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Abstract

It is important to determine the binding pathways and mechanisms of ligand molecules to target 

proteins to effectively design therapeutic drugs. Molecular dynamics (MD) is a promising 

computational tool that allows us to simulate protein–drug binding at an atomistic level. However, 

the gap between the time scales of current simulations and those of many drug binding processes 

has limited the usage of conventional MD, which has been reflected in studies of the HIV 

protease. Here, we have applied a robust enhanced simulation method, Gaussian accelerated 

molecular dynamics (GaMD), to sample binding pathways of the XK263 ligand and associated 

protein conformational changes in the HIV protease. During two of 10 independent GaMD 

simulations performed over 500–2500 ns, the ligand was observed to successfully bind to the 
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protein active site. Although GaMD-derived free energy profiles were not fully converged because 

of insufficient sampling of the complex system, the simulations still allowed us to identify 

relatively low-energy intermediate conformational states during binding of the ligand to the HIV 

protease. Relative to the X-ray crystal structure, the XK263 ligand reached a minimum root-mean-

square deviation (RMSD) of 2.26 Å during 2.5 μs of GaMD simulation. In comparison, the ligand 

RMSD reached a minimum of only ~5.73 Å during an earlier 14 μs conventional MD simulation. 

This work highlights the enhanced sampling power of the GaMD approach and demonstrates its 

wide applicability to studies of drug–receptor interactions for the HIV protease and by extension 

many other target proteins.

Graphical abstract

Understanding the binding pathways and mechanisms of small molecule ligands to target 

proteins is important for the discovery and development of effective drugs.1–3 The HIV 

protease is a retroviral aspartyl protease that plays a crucial role in the HIV life cycle.4 The 

protease cleaves synthesized polyproteins, e.g., Gag and Gag-Pol, to create protein subunits 

of an infectious mature HIV.5 Therefore, the HIV protease has served as one of the major 

drug targets for the treatment of AIDS. Numerous X-ray crystal structures of the HIV 

protease have been determined over the past 30 years.6 More than 100 inhibitors that 

interfere with the protein functions have been identified.7,8 Structural dynamics of the 

protease in the ligand-free (apo) and ligand-bound (holo) forms have also been extensively 

studied.9–11 However, the mechanisms of ligand binding and the correlations with protein 

conformational changes remain poorly understood.

The structure of HIV protease is a homodimer with C2 symmetry. Two glycine-rich loops, 

called “flaps”, which are highly dynamic, play an integral role in gating access of the ligands 

to the active site (Figure 1A).6 Three major conformations of the flaps were identified: 

“open”, “semi-open”, and “closed”. Both experimental and computational studies suggested 

that the apoprotein predominantly adopts the “semi-open” conformation, while the 

holoprotein exhibits the “closed” conformation.12–14 The orientation of the flaps is defined 

as handedness. There are two handedness states, semi-open and closed, which are correlated 

with the apo and holo forms of the protein, respectively.11,15 Because the flap conformation 

and handedness of the HIV protease are distinct between the apo-and holoprotein forms, 

large-scale conformational transitions of the protein are expected during ligand binding. In 

addition, we chose XK263 as a sampling ligand. In particular, the cyclic urea compound 

XK263 has been identified as a small, fast, and tight binder of the HIV protease with high 

hydrophobicity.16 The kon and Kd of XK263 are ~109 M−1 s−1 and ~10−9 M (approximately 

