.48, p = 0.11). This indicates that networks that 
are commonly affected across disorders in structural MRI 
(CT) are also likely to be affected in fMRI (Neurosynth), more 
so than SA. The NSEA applied to the paired and combined 
disorder analyses showed less similar patterns of network en-
richment than the Neurosynth results (Fig. 4B).

Post hoc analyses examining NSEA behaviour, specifically 
that of the enrichment curve (Fig. 4C), ruled out effects of 
network size or dilations on NSEA significance (Appendix 1, 
post hoc analyses).

Discussion

Our understanding, or at least the approach to analysis, of 
altered neuroanatomy in psychiatric disorders has tradition-
ally focused on finding reductions of grey matter in distinct 
regions of the brain. However, we showed that by studying 
multiple psychiatric disorders simultaneously, patterns of al-
tered brain structure may extend beyond simple reductions 
or increases of MRI-derived metrics of cortical topology. In-
stead, we found that deficits across disorders may arise 
through coordinated, widespread alterations within func-
tional RSNs responsible for dynamic cortical processing of 
complex human traits.

In our first assessment of local alterations in CT and SA 
across ASD, ADHD and schizophrenia, we replicated previ-
ously reported patterns in individual disorders as well as po-
tentially noteworthy regions of convergence when analyzing 
disorders in combination. The right entorhinal, and parrahip-
pocampal gyri showed significantly (q < 0.05) reduced CT in 
the combined analysis (Fig. 2B). For example, previous work 
links the anterior cingulate to symptom severity across 
ASD,58,59 ADHD60,61 and schizophrenia;62,63 with results span-
ning multiple imaging studies, many identify differences in 
structure, connectivity, activation and metabolism associated 
with changes in executive functioning across disorders — all 
indicating that common disruptions may support common 
deficits across the neurocognitive–motor spectrum. Although 
some of our results were significant in the combined univari-
ate analysis of all 3 disorders, there still remain 3 important 
caveats: divergent effect size directions (positive in ASD and 
negative in ADHD and schizophrenia; Fig. 2 and Appendix 1, 
Fig. S7), low or negative correlations between disorders 
(Appendix 1, Fig. S6) and lack of overlap between disorders 
(i.e., these disorders affect different brain regions; Fig. 3), and 
lack of overlap between structural and functional MRI find-
ings (Appendix 1, Fig. S11).

Therefore, we observed limited local anatomic conver-
gence across disorders. This indicates that local measures of 
CT and SA may not entirely explain deficit overlap between 
disorders, initially suggesting local measures of CT and SA 
may not be suitable for cross-disorder analysis of neuro
anatomical phenotypes. Another possibility is that a larger 
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sample may be needed to further parse effects at the local 
level. Furthermore, earlier work showed that local disrup-
tions of neuroanatomy do not necessarily point to dysfunc-
tion. Courchesne and colleagues64 found evidence of 2 sub-
groups in ASD, 1 showing increased cerebellar volume and 1 
showing decreases. There exists significant heterogeneity 
among studies examining brain structure in patients with 
ASD and other disorders, leading to some conclusions re-
garding the limited usefulness of MRI in studying ASD.65 As 
it is impossible to determine the histological and functional 
underpinnings of altered brain volumes, the characterization 
and examination of neuropsychiatric disorders as simply lo-
cal alterations may require improvement. The same concept 
applies to other neuroimaging modalities as well — for ex-
ample, with fMRI it is difficult to disentangle the complex cir-
cuitry and organization of brain networks.66 It is even more 
challenging to determine whether directions of changes in ac-
tivation patterns, connectivity and variable fluctuations be-
tween excitation and inhibition truly cause deficits in human 
brain function.66

Findings at the level of our univariate analyses imply that 
dimensions of neurocognitive deficits across disorders may 
not occur simply due to local increases or decreases in grey 
matter. The wide distribution of effect sizes across disorders 
(Fig. 2A) and the heterogeneous and low correlations ob-
served between disorders (Appendix 1, Fig. S6) suggest this 
to be the case. This shows that dimensional analysis of neuro-
cognitive deficits may require novel methods for parsing het-
erogeneity that accounts for functional networks in addition 
to local alterations. The findings suggest that systematic, 
structural alterations to RSNs may underlie findings seen in 
fMRI studies. In particular, we highlight 2 key points. First, 
structural anomalies in patients with these disorders arise 
through clustered, nonrandom and diffuse effects within 
RSNs. For example, CT in the default mode network was sig-
nificantly enriched in patients with ASD and ADHD (clus-
tered within the network), but not in those with schizophre-
nia, whereas the magnitude (effect size) was greatest in 
patients with schizophrenia, but nonspecifically for the net-
work. Second, networks may show positive or negative en-
richment of effects. The CT in the default mode network was 
significantly enriched in patients with ASD and ADHD, but 
those with ASD showed positive enrichment whereas those 
with ADHD showed negative enrichment. This suggests that 
the underlying pathological processes in respective disorders 
may result in divergent CT changes observed on MRI, 
whereas the overlapping neurocognitive deficits observed 
may arise from common RSN enrichment.

