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Abstract

Objectives—Obstructive sleep apnea (OSA) is characterized by pharyngeal obstruction 

occurring at different sites. Endoscopic studies reveal that epiglottic collapse renders patients at 

higher risk of failed oral appliance therapy or accentuated collapse on CPAP. Diagnosing epiglottic 

collapse currently requires invasive studies (imaging, endoscopy). Alternatively, we propose that 

epiglottic collapse can be detected from distinct airflow patterns it produces during sleep.

Methods—Twenty-three OSA patients underwent natural sleep endoscopy. A total of 1232 

breaths were scored as epiglottic/non-epiglottic collapse. Several flow characteristics were 

determined from the flow signal (recorded simultaneously with endoscopy) and used to build a 

predictive model to distinguish epiglottic from non-epiglottic collapse. Additionally, ten OSA 

patients were studied to validate the pneumotachograph flow features using nasal pressure signals.
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Results—Epiglottic collapse was characterized by a rapid fall(s) in the inspiratory flow, more 

variable inspiratory and expiratory flow, and reduced tidal volume. The cross-validated accuracy 

was 84%. Predictive features obtained from pneumotachograph flow and nasal pressure were 

strongly correlated.

Conclusions—This study demonstrates that epiglottic collapse can be identified from the 

airflow signal measured during a sleep study. This method may enable clinicians to use clinically-

collected data to characterize underlying physiology and improve treatment decisions.

INTRODUCTION

Obstructive sleep apnea (OSA) is a common disorder characterized by recurrent upper 

airway collapse during sleep[1], which causes sleep fragmentation[2] and sympathetic 

activation[3]. A number of drug-induced sleep endoscopy (DISE) studies in OSA patients 

have demonstrated that the upper airway obstruction results from the collapse of one or more 

pharyngeal structures, such as the soft palate, the lateral pharyngeal walls, the tongue base, 

and/or the epiglottis[4–6].

DISE studies, which visualize epiglottic collapse (EC) better than traditional imaging 

techniques, have shown that epiglottic collapse occurs more often than previously 

described[6–8]. In fact, some studies have reported that up to 30% of patients have complete 

collapse of the epiglottis[7]. Research also indicates that epiglottic collapse is difficult to 

treat with conventional therapies, such as oral appliances[9] and even CPAP[10, 11]. 

Therefore, recognizing whether and how often a patient’s upper airway collapses at the 

epiglottis could have important implications for treatment.

To determine whether epiglottic collapse contributes to OSA in a given patient, imaging 

techniques (e.g. computed tomography[12] and magnetic resonance imaging[13]) and DISE 

studies have been utilized. However, the invasive and expensive nature of these procedures 

hampers routine assessment of the structure causing collapse in the clinical setting. As an 

alternative approach, it has been shown that individuals with OSA exhibit well-defined, 

reproducible intra-breath airflow characteristics during sleep[14, 15]. Recently, our group 

has noted a link between one of these characteristics—the magnitude of negative effort 

dependence (NED, the reduction in airflow in association with increasing inspiratory effort

—and the presence of epiglottic collapse in OSA[16]. Our results also suggested that rapid 

changes in inspiratory airflow within a breath (“discontinuities”), scored visually, were a 

recognizable hallmark of epiglottic collapse. However, to date, there has been no systematic 

investigation identifying epiglottic collapse from flow characteristics.

In this study, we hypothesized that epiglottic collapse has distinct and identifiable effects on 

the within-breath airflow shape during sleep in patients with OSA. We employed a machine 

learning approach to develop and validate a model that uses flow characteristics (features) to 

predict the presence versus absence of epiglottic collapse as defined by gold standard 

endoscopy. Endoscopy was performed simultaneously with flow measurement during 

natural sleep. As an additional clinical validation, pneumotachograph flow and nasal 

pressure were measured simultaneously on a separate subgroup of patients. The correlations 

between pneumotach- and nasal pressure-measured features were assessed.