−11 kcal/mol), respectively.17
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Because ligand binding to proteins typically occurs on microsecond to millisecond time 

scales, Brownian dynamics simulations with coarse-grained models have been widely 

applied in computational studies.18,19 However, this model has not been able to capture 

ligand binding and protein conformational changes at the atomistic level. Recently, 

remarkable advances in both available computational power and the development of the 

underlying techniques required to make effective use of new technologies offering this 

computational power have enabled all-atom molecular dynamics (MD) simulations of 

protein–ligand association processes.20–25 MD simulations utilizing these technologies have 

been able to successfully capture the ligand binding processes that start from initial diffusion 

in the solvent to entry into the binding pocket and finally binding to the target site of the 

protein kinases and G-protein-coupled receptors (GPCRs).20,21,26

Conventional MD (cMD) simulations have also been applied to study association of the 

ligand to the HIV protease, which have shown that switches of the hydrogen bonds and 

different chemical properties of the ligands play important roles in the ligand binding 

process.16,27 However, even a 14 μs cMD simulation could not reproduce the final bound 

conformation of XK263.16 Compared with the X-ray crystal structure, the ligand reached a 

minimum root-mean-square deviation (RMSD) of 5.73 Å. The deficiency may result from 

both the lack of effective sampling power and the short time scale, from a biological 

perspective, of the cMD simulation. Moreover, the insufficient sampling precludes free 

energy calculations of the ligand binding intermediate states. Therefore, enhanced sampling 

is needed to obtain a more complete picture of the protein–ligand binding process.

To achieve both unconstrained enhanced sampling and energetic reweighting for free energy 

calculations of large biomolecules like proteins, Gaussian accelerated MD (GaMD) has been 

developed by applying a harmonic boost potential to smooth the biomolecular potential 

energy surface.25 GaMD greatly reduces the energy barriers and accelerates conformational 

transitions and ligand binding by orders of magnitude.22,28,29 Moreover, because the boost 

potential follows a Gaussian distribution, the original free energy profiles of biomolecules 

can be recovered through a cumulant expansion to the second order.25 GaMD solves the 

energetic reweighting issue as encountered in the previous accelerated MD (aMD) method.30 

It allows us to quantitatively characterize conformational changes in complex biomolecules, 

including the fast-folding proteins,25,31 GPCRs,28 and CRISPR-Cas9 (clustered regularly 

interspaced short palindromic repeats-CRISPR-associated protein 9).29 Compared with other 

enhanced sampling methods such as metadynamics32 and adaptive biasing force (ABF),33 

GaMD does not require predefined collective variables, which is advantageous for studying, 

among other things, the complex protein–ligand binding process.25

In this study, GaMD was applied to simulate ligand binding to the HIV protease. 

Microsecond-time-scale GaMD simulations provided significantly improved sampling 

compared with that of the cMD simulations. The entire pathways for association of XK263 

with the HIV protease were successfully simulated, and several key intermediate states were 

also identified during ligand binding using GaMD. Correlations between the ligand motions 

and conformational changes of the HIV protease were further examined. Although GaMD-

derived free energy profiles were not fully converged because of insufficient sampling of the 
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complex system, the simulations still allowed us to characterize key ligand binding 

intermediates and overall protein structural dynamics.

METHODS

Gaussian Accelerated Molecular Dynamics

Gaussian accelerated molecular dynamics (GaMD) enhances the conformational sampling of 

biomolecules by adding a harmonic boost potential to reduce the system energy barriers. 

Details of the method have been described in previous studies,25,31 and a brief summary is 

provided here. When system potential V(r) is lower than a reference energy E, the modified 

potential V*(r) of the system is calculated as

V ∗ (r) = V(r) + ΔV(r)

ΔV(r) =
1
2k[E − V(r)]2 V(r) < E

0 V(r) ≥ E

(1)

where k is the harmonic force constant. The two adjustable parameters E and k can be 

determined on the basis of three enhanced sampling principles.25 The reference energy 

needs to be set in the following range:

Vmax ≤ E ≤ Vmin + 1
k (2)

where Vmin and Vmax are the system minimum and maximum potential energies, 

respectively. To ensure that eq 2 is valid, k has to satisfy the equation k ≤ 1/(Vmax − Vmin). 