Numerous studies have shown altered RSN connectivity in 
patients with ASD,13,14 ADHD15,16 and schizophrenia.17,18 Simi-
larly, we found evidence of cross-modal convergence to 
Neurosynth findings, with significant correlation between the 
networks enriched for effects in CT and those highly repre-
sented in Neurosynth and with differences detected in fMRI 
seemingly reflecting both alterations in CT (Fig. 4 and 
Appendix 1, Fig. S11). Neurosynth meta-analysis also showed 
preferential involvement of the default mode, ventral atten-
tion and frontoparietal networks, paralleling our NSEA re-

sults. Literature supports these findings, with specific evi-
dence of altered default mode network connectivity across 
ASD,67 ADHD68 and schizophrenia69 as well as similar find-
ings for the frontoparietal network.70,71 Given recent evidence 
showing genetic contributions to RSN connectivity,72 there 
may be overlap in etiology between brain network develop-
ment and psychiatric disorders. Similar RSNs seem to be af-
fected across disorders, manifesting from changes in both 
brain structure and function. We speculate this phenotype 
could be used as a predominant marker of neurocognitive 
deficits and psychiatric symptoms across disorders. Thus, dis-
entangling the complex etiologies and pathways of how these 
effects unfold across neurodevelopment and aging is critical.

Limitations

Limitations of this work include the potential for lack of 
power, as we found minimal local alterations in CT and SA. 
Additional limitations include the exclusion of information 
regarding medication status and symptom severity measures 
from our analysis. This illustrates the drawback of publicly 
available databases — although we were able to conduct a 
large-scale study using data from multiple sources, there was 
a lack of consistency in clinical and demographic information 
provided across sites. Although we used the meta-analytic 
framework to account for cross-site differences in imaging 
protocol, equipment and scan parameters, there could still be 
residual heterogeneity unaccounted for that may contribute to 
or mark findings. To the best of our knowledge, most sites ex-
cluded patients with neurologic or psychiatric disorders other 
than their primary diagnosis (Appendix 1, Table S3); how-
ever, there are still some limitations owing to differing exclu-
sion criteria across sites, which contribute to intersite hetero-
geneity. This is a potential limitation as we cannot be 
absolutely sure of potential secondary or comorbid diagnoses. 
Furthermore, lack of longitudinal data prevented analysis of 
normative developmental and altered spatiotemporal trajec
tories.73 A potential limitation of the Neurosynth analysis is 
the inability to compare the mean age, sex distribution and 
diagnostic markers of studies included in the Neurosynth 
meta-analysis to the sites included in our study. This is be-
cause there is no feasible way to extract participant informa-
tion from the Neurosynth studies, as the Neurosynth analyses 
draw upon more than 300 studies, each with distinct samples. 
Although it is difficult to test whether the Neurosynth partici-
pant data match our anatomic data, the sheer sample size 
would most likely capture age ranges and sex distributions 
covered in the Neurosynth data, which comprise data from 
multiple previous studies. As such, we deem the anatomic 
data studied here to be more representative of the underlying 
population variability. Another limitation of the Neurosynth 
analysis is the difference between volume-based denotations 
in Neurosynth versus the surface-based estimations in our 
data. We aimed to resolve this limitation by expanding the re-
gions in Neurosynth, while cortical gyrification may impede 
accuracy of mapping between volume- and surface-based 
regions of interest. Another limiting factor of the study is the 
issue of within-disorder heterogeneity, as transdiagnostic 
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brain anomalies may have been better detected if within-
disorder heterogeneity was resolved first. Transdiagnostic 
effects might have been better detected if within-disorder 
heterogeneity could be resolved first. However, limited phe-
notypic characterization of the data preclude an acceptable 
heterogeneity or subtyping analysis. We consider this a lim
itation as well as an avenue for future investigation.

Conclusion

We found cross-modal evidence of cortical convergence and 
divergence, ranging from divergent local measures of grey 
matter and poor correlations between disorder-specific ef-
fects, toward convergent network-wide alterations across 
ASD, ADHD and schizophrenia. The heterogeneity of our 
findings call for revised systemic approaches in studying 
these disorders. Our conclusions indicate that structural 
neuroimaging in ASD, ADHD and schizophrenia should 
move toward investigation of multivariate patterns and 
establishing multimodal homology using novel statistical 
methods. Global disruptions in brain structure, rather than 
strictly localized changes, must be taken into account for 
greater reproducibility and insight into the association be-
tween altered structure and neurocognitive deficits in psychi-
atric disorders. This is an important consideration for future 
studies for research methodology and interpretation of re-
sults, particularly in our search for biomarkers of dimen-
sional deficits across psychiatric disorders.
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