Azarbarzin et al. Page 2

Eur Respir J. Author manuscript; available in PMC 2018 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



METHODS

Participants

OSA patients (age: 21–70 years) with an apnea-hypopnea index (AHI) > 10 events/hr were 

invited to participate. The exclusion criteria included cardiac disease (uncontrolled 

hypertension or heart failure) or any other serious medical condition, and the use of 

medications known to influence sleep, respiration, or muscle control. The study was 

approved by the Partners Institutional Review Board. All participants provided written 

informed consent prior to study enrolment. The patients’ characteristics and baseline PSG 

parameters were analyzed retrospectively.

Endoscopic studies

Measurements and Equipment—Participants were instrumented for a physiological 

polysomnographic study. Electroencephalography (EEG), chin electromyography (EMG), 

and electrooculography (EOG) were recorded for sleep staging. Piezo-electric bands around 

the chest and abdomen monitored respiratory movements/effort. Electrocardiography 

(ECG), body position, and arterial oxygen saturation (SaO2) were also recorded. In addition, 

participants wore a sealed nasal mask to facilitate airflow measurement using a pneumotach 

(Hans-Rudolph, Kansas City, MO). Mask pressure was monitored with a pressure transducer 

(Validyne, Northridge, CA) referenced to atmosphere. Pharyngeal lumen pressure was 

measured with a 5-french Millar catheter that had 6 pressure sensors 0.75 cm apart starting 

at the tip (P1 to P6 (downstream pressure sensor, placed above the epiglottis)). To visualize 

the airway, a 2.8 mm diameter pediatric bronchoscope was inserted through the second 

nostril. Spike 2 software (Cambridge Electronic Design, Cambridge, England) was used to 

acquire the physiological signals and endoscopic images. All signals except EEG, EMG, 

EOG, and ECG (which were sampled at 125 Hz) were captured at a sampling frequency of 

500Hz, and the images were sampled at 30 frames/second.

Protocol—Participants were asked to sleep in either the supine or lateral position. To 

evaluate which pharyngeal structure was causing collapse, the scope’s tip was initially 

placed above the soft palate and several flow-limited breaths were recorded. Flow limitation 

was determined based on simultaneous observations of flow and epiglottic pressure (lack of 

increase in flow despite decreasing epiglottic pressures). The tip of the scope was then 

advanced to the oropharynx to visualize the oropharyngeal and hypopharyngeal structures. 

This process was repeated with as many breaths being observed at both pharyngeal levels as 

possible throughout the night. While the scope was in the airway the whole night, videos 

were only recorded intermittently due to the technical limitations involved with handling the 

extremely large video files (e.g. limited memory on the local computer). In addition, breaths 

were excluded from the analysis if: 1) they occurred during wakefulness, REM sleep, or 

arousals, 2) they occurred during sleep in the lateral position because the occurrence of 

epiglottic collapse substantially decreases in this position[17], 3) they were not flow limited, 

or 4) secretions blurred the endoscopic view.

Breath Visualization and Gold Standard Classification—All eligible breaths were 

labeled as being associated with epigottic collapse or non-epiglottic collapse using the visual 
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inspection of the videos captured by the scope (in the velopharynx and oropharynx) during 

natural sleep. The breaths were labeled as epiglottic collapse if the epiglottis appeared to 

completely (or almost completely, >90% obstruction) close in either the anteroposterior or 

lateral direction (see online supplement for videos of both types of collapse and their 

associated flow patterns). In addition, to confirm that the flow limitation was not due to 

collapse of structure(s) above the epiglottis, the pressure just above the epiglottis was 

inspected and compared to mask pressure (the waveforms resemble one another when the 

epiglottis collapses, see Figure 2). This visual classification was performed by two 

investigators (MM and SO), with any discrepancies being resolved by a third investigator 

(AW).