Let us define k ≡ k0[1/(Vmax − Vmin)], then 0 < k0 ≤ 1. The standard deviation of ΔV needs 

to be small enough (i.e., narrow distribution) to ensure proper energetic reweighting:34 σΔV 

= k(E − Vavg)σV ≤ σ0, where Vavg and σV are the average and standard deviation of the 

system potential energies, respectively, and σΔV is the standard deviation of ΔV with σ0 as a 

user-specified upper limit (e.g., 10kBT) for proper reweighting. When E is set to the lower 

bound E = Vmax according to eq 2, k0 can be calculated as

k0 = min (1.0, k0′ ) = min 1.0,
σ0
σV

×
Vmax − Vmin
Vmax − Vavg

(3)

Alternatively, when the threshold energy E is set to its upper bound E = Vmin + 1/k, k0 is set 

to
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k0 = k0″ ≡ 1 −
σ0
σV

Vmax − Vmin
Vavg − Vavg

(4)

if k0″ is found to be between 0 and 1. Otherwise, k0 is calculated using eq 3.

For energetic reweighting of GaMD simulations, the probability distribution along a selected 

reaction coordinate A(r) is written as p*(A), where r denotes the atomic positions {r1, …, 

rN}. Given the boost potential ΔV(r) of each frame, p*(A) can be reweighted to recover 

canonical ensemble distribution, p(A), as

p(A j) = p ∗ (A j)
〈eβΔV(r)〉 j

∑i = 1
M 〈p ∗ (Ai)e

βΔV(r)〉
i

, j = 1, …, M (5)

where M is the number of bins, β = kBT, and 〈eβΔV(r)〈j is the ensemble-averaged Boltzmann 

factor of ΔV(r) for simulation frames found in the jth bin. To reduce the energetic noise, the 

ensemble-averaged reweighting factor can be approximated using cumulant expansion:35,36

〈eβΔV〉 = exp ∑
k = 1

∞ βk

k! Ck (6)

where the first three cumulants are given by

C1 = 〈ΔV〉
C2 = 〈ΔV2〉 − 〈ΔV〉2 = σΔV

2

C3 = 〈ΔV3〉 − 3〈ΔV2〉〈ΔV〉 + 2〈ΔV〉3

(7)

When the boost potential follows a near-Gaussian distribution, cumulant expansion to the 

second order (or “Gaussian approximation”) provides an approximation for free energy 

calculations.34 The reweighted free energy F(A) = −kBT ln p(A) is calculated as

F(A) = F ∗ (A) − 1
β ∑

k = 1

2 βk

k! Ck + Fc (8)

where F*(A) = −kBT ln p*(A) is the modified free energy obtained from a GaMD simulation 

and Fc is a constant.

Miao et al. Page 5

Biochemistry. Author manuscript; available in PMC 2018 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



System Setup

The X-ray crystal structure of the apo HIV protease was taken from Protein Data Bank 

(PDB) entry 1HHP (2.70 Å resolution).6 The XK263 ligand was extracted from the 1HVR 

X-ray structure of the HIV protease (1.80 Å resolution).8 To simulate the ligand binding 

process, the XK263 ligand was initially placed ~20 Å from the active site of apo HIV 

protease (see Figure 1B). The Amber FF99SB and general Amber force field (GAFF) were 

applied to the HIV protease and XK263, respectively.37,38 Cl− ions were added to neutralize 

the system using the ion parameters developed by Joung and Cheatham.39 Energy 

minimization was performed on the hydrogen atoms, protein side chains, and the entire 

system for 500, 5000, and 5000 steps, respectively. The structure was then solvated in a 

rectangular box of TIP3P water molecules with ~12 Å between the box edge and the solutes.
40 Periodic boundary conditions were applied for the simulation system, and long-range 

electrostatics were accounted for using the particle mesh Ewald summation method.41

Simulation Protocol

The Amber 14 package with an efficient GPU implementation of GaMD25,42,43 was applied 

for simulation of the HIV protease. Bonds containing hydrogen atoms were restrained with 

the SHAKE algorithm,44 and a 2 fs time step was used. The Langevin thermostat with a 

damping constant of 2 ps−1 was also used to maintain a temperature of 300 K. Electrostatic 

interactions were calculated using the particle mesh Ewald summation41 with a direct space 

cutoff of 12.0 Å. The simulation started with gradual heating of the complex system to 50, 

100, 150, 200, 250, and 300 K for 10 ps at each temperature. To ensure that the system 

reached equilibrium, a 20 ns cMD simulation was further performed at 300 K with the 

isothermic–isopressure (NPT) ensemble.

