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Abstract

In many optical imaging applications, it is necessary to correct for aberrations to obtain high 

quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase 

of the backscattered optical field for three-dimensional (3D) imaging samples. Computational 

adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to 

correct optical aberrations without using a deformable mirror, as is commonly done in hardware-

based adaptive optics (AO). This provides improvement of image quality throughout the 3D 

volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, 

the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct 

measurement of the pupil aberrations. Here we present new methods for recovering the wavefront 

aberrations directly from the OCT data without the use of hardware adaptive optics. This enables 

both computational measurement and correction of optical aberrations.

1. INTRODUCTION

Measurement and correction of aberrations is often an important step in obtaining high-

resolution images in optical microscopy [1]. In some cases the imaging optics may be 

imperfect due to physical limitations or design constraints. Additionally, imaging below the 

surface of biological tissue is complicated by sample-induced aberrations, which arise from 

the spatially varying refractive index of the tissue. In the case of living or dynamic samples, 

these aberrations can also be time varying. Therefore, it is necessary to devise a strategy to 
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determine and compensate for the wavefront aberrations to obtain a diffraction-limited 

image.

Typically this is done using adaptive optics (AO) components, such as a wavefront sensor 

and deformable mirror, to measure and correct the aberrated optical wavefront. However, 

these additional hardware components can be expensive and difficult to align and maintain. 

The hardware aberration correction is only optimized for a particular location within the 3D 

imaging volume, and calibration error, fitting error, measurement error, and bandwidth error 

all contribute to the presence of uncorrected aberrations [2].

Alternatively, interferometric detection provides access to both the amplitude and the phase 

of the backscattered light. Access to this phase information provides computational control 

of the full complex wavefront, allowing computational image formation based upon models 

of the imaging experiment. In this way, aberrations can be corrected postacquisition without 

the need for adaptive optics hardware.

Optical coherence tomography (OCT)measures a broadband interferometric signal to 

reconstruct the three-dimensional structure of scattering samples from backscattered light 

[3]. Since its invention, OCT has become an invaluable tool in medicine and biology. It is 

now the standard of care for retinal imaging and has been applied in various other clinical 

settings, as well as in nonbiological materials imaging [4]. Computational adaptive optics 

(CAO) is a computational imaging method that modifies the spatial frequency content of the 

OCT data to correct for optical aberrations [5–7]. CAO has primarily been used for 

aberration correction, and it has been demonstrated for imaging of tissues such as in vivo 
skin and ex vivo brain [8], as well as the living human retina [9–11].

In some cases, it may also be desirable to perform computational aberration measurements. 

For example, aberration measurements can be used to determine the flaws in an imaging 

system design, and three-dimensional mapping of aberrations in biological tissue can be 

used to optimize system parameters [12]. Wavefront measurement can also be medically 

relevant, as in aberrometry of the human eye [2], and sample-induced aberrations may prove 

to be a source of contrast for various tissue types.

CAO acts on OCT data in the Fourier domain by a phase-only filter. However, due to the 

double-pass nature of the OCT imaging experiment, this CAO correction filter does not 

directly correspond to the aberrations of the imaging pupil. Previous work has attempted to 

directly compare the CAO correction filter with the true wavefront measurement acquired 

with a Shack–Hartmann wavefront sensor [13]. However, the complicated relationship 

between the pupil wavefront and the CAO correction filter was only explored for defocus, 

leaving aberrations unaddressed.

We have developed new methods for recovering the wavefront aberrations directly from the 

OCT data itself, without the need for a wavefront sensor or deformable mirror. These 

methods have been tested in simulation to determine sensitivity to induced aberrations, as 

well as with cross talk between aberrations. The results are shown to compare favorably with 

previously published hardware adaptive optics wavefront sensing measurements.
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2. COMPUTATIONAL ADAPTIVE OPTICS MODEL

A. OCT Signal Acquisition

The OCT signal is obtained through interference of backscattered light from the sample with 

a coherent reference beam, providing complex-valued data for each point within the imaged 

volume. An illustration of the imaging setup is given in Fig. 1. Detailed derivations can be 

found in [14,15] and are followed closely here. The complex-valued spectral domain OCT 

signal is acquired as a function of wavenumber, k, at each transverse scan location, (x, y) = 

(r||). The focus remains fixed at a particular depth, z0. The signal S(r||, k) can then be written 

as

S(r‖, k) = ∬ h(r‖′ − r‖, z′ − z0, k)η(r‖′ , z′)d2r‖′ dz′, (1)

which is the convolution of the system point spread function, h(r||, z, k), with the sample 

susceptibility, η(r||, z).