Simultaneous Measurements of Pneumotachograph Flow and Nasal Pressure

For validation, pneumotach flow and nasal pressure were measured simultaneously (using an 

oronasal mask) in a separate subgroup of patients. A modified single-ended nasal cannula 

was used to measure nasal pressure. One end of nasal cannula was cut, sealed, and taped 

inside the mask and the other end was taped and passed through a sealed port in the mask 

and connected to a pressure transducer (Validyne, Northridge, CA). The nasal pressure 

(unfiltered, DC-coupled) was referenced to the mask pressure to measure the pressure 

difference between inside and outside the nostrils. To obtain a more accurate estimate of the 

pneumotach flow, the nasal pressure signal (PN) was linearized by different transformations, 

including, nasal pressure signal to the power of 0.75 (V̇PN0.75, see online supplement for 

more details). To obtain the correlation coefficients between pneumotach and nasal pressure 

measured variables, breaths were randomly selected from this subgroup of patients.

Machine Learning and Algorithm Development

The algorithm development was performed independently by a separate investigator (AA) 

blinded to the visualization and gold standard classification process. For each breath, a total 

of 32 flow characteristics (features) were determined. The detailed calculations of these 

features are described in the online supplement. Briefly, the following important features 

were calculated: 1) Discontinuity index (D1), measured from the slope of the steepest line 

fitted to the inspiratory flow; 2) Inspiratory jaggedness index (JIi) and expiratory jaggedness 

index (JIe), which measure the extent of deviation from flatness in the inspiratory and 

expiratory flow (more variable flow results in a higher jaggedness index); 3) Respiratory 

parameters: the ratio of within-breath respiratory variables, such as the ratio of mean 

inspiratory flow and tidal volume ( V
.
mean
VT ), the ratio of the time of peak expiration and total 

expiration time ( 
TmaxE

Te
), and the ratio of peak expiratory flow and tidal volume ( 

V
.
maxE
VT ); 4) 

Fluttering index that quantifies the power of high frequency variations in the inspiratory flow 

normalized by squared tidal volume ( 
FPi

VT2).

Classification

Here we use a classifier (i.e. equation or model) to define a boundary, based on flow 

characteristics, that best discriminates between breaths with versus without epiglottic 
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collapse. We employed an established approach to develop and validate a classifier 

(supervised learning[18]) whereby a model is trained based on gold standard classification 

(breath-by-breath endoscopic assessment), and tested in a set of data where the gold 

standard classification is hidden (10-fold cross validation). We used a “support vector 

machine classifier” which tends to outperform other types of classifiers[19–22]. See Figure 

1 for an example implementation. In addition to the type of classifier, it is essential to select 

an optimal number of features to maximize the predictive value in the training and validation 

data sets. Adding more features may result in overfitting. To prevent overfitting, a sequential 

forward feature selection process[23] was performed within a 10-fold cross-validation[24] 

framework. Features were included in the model sequentially until there was no further 

improvement in predictive value based on the mean of sensitivity and specificity obtained 

from 10-fold cross-validation (i.e. N=7 features, see online supplement for a detailed 

description).

Statistical analyses

Data are expressed as the mean ± standard deviation (SD) or median (25th–75th percentile) 

unless otherwise specified. Unpaired two-tailed t-tests/Wilcoxon signed rank test were 

performed for between group comparisons. In addition to model development and 

validation, we also assessed whether breaths with epiglottic collapse were statistically 

associated with selected features using linear mixed model analysis[25, 26] (See online 

supplement for an example analysis). Statistical significance was accepted at p<0.05.

RESULTS

Patient characteristics

The endoscopy study involved twenty-three OSA patients (age: 49.9±9.3 years, 6 females) 

with an AHI of 48.6±30.4 events/hr and a body mass index of 32.8±6.0 kg/m2. In addition, 

ten patients (age: 57.2±8.2 years, 2 females) with an AHI of 42.0±25.5 events/hr and a body 

mass index of 29.6±6.5 kg/m2 were studied for simultaneous recording of pneumotach flow 

and nasal pressure. Tables 1 and 2 present the subjects’ characteristics and PSG parameters.