The GaMD simulation proceeded with a 10 ns short cMD simulation to collect the potential 

statistics (e.g., the maximum, minimum, average, and standard deviation values of the 

system potential) for calculating the GaMD acceleration parameters, a 50 ns equilibration 

after adding the boost potential, and finally 10 independent GaMD production runs with 

randomized initial atomic velocities. The GaMD simulation was performed at the “dual-

boost” level by setting the reference energy to the lower bound, i.e., E = Vmax.25 One boost 

potential is applied to the dihedral energetic term and another to the total potential energetic 

term. The average and standard deviation of the system potential energies were calculated 

every 200000 steps (400 ps). The upper limit of the boost potential standard deviation, σ0, 

was set to 6.0 kcal/mol for the dihedral and total potential energetic terms. A list of GaMD 

production runs with 500–2500 ns durations (total of ~13.8 μs) is provided in Table 1. 

Simulation frames were saved every 0.1 ps for further analysis.

Simulation Analysis

CPPTRAJ45 and VMD46 were used to analyze the GaMD simulation trajectories. Because 

ligand binding triggers major conformational changes mainly in the two flaps of the HIV 

protease based on the X-ray structures6,8 and previous studies,11–16 RMSDs were calculated 

for the two protein laps (residues Lys43–Tyr59) and the diffusing XK263 ligand relative to 

the 1HVR PDB structure of the holo HIV protease (Figure 1A). The dihedral angle of the 
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Cα atoms of the Tyr59-Gly51-Gly51′-Tyr59′ motif was also calculated to characterize the 

protein flap handedness.

The PyReweighting34 toolkit was used to reweight the GaMD simulation to compute the 

potential of mean force (PMF) profiles. A bin size of 1 Å was used for the RMSDs and 6° 

for the dihedral angle. The cutoff was set to 500 frames for the PMF calculations. Two-

dimensional (2D) PMF profiles were obtained for binding of ligand to the HIV protease 

regarding the ligand RMSD versus the protein flap RMSD and handedness, and the protein 

flap handedness versus the flap RMSD (Figures 2–4).

RESULTS

Binding of the XK263 ligand molecule to the active site of the HIV protease was observed 

in two 2500 ns GaMD production trajectories (“Sim1” and “Sim2” in Table 1), during which 

the minimum RMSD of the diffusing ligand relative to the X-ray structure reached <3 Å. 

Meanwhile, the HIV protease underwent large-scale conformational changes. The protein 

flaps switched from the semi-open conformation in the apo form to the closed conformation 

in the holo form and visited distinct intermediate conformational states during ligand 

binding. In the other eight GaMD production trajectories (“Sim3” to “Sim10” in Table 1), 

the XK263 ligand bound to other regions of the protein (including the “front”, “left”, and 

“right”), being consistent with observations obtained from previous Brownian dynamics and 

MD simulations.16,27,47 No complete ligand binding to the protein active site was observed 

in these eight GaMD trajectories, and the minimum ligand RMSDs were >3 Å (see the 

ligand pathways and RMSD plots in Figure S1). Because we aimed to determine the 

complete ligand binding pathways, the “Sim1” and “Sim2” GaMD trajectories were used for 

further analysis.