The system point spread function is given as

h(r‖, z, k) = k2 ∣ P(k) ∣2 f ( − r‖, z, k)g( − r‖, z, k), (2)

which is the multiplication of the input and output beam profiles, f (r||, z, k) and g(r||, z, k), 

along with the power spectrum of the laser source, |P(k)|2. In a standard OCT imaging 

system, the input and output imaging pupils are the same. The beam profile can be described 

by a plane wave representation, G(q||, k). Therefore, both the input and output beam profiles 

are given by

g(r‖, z, k) = ∫ G(q‖, k)e
iq‖ · r‖e

ikz(q‖, k)z
d2q‖, (3)

where kz(q‖, k) = k2 − q‖. At the focus z = 0, the beam profile is given by the Fourier 

transform of the imaging pupil G(q||, k).

The signal representation in Eq. (1) can be simplified by transforming to the spatial 

frequency domain,

S
∼(q‖, k) = ∫ h

∼(q‖, z′ − z0, k)η(q‖, z′)dz′, (4)
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where the (∼) denotes the two-dimensional Fourier transform over the lateral scanning 

dimension. The transfer function is then given as the transverse convolution, denoted as *||, 

of the input and output pupil functions in the spatial frequency domain,

h
∼(q‖, z, k) = k2 ∣ P(k) ∣2g∼( − q‖, z, k) ∗‖ g∼( − q‖, z, k) . (5)

The spatial frequency domain representation of the pupil function is

g∼(q‖, z, k) = G(q‖, k)e
ikz(q‖, k)z

, (6)

which is the imaging pupil G(q||, k) propagated a distance z away from the focus. 

Aberrations are modeled as phase variations in the imaging pupil, G(q||, k). This leads to an 

aberrated system transfer function via the autoconvolution operation, as indicated in Eq. (5).

B. Aberration Correction

In computational adaptive optics, the aberrated system transfer function is corrected by 

multiplication with a phase-only filter in the spatial frequency domain,

S
∼

AC(q‖, k) = HAC(q‖, k)S∼A(q‖, k), (7)

where

HAC(q‖, k) = e
−iϕh(q‖, k)

, (8)

and where subscript A indicates the aberrated data, and subscript AC indicates the aberration 

correction filter and aberration corrected data. The phase term ϕh(q||, k) corresponds to the 

phase of the aberrated system transfer function. Under the assumption that the deviation 

from the central wavenumber is not too large, meaning (Δk/kc)2 is negligible [7], the 

aberration correction filter can be evaluated at the central wavelength and applied at each 

depth plane, zi, as

S
∼

AC(q‖, zi) = HAC(q‖, zi)S
∼

A(q‖, zi), (9)

where
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HAC(q‖, zi) = e
−iϕh(q‖, zi) . (10)

This filter can be determined through a variety of procedures including image sharpness 

optimization, the guide-star method, and the split-aperture method [5,16,17]. These are 

analogous to sensorless AO, guide-star optimization, and the Shack–Hartmann wavefront 

sensor in hardware AO. In any case, the filter corresponds to the double-pass system transfer 

function.

3. METHODS FOR WAVEFRONT MEASUREMENT

A generic pupil function has both amplitude and phase,

G(q‖, zi) = ∣ G(q‖, zi) ∣ e
iϕg(q‖, zi), (11)

where the goal of wavefront measurement is to determine the phase aberrations of the 

imaging pupil, ϕg. Through the CAO aberration correction procedure, the phase ϕh is 

obtained. The relationship between the pupil and system transfer function is, to within a 

constant,

H(q‖, zi) = G(q‖, zi) ∗ G(q‖, zi), (12)

where the propagation away from focus in Eq. (6) has been absorbed into the function G(q||, 
zi). The following sections outline methods for estimating the aberrations of the pupil phase. 

While the first two methods attempt to estimate ϕg given ϕh, the final method estimates ϕg 

directly.

A. Asymptotic Method

A computational method termed interferometric synthetic aperture microscopy (ISAM) 

solves the OCT inverse problem through asymptotic approximations taken near and far from 

the focus [14,18]. Although these approximations were performed with an unaberrated 

imaging pupil, it is possible that they may hold for small wavefront aberrations. The 

asymptotic approximations taken in ISAM allow the complex autoconvolution to be 

represented as a multiplication of stretched pupil functions,

H(q‖, zi) ≈ G(q‖/2, zi) × G(q‖/2, zi) . (13)

For the generic pupil function of Equation (11), the corresponding transfer function under 

the asymptotic approximation is
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H(q‖, zi) ≈ ∣ G(q‖/2, zi) ∣2e
i2ϕg(q‖/2, zi) . (14)

The relationship between the strength of aberrations is then simply a factor of two.