Breaths verified by endoscopy

On average, 102±48 minutes of endoscopy video per subject in the supine position were 

obtained. A total of 1232 flow-limited breaths (54±61 breaths per subject) during supine 

NREM sleep were analyzed (after excluding breaths during wakefulness, arousals, excessive 

saliva, improperly-positioned scope, or otherwise poor visualization of the airway 

structures). From these breaths, using the visual inspection of endoscopy videos and 

pressure tracings, 244 (19.8%) were classified as epiglottic collapse, while 988 (80.2%) 

were classified as being associated with other sites of collapse.

Example traces

Figure 2 demonstrates example breaths that were associated with epiglottic collapse. The 

oropharyngeal view shows the epiglottis closing (or severely narrowing) at the beginning of 

inspiration, shown in Figure 2(a), resulting in an abrupt and severe reduction of airflow. This 

immediate reduction in airflow at the level of the epiglottis causes the upstream pressures 
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(e.g. P5 and P6) to become positive and follow the mask pressure. It also produces a 

discontinuity feature in the inspiratory flow that manifests as a fast rate of change in flow 

and a jagged inspiratory pattern. Figure 2(b) shows several example breaths that were 

associated with epiglottic collapse. A common feature is the presence of a discontinuity in 

the inspiratory flow. Breaths without epiglottic involvement, shown in Figure 3, clearly have 

different features, including fluttering and reduced “jaggedness”. In addition, the “pressure 

dissociation” between P3 and P6, both of which are upstream to the epiglottis, suggest that 

the choke point is between these two sensors, i.e., at the level of the palate or tongue base.

Feature selection using 10-fold cross-validation

A total of 7/32 features were selected by our algorithm. The selected features were the 

discontinuity index (D1), inspiratory jaggedness index (JIi), expiratory jaggedness index 

(JIe), mean inspiratory flow normalized by tidal volume ( V
.
mean
VT ), relative time of expiratory 

peak ( 
TmaxE

Te
), inspiratory fluttering index ( 

FPi

VT2), and peak expiratory flow normalized by 

tidal volume ( 
V
.
maxE
VT ). The final cross-validated accuracy ((sensitivity + specificity)/2) was 

84% (validation data). The classification accuracy (training) was 87% (sensitivity = 96%, 

specificity=78%), indicating a loss of 3% in accuracy when tested on independent data.

Even though a nonlinear combination of these seven features (see online supplement) 

resulted in 84% cross-validated accuracy, the linear mixed model analysis revealed that 

epiglottic collapse was generally predicted by a higher discontinuity index (D1: 2.2 ± 0.38 

points larger for breaths associated with epiglottic collapse, p = 8.0×10−9) and a higher 

inspiratory jaggedness index (JIi: 0.09 ± 0.02 points larger for epiglottic-related breaths, p = 

1.1×10−4). Figure 4 displays an example of the flow patterns associated with small and large 

values of these two features. Complementary results involving feature selection and linear 

mixed model analyses have been described in the online supplement.

Validation against nasal pressure recordings

A total of 1768 breaths (177±75 breaths per subject) were randomly selected from the 

polysomnography recordings that contained simultaneous measurements of pneumotach 

flow and nasal pressure (Figure 5). Discontinuity indices obtained from pneumotach flow 

were strongly associated with their concurrent values obtained from nasal pressure (Figure 

6). The highest correlation was observed when flow was estimated by the nasal pressure to 

the power of 0.75 (D1(V̇) Versus D1(V̇PN0.75): r=0.8, p=0, Figure 6, see online supplement 

for correlation analysis involving different transformations). Similarly, there was a strong 

correlation between the inspiratory jaggedness index obtained from pneumotach flow and 

transformed nasal pressure (JIi(V̇) Versus JIi(V̇PN0.75): r=0.94, p=0, Figure 6). Other features 

resulted in similar correlations, indicating that epiglottic collapse can be reliably identified 

from nasal pressure recordings performed in clinical sleep laboratories.
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DISCUSSION

The major conclusion of the current study is that epiglottic collapse produces flow features 

that: 1) are different from the features produced by non-epiglottic related obstructions, 2) are 

easy to quantify, and 3) can be reliably estimated from high fidelity (unfiltered, DC-coupled 

amplification) nasal pressure signals collected during clinical sleep studies. The main 

predictors of epiglottic collapse were discontinuity and jaggedness. Additional regression 

analysis of the simultaneously measured flow and nasal pressure features revealed identity 

relationships (linear relationship with slope≈1 and small intercept, correlation 

coefficients>0.8).