Ligand Pathways

During the “Sim1” GaMD trajectory, starting from free diffusion in the solvent (unbound 

state) (Figure 1B), the XK263 ligand molecule first attached to one of the two protein flaps 

within ~20 ns, entered the protein binding site, and induced the protein flaps to open near 

~600 ns. Then, the two protein flaps spent ~1400 ns in rearranging their conformations, with 

large fluctuations in the RMSDs of both protein flaps and ligand during ~600–2000 ns 

(Figure 1C). Finally, the two protein flaps changed back to the closed conformation and 

locked the ligand molecule at the protein active site (Figure 1C and Movie S1). Relative to 

the 1HVR X-ray structure, the ligand reached a minimum RMSD of 2.26 Å near ~2000 ns 

(Figure 1D).

A similar pathway of ligand binding to the active site of the HIV protease was observed in 

the “Sim2” GaMD trajectory (Figure 1E and Movie S2). The RMSD of the ligand relative to 

the 1HVR X-ray structure approached a minimum of 2.74 Å near ~720 ns in “Sim2” (Figure 

1F). However, the two protein flaps opened in “Sim2” for a significantly shorter period of 

time (~250 ns) before closing back to the ligand-bound conformation than in “Sim1” (~1400 

ns). The protein flaps also underwent a smaller conformational change in “Sim2” with an 

RMSD of ≲8 Å (Figure 1F), compared with an RMSD of ≲15 Å in “Sim1” (Figure 1D).
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Protein Conformational Changes

As shown in Figure 2A, a 2D PMF profile was calculated with regard to RMSDs of the two 

protein flaps and the XK263 ligand relative to the 1HVR X-ray structure by combining the 

“Sim1” and “Sim2” GaMD trajectories. Four low-energy conformational states, including 

the unbound (“U”), intermediate-1 (“I-1”), intermediate-2 (“I-2”), and bound (“B”) states, 

were identified from the PMF profile. Figure S2 shows distribution anharmonicity of ΔV of 

frames found in each bin of the 2D PMF, along with the reweighted PMF profiles obtained 

through cumulant expansion to the first, second, and third orders. Overall, the ΔV 
anharmonicity is close to zero (Figure S2A), justifying the use of Gaussian approximation or 

cumulant expansion to the second order for energetic reweighting (Figure 2A). In 

comparison, the PMF profile obtained with cumulant expansion to the third order appeared 

to be too noisy with free energy values of ≲20 kcal/mol (Figure S2D). Additionally, we 

calculated 2D PMF profiles for each individual GaMD trajectory (Figure S3), as well as all 

10 GaMD trajectories combined (Figure S4). PMF profiles of the individual GaMD 

trajectories exhibited significant differences, largely because of the different ligand pathways 

and protein flap dynamics depicted in Figure S1. Nevertheless, the four unbound, 

intermediate-1, intermediate-2, and bound states identified in Figure 2A remained as low-

energy wells in the 2D PMF profile obtained by combining all 10 GaMD trajectories. 

Therefore, although the presented free energy profiles were still not converged because of 

insuficient sampling of the complex system, the GaMD simulations allowed us to identify 

the low-energy states mentioned above. Furthermore, the conformational transition from the 

unbound to the intermediate states exhibited a free energy barrier higher than the transition 

between the intermediate and bound states (Figure 2A and Figure S4).

In the unbound state, the HIV protease adopted the “semi-open” conformation, which is the 

same as in the protein apo form (Figure 1B). Compared to the 1HVR X-ray structure, 

RMSDs of the two protein flaps and the XK263 ligand were ~2.9 and ~24.3 Å, respectively, 

in the unbound state (Figure 2A). When the ligand bound to the active site, the flaps changed 

to the “closed” conformation (Figure 2D). Furthermore, two key intermediate conformations 

“I-1” and “I-2” of the HIV protease are shown in panels B and C of Figure 2, respectively. In 

intermediate “I-1”, both protein flaps were widely open with an ~11.1 Å RMSD and the 

XK263 ligand moved toward one of the two flaps with an ~12.7 Å RMSD (Figure 2A,B). 