The phase aberrations are often represented as a weighted sum of Zernike polynomials (see 

Appendix A). The pupil phase can then be represented by

ϕg(q‖, zi) = ∑
n

cn(zi)Zn(s‖), (15)

where cn is the root-mean-square (RMS) variation of each corresponding Zernike aberration 

at depth zi. Note that for the current model, the pupil aberrations are depth independent, and 

the propagation away from focus can be approximated using the defocus term Z4. Therefore 

the depth dependence of cn will be left unnoted for convenience. Also note that the Zernike 

polynomials exist over the unit circle. Therefore the coordinates are normalized to extend 

over the limiting pupil defined by the numerical aperture (NA),

s‖ =
q‖

kcNA . (16)

The transfer function phase determined using CAO with Zernike weights dn can be similarly 

represented as

ϕh(q‖, zi) = ∑
n

dnZn(s‖/2) ≈ ∑
n

2cnZn(s‖/2) . (17)

An estimate of the Zernike weights for the pupil aberrations can then be easily obtained as

cn =
dn
2 . (18)

This provides a simple relationship between the Zernike weights of the CAO phase filter and 

the imaging pupil.

B. Autoconvolution Method

Instead of relying upon the asymptotic approximations of ISAM, it is possible to retrieve the 

pupil phase via inverse autoconvolution. In this case, the autoconvolution relationship of Eq. 

(12) still holds. However, the inverse autoconvolution is complicated by the fact that ϕh is 
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influenced by both the amplitude and phase of G(q||). Therefore, it is necessary include the 

pupil function amplitude. Gaussian beam illumination is typical for a point scanned OCT 

system and will be assumed here, although other amplitude profiles could be used. Passing a 

Gaussian beam through a limiting circular aperture results in the complex pupil function

G(q‖) = circ(s‖) exp −s‖
2 + i∑

n
cnZn(s‖) , (19)

where circ(s||) is defined as unity for |s||| ≤ 1 and zero elsewhere.

Given the phase ϕh from the CAO correction and a model for |G(q||)|, we can perform an 

optimization procedure to search for the corresponding pupil phase [19]. The estimated 

Zernike polynomial weights are calculated as

cn = argmin
ϕg = ∑ncnZn

‖G(q‖) ∗ G(q‖) − ∣ G(q‖) ∗ G(q‖) ∣ e
iϕh‖

2

‖G(q‖) ∗ G(q‖)‖2 . (20)

This finds a pupil function whose autoconvolution has a phase profile that matches the CAO 

filter.

C. Forward-Model Method

The previous two methods estimate the pupil aberrations from the phase obtained by the 

CAO image correction; that is to say, ϕg is estimated from ϕh. Alternatively, the pupil 

aberrations ϕg can be estimated directly by incorporating the forward model into the CAO 

procedure. In the absence of aberrations, a group of image metrics known as image 

sharpness are maximized [20–22]. Stated another way, aberrations can only decrease the 

image sharpness. Therefore, it is possible to determine the appropriate CAO phase filter by 

maximizing the image sharpness. Here we define the image sharpness operator as

ℐ(S(x, y)) = ∑
x, y

[S(x, y)S∗(x, y)]2, (21)

where (*) indicates the complex conjugate. This operator calculates the sum of the intensity 

squared across the image.

Typically, the image sharpness is optimized by searching over possible phases ϕh, in 

accordance with Eqs. (9) and (10). However, it is possible to generate the CAO phase filter 

via the forward model as
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HAC(q‖) = exp ( − i arg [G(q‖) ∗ G(q‖)]) . (22)

The image sharpness optimization can then be performed by searching over possible phases 

ϕg, providing a direct estimate of the imaging pupil phase

cn = argmax
ϕg = ∑ncnZn

ℐ(ℱ−1[SAC(q‖)]), (23)

where ℱ−1[] indicates the inverse Fourier transform to the spatial domain.