Prevalence and significance of epiglottic collapse

Previous studies have reported a wide variation in the prevalence of epiglottic collapse in 

OSA patients[6–8, 27]. This may be related to the inconsistent definition of epiglottic 

collapse in the literature. For instance, da Cunha Viana et al. reported that 42% of OSA 

patients had at least partial epiglottic collapse. However, when only obstructions with >75% 

narrowing were considered, epiglottic collapse was found in only 20% of the patients 

examined[27]. In our study, only complete or nearly complete obstruction of the epiglottis 

was considered as “epiglottic collapse.” The reasons for classifying it this way was three. 

First, we noticed that partial epiglottic collapse (e.g., 50–75% narrowing) virtually never 

produced a measurable reduction in flow (see Figure 2 and supplementary video). Second, 

“complete” collapse was easier to score and led to near perfect inter-rater agreement. Finally 

by restricting our definition to complete collapse, we felt more comfortable with 

categorizing the epiglottis as a dominant cause of obstruction. Previous studies have also 

argued that posterior movement of the tongue could cause the epiglottis to collapse[28]. 

However, this can be quite subjective and difficult to quantify endoscopically. Notably, in the 

many instances of epiglottic collapse examined in the current study, we often noticed the 

opposite, i.e., the tongue seemed to remain stationary or even move anteriorly slightly when 

the epiglottis collapsed. Future studies in which the tongue contribution to epiglottic 

collapse can be more systematically quantified are needed to explore this further.

Discontinuity and jaggedness as a signature of epiglottic collapse

The literature shows that OSA patients exhibit distinct and characteristic flow limitation 

patterns during sleep[14, 15]. Aittokallio et al found well-defined and reproducible flow 

shapes in different OSA patients. However, they did not try to correlate these shapes with 

anatomical structures within the airway. The results of the present study show that epiglottic 

collapse is associated with distinct flow shapes that can be quantified objectively. As 

described in our recent study, a cardinal feature of epiglottic collapse is the fact that it is 

intermittent[17]. In addition to its intermittency, this study shows that the most important 

feature distinguishing epiglottic collapse from other types of airway collapse is the presence 

of discontinuities in the flow (quantified by the discontinuity and jaggedness indices). Both 

of these features quantify the rapid decrease/increase in the airflow. Indeed, in the breaths 

examined in this study, the collapse of the epiglottis was observed to be severe and abrupt. In 

particular, anteroposterior movement of the epiglottis tended to be fast and unpredictable 

(see online supplementary video), occurring intermittently for unknown reasons. These 
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characteristic movements produced a sharp and severe reduction in airflow (Figure 2) that 

were captured by the discontinuity index proposed in this study. Also, the epiglottis was 

observed to be an unstable structure that would sometimes reopen/close repeatedly during 

inspiration causing a “jagged” flow (see Figure 2 and online video). These “unstable” 

movements were captured by both the discontinuity and jaggedness indices.

In addition to producing unique flow features, epiglottic collapse may also generate 

characteristic sounds that may be different than the non-epiglottic snoring sounds. Previous 

studies have reported a low prevalence of epiglottis related snoring among OSA patients[29, 

30]. This, at least in our study, may be due to the fact that when the epiglottis collapses, 

particularly in the anteroposterior direction, the collapse is abrupt and thus the “classical” 

snoring sound may not be generated.

Discontinuity—This feature measures the slope of the steepest line fitted to the middle 

portion of the inspiratory airflow (after excluding trivial fast increases/decreases in flow at 

the start and end of inspiration). Figure 2 demonstrates a library of breaths with epiglottic 

collapse in which discontinuity (or very steep increases/decreases in flow) stands out as a 

signature of epiglottic collapse. The discontinuity index (D1), described in this study, 

reliably quantifies these fast flow variations. Additionally, detecting changepoints before 

measuring the slopes adds to the reliability of this measure by making it less sensitive to fast 

(low amplitude) fluctuations that are present when there is fluttering (Figure S1 (online 

supplement), Figure 3).