The flank rings of the XK263 ligand formed nonpolar interactions with hydrophobic 

residues, including Val32′, Ile47′, Ile50′, Pro81′, and Val82′, in the protein flap. In the 

“I-2” intermediate, a flap tended to close, while the other flap remained fully open as in the 

“I-1” conformation (Figure 2C). A hydrogen bond was formed between the oxygen atoms of 

XK263 and residues Asp25′ and Ile50′ to further stabilize the protein–ligand interactions. 

At this stage, RMSDs of the XK263 ligand and the two protein flaps became ~8.6 and ~13.0 

Å, respectively (Figure 2A).

To study the handedness of the two protein flaps in the HIV protease, we define a 

“handedness dihedral” as the dihedral angle formed by the Cα atoms of the Tyr59-Gly51-

Gly51′-Tyr59′ motif. In the X-ray structures, the handedness dihedral of the apo HIV 

protease is 123.87° and that of the holoprotein −97.09° (Figure 3B). Hence, the positive and 

negative dihedrals represent conformations of the protein semi-open and closed handedness, 

Miao et al. Page 8

Biochemistry. Author manuscript; available in PMC 2018 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively. Figure 3A shows a 2D PMF calculated for the protein flap handedness versus 

the flap RMSD. Three low-energy conformational states of the protein flaps were identified, 

including the “semi-open flaps with semi-open handedness”, “closed flaps with closed 

handedness”, and “fully open flaps” states. In the apo form, the protein adopted the semi-

open flaps with semi-open handedness state, for which the flap RMSD is ~3 Å and the 

handedness dihedral is ~125° (Figure 3C). Then, the protein flaps visited the fully open 

state, for which the flap RMSD increased to ~12 Å and the handedness dihedral is within a 

range of 0–60° (Figure 3E). This state corresponds to the “I-1” and “I-2” intermediates 

shown in Figure 2. The fully open protein flaps allowed the ligand to rearrange its 

conformation in a large space. Finally, the closed flaps with closed handedness were found 

in the ligand-bound (holo) protein, in which the flap RMSD was found within the range of 

2.5–5 Å and the handedness dihedral angle shifted to approximately −155° to −95° (Figure 

3D).

Correlations between Ligand Binding and Protein Conformational Changes

A 2D PMF profile of the ligand RMSD versus protein handedness dihedral was calculated to 

examine the correlation between ligand binding and handedness changes of the HIV 

protease. In addition to the unbound, bound, and intermediate “I-1” and “I-2” 

conformations, the PMF calculation revealed another low-energy intermediate “I-3” state 

(Figure 4A). In the “I-3” state, the XK263 ligand reached the target site, being quite similar 

to the final 1HVR X-ray crystal conformation with an RMSD of only ~4.8 Å. However, the 

handedness dihedral of two protein flaps in intermediate “I-3” was ~160°. The flaps 

remained in the “semi-open” handedness state as in the ligand-unbound (apo) protein 

(Figure 4E). In contrast, the flap handedness dihedral was approximately −155° to −95° in 

the “closed” ligand-bound state (Figure 4B). When the protein flaps are open, the 

handedness dihedral is ~10° and ~30° in the intermediate “I-1” (Figure 4C) and “I-2” 

(Figure 4D) states, respectively. Figure S5 also depicts front views of the protein in the 

intermediate and ligand-bound states. These results suggest correlations between ligand 

binding and large-scale conformational changes of the HIV protease.