4. SIMULATION AND RESULTS

To determine the effectiveness of each method, OCT data was simulated, allowing for the 

introduction of arbitrary aberrations into the imaging pupil. The data used here were 

generated using the more exact model of Eqs. (21) and (29) from [14]. Simulated data were 

generated on a densely spaced 3D grid, then resampled by a noninteger multiple to a coarser 

grid to mimic data acquisition. The simulated OCT experiments used a Gaussian spectrum 

with 1 μm central wavelength and 100 nm bandwidth, and the transverse imaging area was 

128 μm × 128 μm acquired with a 1 μm step size. The NA was 0.1, matching that of 

previous computational OCT experiments [5,23]. The imaging pupil was constructed 

following Eq. (19), with aberrations introduced into the pupil phase using weighted Zernike 

polynomial functions,

ϕg(q‖, k) = k∑
n

cn
(μm)Zn(q‖/(kNA)) . (24)

Here cn was defined in units of micrometers (μm) corresponding to optical path length, and 

the variation in wavenumber was explicitly accounted for in the simulation. The image 

sharpness optimization and inverse autoconvolution procedures were performed on an Intel 

Core i7-5960X with 32 GB of RAM using the MATLAB 2016a Optimization Toolbox. The 

optimization time was approximately 0.59, 3.75, and 2.07 s for the asymptotic, 

autoconvolution, and forward model methods, respectively.

The following sections outline a series of simulated experiments in which the sensitivity, 

cross talk, and other characteristics of the above methods are determined.

A. Sensitivity and Cross Talk

To determine the sensitivity to each aberration term, as well as the cross talk between terms, 

single aberrations were applied in the imaging pupil with increasing RMS. The imaging 

sample consisted of in-focus point-scatterers with unit susceptibility, such that the induced 

polarization was equal to the incident field (see [24], Section 2.3). Aberrations up to 4th 
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order were applied (excluding tip/tilt and defocus) with RMS increasing from zero to 0.6 rad 

at the central wavelength. The applied aberrations were then estimated from the OCT data 

using each of the three methods detailed in Section 3.

For the asymptotic and forward model methods, the wavefront was estimated by correcting 

up to 4th order Zernike terms (excluding tip/tilt). However, as a result of the autoconvolution 

operation, the phase of the system transfer function is more rapidly varying than that of the 

imaging pupil. This means that while ϕg is described accurately by Zernike terms up to 4th 

order, ϕh may not be. The transfer function phase is represented more accurately as more 

Zernike modes are used. It was experimentally determined that the CAO optimization 

performed as the first step in the autoconvolution method must include up to at least 6th 

order Zernike modes. This provides an approximation of ϕh that is sufficiently accurate for 

performing the inverse autoconvolution operation to 4th order imaging pupil aberrations, and 

that was used for the results presented here.

The sensitivity was defined as the slope of the linear least-squares fit between the estimated 

weights, ĉn, corresponding to applied weights, cn. The cross talk was defined as the 

normalized RMS variation in all aberration terms other than the applied term,

∑mcm ≠ n
2 1/2

cn
, (25)

evaluated at the maximum applied aberration. A perfect estimate would result in sensitivity 

equal to one and cross talk equal to zero [25].

Aberration estimates obtained using the asymptotic approximation are shown in Fig. 2. In 

Figs. 2(a)–2(c), the estimated weights are given for 2nd, 3rd, and 4th orders, respectively. An 

ideal estimate is indicated by the dashed line for reference. Notice that certain Zernike 

modes are nearly identical, differing only in their rotation (e.g., astigmatism terms n = 3, 5). 

Therefore the estimates for these terms are very close to one another. The sensitivity and 

cross talk for each applied term are shown in Fig. 2(d). There is reasonable performance 

only for 2nd order aberrations, indicating that the asymptotic approximation is not valid at 

higher orders. This is not unexpected, as the approximations used in this method were 

developed in the absence of phase aberrations.

The inverse autoconvolution method showed superior sensitivity at all orders when 

compared with the asymptotic method. The aberration estimates and corresponding metrics 

are given in Fig. 3. The sensitivity at 2nd order was 0.95 and remained greater than 0.5 

through 4th order. For coma (terms n = 7, 8), the method overestimated the applied 

aberration, but the sensitivity remained within 0.25 of the ideal case.

Of the three proposed methods, the forward model method had the most consistent 

performance across all orders as demonstrated in Fig. 4. Additionally, the method did not 
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overestimate any aberrations. The average sensitivity across all terms was 0.81, while the 

average cross talk was 0.04.