Jaggedness—The second important characteristic that is associated with epiglottic 

collapse is the presence of jaggedness in both inspiration and expiration. The jaggedness 

indices described in this study quantify the deviation of the airflow (inspiratory or 

expiratory) from a flat reference (mean airflow), as a result, the more variable the airflow 

around the mean, the higher the jaggedness index (Figure 4). This feature has been 

previously used by Teschler et al.[31] for automated CPAP-titration studies. In this study, we 

modified this feature by normalizing it to the inspiratory time to take into account the 

subject-specific differences in inspiratory time.

Reduced tidal volume—Selected features, including inspiratory fluttering index 

(
FPi

VT2), V
.
mean
VT ) and 

V
.
maxE
VT  were normalized by tidal volume and therefore are both a measure 

of the numerator and the tidal volume. A Wilcoxon signed rank test revealed that breaths 

associated with epiglottic collapse had lower tidal volume than non-epiglottic breaths 

(0.26±0.15 vs 0.31±0.15, p <0.0001). In addition to quantifying the tidal volume, these 

features measure relative mean inspiratory flow, fluttering power (between 5Hz and 125Hz), 

and peak expiratory flow which resulted in an increase of 8% in cross-validated accuracy.

Validation against Nasal Pressure-Measured Flow

We used pneumotachograph-measured flow to develop the algorithm. However, since we 

hope this methodology will be adopted as a clinical tool, we validated it against high-fidelity 

nasal pressure signals (unfiltered, DC-coupled amplification) which can feasibly be assessed 
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clinically. The utility of nasal pressure airflow can be witnessed by the observed identity 

relationships (slope of linear fit≈1) and strong correlations between pneumotachograph-

measured flow features and nasal pressure features (Figure 6). Of note, we used flow 

features that do not depend on absolute (calibrated) values of pneumotachograph-measured 

flow to facilitate implementation with uncalibrated flow signals.

Remaining Challenges for Clinical Use

The algorithm developed in this study automatically scores each breath as being associated 

with epiglottic or non-epiglottic collapse, yet ultimately these results require translation 

from “breath level” to a “patient level” for clinical decision making. Summarizing breath 

level data for an individual patient may be achieved by reporting the proportion of breaths 

with epiglottic collapse observed during sleep (per state, or per position), or the proportion 

of scored obstructive respiratory events (hypopneas) with epiglottic collapse. The optimal 

approach will be the one that best predicts responses to therapies.

Indeed, available evidence indicates that identifying the epiglottic collapse has important 

implications for OSA management[9, 32]. The method developed in this study can be used 

to test whether epiglottic collapse, assessed using this approach, predicts responses to 

therapy, including failure of oral appliances[9], surgery[33], increased occurrence of 

collapse on CPAP[10, 11, 32], and effectiveness of positional therapy[17, 32]. In addition, its 

utility as a screening tool for epiglottis-related surgery can be tested.

Limitations

This study has several limitations. First, due to the invasiveness of the study and the inherent 

challenges in performing endoscopy during natural sleep in OSA patients, our sample size 

was relatively modest (N=23). Nevertheless, the number of breaths (1232 breaths) examined 

was large enough that different flow patterns were equally well represented. Importantly, in 

the cross-validation framework, the number of features (7 features) was far less than the 

number of observations (123 in each fold) which made the training procedure more robust. 

Furthermore, 10 fold cross-validation was also used to prevent overfitting that occurs when 

the sample size is small. Second, the number of breaths analyzed was different among 

subjects which could potentially bias the algorithm towards patients with more breaths. 