DISCUSSION

In this study, long-time-scale GaMD enhanced simulations were performed for 2500 ns to 

successfully sample ligand binding pathways and correlated conformational changes of the 

HIV protease. GaMD provided significantly enhanced sampling compared with that of cMD 

simulations. Figure S6 plots the RMSDs of the XK263 ligand relative to the 1HVR X-ray 

crystal conformation obtained from a previous ~14000 ns Anton cMD simulation16 and two 

2500 ns GaMD simulations (“Sim1” and “Sim2” listed in Table 1). Relative to the X-ray 

crystal structure, the XK263 ligand reached a minimum RMSD of 2.26 Å during 2500 ns 

GaMD simulations. In comparison, the ligand RMSD reached a minimum RMSD of only 

5.73 Å during the Anton simulation. This was already captured during the initial 200 ns 

GaMD trajectories as shown in the inset of Figure S6.

The 2D PMF plots derived from the GaMD simulations showed that the association of the 

XK263 ligand with the HIV protease involved several key steps. In the ligand-free state, the 
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protein adopted semi-open flaps with semi-open handedness, as described in the apoprotein 

crystal structure. Next, the ligand anchored to one of the protein flaps via strong 

hydrophobic interactions, inducing conformational changes in the protein. The two protein 

flaps were able to open and close in intermediate conformational states to allow the ligand to 

move in, accompanying switches of the flap handedness orientations. The magnitude of flap 

motions could vary as observed in the GaMD simulations presented here. Finally, the 

XK263 bound to the active site and the HIV protease changed to the closed ligand-bound 

conformation. The conformational transition between the unbound and intermediate states 

exhibited the highest free energy barrier (Figure 2A and Figure S4) and thus appeared to be 

the rate-limiting step during association of the XK263 ligand, although the anisotropic 

diffusion of the flexible flaps and other factors could affect the ligand binding rate, as well.48 

The binding mechanism of the XK263 obtained from the GaMD simulations is consistent 

with those from previous cMD studies;16,27 i.e., an induced-fit model is more suitable for 

describing binding of XK263 to the HIV protease than a conformational-selection 

mechanism is.16,49

Because of the limited time scale and sampling power, the previous cMD simulations did not 

capture the final ligand-bound state. The ligand was trapped in the low-energy wells, such as 

the intermediate “I-3” state in Figure 4. In comparison, the GaMD simulations achieved 

complete sampling of the XK263 binding process, during which the ligand reached the 

active site with a <3 Å RMSD compared with the 1HVR X-ray structure of the HIV 

protease.8 Furthermore, the GaMD simulations allowed us to characterize low-energy 

intermediate conformational states of the HIV protease during binding of the XK263 ligand. 

However, it is important to note that only two ligand binding events were captured in the 

HIV protease even with the GaMD enhanced sampling and the simulation-derived free 

energy profiles were not converged. Refining the free energy profiles and achieving 

sampling convergence are subject to future developments in the computing power and 

methodology.

Although the XK263 ligand has been considered as a small and fast binder of the HIV 

protease, computer simulations of the ligand association paths are still very challenging. 

Compared to the protein kinases or GPCRs, for which the ligand binding paths may be well-

defined,20,21 the HIV protease binders could approach the protein active site from many 

different directions. The complete ligand binding to the HIV protease involves not only large 

conformational changes of the protein flaps between the open and closed states but also 

motions in the flap handedness orientations. This makes sampling of the entire ligand 

binding process difficult. Because the XK263 molecule is a hydrophobic ligand, the main 

driving force for its association is nonpolar interaction. Few formations and breaks of 

hydrogen bonds among the ligand, protein, and solvent molecules were detected during the 

simulations. However, the binding mechanism might be different for polar ligands of the 

HIV protease.16 Therefore, simulations of different binders and various protein systems will 

be needed in the future to gain a complete picture of protein–ligand binding mechanisms. 