B. Impact of Signal-to-Noise Ratio

In a realistic imaging scenario, the data will be corrupted by noise. For OCT, this can be 

modeled by additive complex white Gaussian noise [14,26]. The simulations and 

measurements of the previous section were repeated with peak signal-to-noise ratio (SNR) 

varying from 50 dB down to 20 dB, where the peak SNR was defined as

SNRpeak = 10 log10
max ∣ S(r‖) ∣2

σnoise
2 . (26)

The resulting sensitivity and cross talk for the autoconvolution and forward model methods 

are shown in Fig. 5. As the asymptotic method is not sensitive to higher orders, the results 

are not included. Although the computational wavefront measurement fails below a certain 

SNR threshold, it is important to note that the computational image correction still succeeds. 

This is in accordance with previous results [27].

At high SNR, both methods performed similarly to the noise free case. However, as the SNR 

decreases, the tails and sidelobes of the point spread function became buried in the noise. 

Therefore, much of the point spread function shape can be obscured. The performance of the 

autoconvolution method began to suffer with peak SNR of 30 dB, where cross talk 

approached the sensitivity for several aberration terms. At 20 dB, the results became 

unstable with estimated RMS far beyond that which was applied.

The performance of the forward model method remained strong down to 25 dB peak SNR. 

Here the average sensitivity was 0.81, and average cross talk was 0.29. A comparison 

between the average sensitivity and cross talk for the autoconvolution and forward model 

methods is given in Fig. 6. A comparable experiment was previously performed using a 

deformable mirror and Shack–Hartmann wavefront sensor [25]. The average sensitivity and 

cross talk were 0.71 and 0.32, respectively, and only included aberrations up to 3rd order. 

Considering this, the performance of the forward model method was comparable or superior 

to that of direct hardware measurement.

C. Multiple Simultaneous Aberrations

Additional simulated experiments were performed with multiple aberrations applied 

simultaneously in the pupil plane. The aberration weights were randomly generated to have 

a total wavefront RMS of zero, 0.2, 0.4, and 0.6 rad, with lower order Zernike terms allowed 

to take on greater weights. This was done to mimic common imaging scenarios where the 

magnitude of lower order aberrations is significantly greater than that of higher order 

aberrations, such as imaging the human retina [28,29]. The total wavefront RMS is defined 

as
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σ = ∑
n

cn
2

1/2
. (27)

A total of 10 random wavefronts were generated at each RMS, and OCT data were 

simulated for each wavefront. The noise level was set to 50 dB peak SNR. Due to its 

consistent performance across all orders and resilience to noise, the forward model method 

was used to estimate the applied wavefronts.

Example wavefronts and the corresponding computational measurements are shown in Fig. 

7. As seen in Figs. 7(a)–7(c), the measurement closely tracked the applied wavefront. For 

each wavefront, the total RMS of the measured aberrations was calculated. The average 

measured RMS across each set of 10 wavefronts is shown in Fig. 7(d). The sensitivity was 

0.85, calculated as the least squares slope of the total measured RMS as a function of 

applied RMS.

As a demonstration of volumetric aberration measurement and correction, a 3D OCT dataset 

was generated with 50 randomly located point scatterers. The pupil aberrations were given 

by a randomly generated wavefront of 0.6 rad total RMS. The forward model method was 

used to estimate and correct the aberrations throughout the imaging volume. Volume 

renderings of the aberrated OCT data and CAO corrected data are shown in Fig. 8(a), along 

with corresponding en face images taken 150 μm below focus shown in Fig. 8(b). The CAO 

image demonstrates correction of the point spread function with increased signal amplitude 

and resolution, and 3.9 times improvement in image sharpness [see Eq. (21)]. While only 

four points are resolved the OCT image, a previously obscured fifth point is revealed 

following wavefront correction (white arrow). The applied and measured aberration weights 

are given in Fig. 8(c), showing the mean and standard deviation of the wavefront 

measurement across all 50 scatterers. The average sensitivity to the total wavefront RMS 

was 0.89, giving an approximate Strehl ratio of 0.94 [30].

5. CONCLUSIONS

Using the proposed methods, aberrations can be both measured and corrected 

computationally directly from the OCT data without the use of hardware adaptive optics 

components. Our methods were tested in simulation, and the performance compares 

favorably to that of previously published wavefront sensor measurements in optical 

microscopy. Based on its simplicity, consistency, and robustness to noise, the forward model 

method is recommended for use in future experiments.