However, this was dealt with in two ways. First, the 10-fold cross validation framework 

allows for the “rare cases” to be left out of the analysis and be tested with the model built 

with the majority cases. If the model was biased towards the majority cases, it would result 

in a lower overall accuracy. In this study, a 3% difference was observed between 

classification accuracy (when the model was built and tested using the whole data set) and 

cross validation accuracy (when the model was built using 90% of the data and was tested on 

the remaining 10%) which suggests that if the algorithm were to be tested on a new data set, 

the potential loss of accuracy would be around 3%. Secondly, linear mixed effect models for 

selected features show that three out of 7 selected features are significantly different between 

the two groups.

A third limitation relates to the storage of large video files during endoscopy. For every 

minute of recording, the system produced approximately 1.1 GB of data, which limited our 
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ability to store the video files continuously throughout the night. Nevertheless, we recorded 

an average of 148±49 minutes of endoscopic images per subject from the first and second 

halves of the night to have a well-represented library of different sites of collapse/flow 

patterns. Also, the video files were stored in small files every 5–10 minutes to prevent 

missing frames and desynchronization between the signals and videos. The final limitation is 

that the presence of inspiratory flow is required for the algorithm to function properly. 

Therefore, the method presented here would not identify epiglottic collapse from a patient 

whose respiratory events were mostly apneas.

Conclusions

In this study, an automated algorithm was developed to objectively identify breaths with 

epiglottic collapse as distinct from other sites of collapse. We demonstrate that an epiglottic 

contribution to OSA is characterized by the presence of “discontinuity” and “jaggedness”. 

Since the presence of epiglottic collapse seen using endoscopy has implications for success 

versus failure of OSA therapies[9–11, 32, 33], we envisage that our algorithm will enable 

rapid, non-invasive identification of epiglottic involvement without requiring invasive 

endoscopy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
In this simplified example classification scheme (support vector machine), we take 22 

breaths, 13 of which have epiglottic collapse. a) Two characteristics (features) are 

highlighted, the discontinuity index (D1) and respiratory parameter ( 
V
.
maxE
VT : the ratio of 

peak expiratory flow and tidal volume), and overlaid on the flow trace. b) Plot of 

characteristics for breaths with epiglottic collapse (circles) versus without epiglottic collapse 

(triangles). The classifier finds a linear boundary between groups that maximizes the margin 

of error (arrows, dashed lines).
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Figure 2. 
(a) Epiglottic collapse accompanied by distinct flow characteristics (e.g. discontinuities in 

inspiratory flow). The pressure above the epiglottis (P5 and P6, downstream to P5) closely 

follows the mask pressure, confirming that the airway above the epiglottis is patent. (b) 

Examples of epiglottic collapse associated with sudden flow change.
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Figure 3. 
Non-epiglottic pharyngeal collapse often produces a “flat-top” flow shape. (a) The multi-tip 

pressure tracings suggest that there is a choke point between P3 and P4. (b) Example traces 

of non-Epiglottic collapse.
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Figure 4. 
Large value of the discontinuity index (D1) and the inspiratory jaggedness index (JIi) predict 

epiglottic collapse. The left column displays the flow patterns associated with high values of 

the discontinuity index and jaggedness index whereas the right column represents the flow 

patterns associated with low values of these features.

Azarbarzin et al. Page 16

Eur Respir J. Author manuscript; available in PMC 2018 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The discontinuity and jaggedness features associated with epiglottis collapse were reliably 

captured by nasal cannula. These features were preserved in these example breaths that were 

simultaneously collected using pneumotachograph (first (top) panel, V ̇) and a nasal cannula 

(second panel, PN). To estimate the pneumotach flow, the nasal pressure signal was passed 

through a square root transformation (third panel, V̇PN0.5). The bottom panel shows the 

pressure above the epiglottis (Pepi), indicating epiglottic collapse.
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Figure 6. 
The discontinuity and jaggedness features obtained from pneumotachograph measured flow 

(V̇) were strongly correlated with their corresponding values obtained from nasal pressure 

(PN). A stronger correlation was obtained when nasal pressure was transformed (VṖN0.5, 

bottom row) compared with untransformed nasal pressure (PN, top row).
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