GaMD simulations presented here will be useful for guiding future studies of drug–receptor 

interactions.
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Figure 1. 
(A) X-ray crystal structures of the HIV protease in the apo form (Protein Data Bank entry 

1HHP, green) and holo form that is bound by the XK263 ligand molecule (Protein Data 

Bank entry 1HVR, blue). The ligand is shown as sticks and the protein as ribbons. Protein 

residues Lys43–Tyr59 in the flaps of two protein monomers are colored orange. (B) 

Simulation starting structure of the HIV protease in which the ligand molecule (red sticks) is 

placed ~20 Å from the protein surface in the unbound (“U”) state. A virtual ligand molecule 

of the X-ray conformation is colored blue for reference. (C) During the “Sim1” GaMD 

trajectory, the XK263 ligand molecule binds to the active site of the HIV protease within 

2500 ns, for which the center ring of XK263 is represented by lines and colored by 

simulation time in a red–white–blue (RWB) color scale. The 1HVR X-ray conformation is 

colored blue for reference. (D) Root-mean-square deviations (RMSDs) of the ligand 

molecule and protein flaps relative to the 1HVR X-ray conformation are plotted for “Sim1”. 

Thick lines depict the running average over 5 ns time windows. (E and F) Ligand binding 

pathway and ligand and flap RMSDs obtained from the “Sim2” GaMD trajectory, 

respectively. Ligand pathways and RMSDs of the ligand molecule and protein flaps are 

presented in Figure S1 for the other eight GaMD simulations, during which the ligand 

minimum RMSD is >3 Å (Table 1).
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Figure 2. 
(A) 2D potential of mean force (PMF) calculated with the protein flaps and ligand molecule 

RMSDs by combining the “Sim1” and “Sim2” GaMD trajectories, during which the XK263 

ligand molecule was observed to bind the protein active site. Four low-energy 

conformational states are labeled, including the unbound (“U”), intermediate-1 (“I-1”), 

intermediate-2 (“I-2”), and bound (“B”) forms. (B–D) Structural conformations of the HIV 

protease in the “I-1”, “I-2”, and “B” states, respectively. The unbound (“U”) conformation is 

shown in Figure 1B. The evolving protein (ribbons) and ligand molecule (sticks) are colored 

red, and the X-ray conformation of the bound ligand molecule is colored blue for 

comparison.
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Figure 3. 
(A) 2D PMF profile of the protein flap RMSD and handedness calculated by combining the 

“Sim1” and “Sim2” GaMD trajectories, during which the XK263 ligand molecule was 

observed to bind the protein active site. Three low-energy conformational states of the 

protein flaps are labeled, including the “open”, “semi-open”, and “closed” states. (B) Top 

view of the X-ray crystal structures of the HIV protease in the apo (PDB entry 1HHP, green) 

and XK263-bound holo (PDB entry 1HVR, blue) forms. The ligand is shown as sticks and 

the protein as ribbons. The dihedral angle of the Cα atoms (cyan spheres) of the Tyr59-

Gly51-Gly51′-Tyr59′ motif is used to characterize the flap handedness. (C–E) 

Conformational states of the HIV protease: “semi-open” flaps with “semi-open” handedness, 

“closed” flaps with “closed” handedness, and “open” flaps, respectively. The evolving 

protein is shown as ribbons and the ligand molecule as sticks.
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Figure 4. 
(A) 2D PMF profile of the flap handedness and ligand molecule RMSD calculated by 

combining the “Sim1” and “Sim2” GaMD trajectories, during which the XK263 ligand 

molecule was observed to bind to the protein active site. Five low-energy conformational 

states are labeled, including the unbound (“U”), intermediate-1 (“I-1”), intermediate-2 

(“I-2”), intermediate-3 (“I-3”), and bound (“B”) forms. (B–E) Structural conformations of 

the HIV protease in the bound (“B”), intermediate-1 (“I-1”), intermediate-2 (“I-2”), and 

intermediate-3 (“I-3”) states, respectively. The unbound (“U”) conformation is shown in 

Figure 1B. The evolving protein (ribbons) and ligand molecule (sticks) are colored red, and 

the X-ray conformation of the bound ligand molecule is colored blue. The dihedral angle of 

the Cα atoms (cyan spheres) of the Tyr59-Gly51-Gly51′-Tyr59′ motif is shown as in Figure 

3.
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