The results presented here only considered pupil aberrations. However, these methods could 

also be used to determine the local aberrations introduced by the imaged sample. This could 

provide aberration corrected images as well as a 3D aberration map, revealing the effect of 

the tissue on the imaging beam. This is interesting from a scientific perspective, since the 

mapping of optical aberrations can be used to optimize imaging system parameters such as 

choice of optics or scanning region. For biomedical applications, aberration measurement 
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could be used as a new form of image contrast between tissue types that may otherwise 

appear similar under OCT imaging. In general, where hardware wavefront measurement has 

found useful application, CAO is a computational alternative for simultaneous wavefront 

measurement and correction.
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APPENDIX A: TABLE OF ZERNIKE POLYNOMIALS

A list of the Zernike polynomial indices used in this publication is included in Table 1 to aid 

the reader. The polynomials are indexed according to the ANSI Z80.28 standard [31]. The 

functions are given here in polar coordinates but can also be written in rectangular 

coordinates [32]. Each polynomial was normalized by its RMS to satisfy the condition

∫
0

1∫
0

2π
Zn(r, θ)Zm(r, θ)rdrdθ /∫

0

1∫
0

2π
rdrdθ = δnm . (A1)
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Fig. 1. 
Illustration of the OCT imaging setup. The imaging beam passes through the pupil G(q||, k) 

and illuminates the sample with field g(r||, z, k). The light is backscattered from the sample 

η(r||, z) and is collected through the same imaging pupil.
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Fig. 2. 
Measurement of single aberrations using the asymptotic method. (a)–(c) The applied and 

estimated Zernike weights are shown for 2nd, 3rd, and 4th order aberrations, respectively. 

The dotted line corresponds to a perfect estimate. All Zernike weights are in radians. (d) The 

sensitivity and cross talk were calculated for each applied Zernike term.
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Fig. 3. 
Measurement of single aberrations using the autoconvolution method. (a)–(c) The applied 

and estimated Zernike weights are shown for 2nd, 3rd, and 4th order aberrations, 

respectively. The dotted line corresponds to a perfect estimate. All Zernike weights are in 

radians. (d) The sensitivity and cross talk were calculated for each applied Zernike term.
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Fig. 4. 
Measurement of single aberrations using the forward model method. (a)–(c) The applied and 

estimated Zernike weights are shown for 2nd, 3rd, and 4th order aberrations, respectively. 

The dotted line corresponds to a perfect estimate. All Zernike weights are in radians. (d) The 

sensitivity and cross talk were calculated for each applied Zernike term.
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Fig. 5. 
Performance of the autoconvolution and forward model methods at each Zernike mode for 

decreasing peak SNR. The forward model method shows superior performance in noisy 

conditions.
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Fig. 6. 
Average sensitivity and cross talk versus peak SNR for the autoconvolution and forward 

model methods. While the methods have similar average sensitivity, the cross talk for the 

forward model method is notably superior at low SNR.
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Fig. 7. 
Measurement of multiple simultaneous aberrations using the forward model method. (a)–(c) 

The applied and measured Zernike weights are shown for a randomly generated wavefront at 

0.2, 0.4, and 0.6 radians RMS, respectively. (d) Average wavefront RMS measured over 10 

randomly generated wavefronts. The corresponding sensitivity to total wavefront RMS was 

0.85.
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Fig. 8. 
Measurement and correction of multiple aberrations in a 3D imaging volume. (a) Volume 

rendering of aberrated (OCT) and corrected (CAO) data. The dimensions of the volume are 

128 μm × 128 μm × 640 μm. (b) En face images are taken from 150 μm below focus. 

Following CAO, the point spread function is improved and a previously obscured fifth point 

is revealed (white arrow). (c) Applied and measured aberrations at each point scatterer 

throughout the volume. The error bars correspond to the standard deviation across all 50 

measurements. Zernike weights are in radians.
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Table 1

Zernike Polynomial Indices, RMS Normalization Factors, and Common Names

n Zn(r,θ) RMS Name

2nd order

3 r2 sin(2θ) 6
astigmatism

4 2r2 – 1 3
defocus

5 r2 cos(2θ) 6
astigmatism

3rd order

6 r3 sin(3θ) 2 2
trefoil

7 (3r3 – 2r) sin(θ) 2 2
coma

8 (3r3 – 2r) cos(θ) 2 2
coma

9 r3 sin(3θ) 2 2
trefoil

4th order

10 r4 sin(4θ) 10
quadrafoil

11 (4r4 – 3r2) sin(2θ) 10
secondary astigmatism

12 6r4 – 6r2 + 1 5
spherical

13 (4r4 – 3r2) cos(2θ) 10
secondary astigmatism

14 r4 cos(4θ) 10
quatrefoil
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