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Graphical Abstract

Prediction error calculated using in-sample (blue) and out-of-sample (red) bootstrap data.

Statisticians have discussed for decades the problems associated with P values and have 

diligently tried to provide researchers with simple guidelines for their correct use. Despite 

all of this, controversies and frustrations remain. Scientists, who are often forced to use P 
values, are now openly questioning and debating their validity as scientific tools. “P values, 

the ‘gold standard’ of statistical validity, are not as reliable as many scientists assume,” is the 

leading assertion of the Nature article, “Scientific Method: Statistical Errors.”1 Consider also 

the recent action of the journal of Basic and Applied Social Psychology, which announced it 

would no longer publish papers containing P values. In explaining their decision for this 

policy,2 the editors stated that hypothesis significance testing procedures are invalid and that 

P values have become a crutch for scientists dealing with weak data. Even the American 

Statistical Association has weighed in on the topic, recently issuing a formal statement on P 
values,3 the first time in its history it had ever issued a formal statement on matters of 

statistical practice.

Part of this frustration stems from the need for the P value to be something for which it was 

never designed. Researchers want to make context-specific assertions about their findings; 

they especially want a statistic that allows them to make assertions regarding scientific 

Address for reprints: Hemant Ishwaran, PhD, University of Miami, Room 1058, Clinical Research Building, 1120 NW 14th St, 
Miami, FL 33136 (hemant.ishwaran@gmail.com). 

Supplemental material is available online.

Conflict of Interest Statement
Authors have nothing to disclose with regard to commercial support.

HHS Public Access
Author manuscript
J Thorac Cardiovasc Surg. Author manuscript; available in PMC 2018 April 24.

Published in final edited form as:
J Thorac Cardiovasc Surg. 2018 March ; 155(3): 1130–1136.e4. doi:10.1016/j.jtcvs.2017.08.056.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effect. Because the P value cannot do this, and because the terminology is confusing and 

stifling, this leads to misuse and confusion. Another problem is correctness of the model 

under which the P value is calculated. If model assumptions do not hold, the P value itself 

becomes statistically invalid. Researchers rarely test for model correctness, and when they 

do, they often use goodness of fit. But goodness-of-fit measures are notoriously unreliable 

for assessing model validity.4 All of this implies that a researcher’s findings, which hinge so 

much on the P value being correct, could be suspect without their even knowing it. This 

nonrobustness of the P value is further compounded by other conditions typically outside of 

the control of the researcher, such as the sample size, and collinearity, which have enormous 

effects on its efficacy.

In this article, we focus on the use of P values in regression models and present a new 

approach to the problem. As readers are aware, the P value from the coefficient estimate of a 

variable is typically used to assess its contribution to the regression model. We present a 

different strategy by using a quantity we call the variable importance (VIMP) index. Unlike 

the P value, which assesses a variable in terms of statistical significance, and thus gives no 

insight into how important a variable is to the scientific problem, VIMP measures the 

importance of a variable in terms of prediction error. The prediction error is a quantity that 

describes how well a model performs over new data without making any assumptions 

regarding the truth of the model. VIMP quantifies how much a variable contributes to the 

prediction performance of a model and provides an interpretable measure of the scientific 

importance of a variable that is robust to model assumptions. We call this measure the 

predictive effect size. We also discuss a marginal VIMP index, which measures how much a 

model would improve when a specific variable is added to it. We call this the discovery 

effect size.

PREDICTION ERROR

Typically, prediction error is estimated using cross-validation. In cross-validation, the data 

are split into separate parts, with one part being used to fit the model, and the remaining 

used to calculate the prediction error. The procedure is repeated over several distinct splits 

and values averaged. Out-of-bag (OOB) estimation is a variation of cross-validation but 

possesses certain superior statistical properties due to its connection to leave-one-out cross-

validation.5–7 We use OOB prediction error to calculate VIMP.

Calculating the OOB prediction error begins with bootstrap sampling. A bootstrap sample is 

a sample of the data obtained by sampling with replacement. On average, because of 

replicated values, a bootstrap sample contains only 63.2% of the original data, which is 

referred to as the inbag data. The remaining 37% of the data, which is out-of-sample, is 

called the OOB data. The OOB error for a model is obtained by drawing a bootstrap sample, 

fitting the model to the inbag (bootstrapped) data, and then calculating its prediction error on 

the OOB data. This procedure is repeated many times. The OOB prediction error is the 

averaged value. More technically, if Errb is the OOB prediction error using the bth bootstrap 

sample (from a total of B bootstrap samples) the OOB error is
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Erroob = 1
B ∑

b = 1

B
Errb .

The Central Figure provides an illustration of this concept.

VIMP Index

The VIMP index for a variable β is obtained by a slight modification to the aforementioned 

procedure (for notational simplicity, we will use β to refer to both the variable and its 

regression coefficient). After fitting the model to the inbag data, the regression coefficient 

for β is set to zero. The prediction error using the OOB data is then calculated using the 

modified regression equation. The VIMP index is the difference between this new modified 

error and the prediction error from the original (nonmodified) regression model. This value 

will be positive if β is predictive because the prediction error for the modified equation will 

increase relative to the original prediction error. Averaging this over the bootstrap samples 

yields the VIMP index. More formally, let Errβ,b be the OOB prediction error for β from the 

modified regression equation and let Errb be the OOB prediction error for the nonmodified 

model. The VIMP index for β is

Δβ = 1
B ∑

b = 1

B
[Errβ, b − Errb] .

As just discussed, a positive value indicates a variable β with a predictive effect. A formal 

description of the VIMP algorithm is provided in the Appendix E1.

RISK FACTORS FOR SYSTOLIC HEART FAILURE

To illustrate VIMP, we consider a survival data set previously analyzed in Hsich and 

colleagues.8 The data involve 2231 patients with systolic heart failure who underwent 

cardiopulmonary stress testing at the Cleveland Clinic. Of these 2231 patients, during a 

mean follow-up of 5 years, 742 died. In total, 39 variables were measured for each patient, 

including baseline characteristics and exercise stress test results. Specific details regarding 

the data are discussed in the work of Hsich and colleagues.

We used Cox regression, with all-cause mortality used for the survival endpoint (as was done 

in the original analysis). Prediction error was assessed by 100 times 1 minus C, where C was 

taken to be Harrell’s concordance index. Recall that C calculates the fraction of times a 

procedure ranks 2 individuals correctly in terms of their risk over permissible pairs of 

individuals. Subtracting C from 1 and scaling by 100 conveniently converts the concordance 

index to a percentage between 0 and 100, with 0%representing a perfect procedure and 50% 

representing random guessing. This means that a VIMP index of 5% indicates a variable that 

improves by 5% the ability of the model to rank patients by their risk. We emphasize once 

again that because calculations are based on OOB data, and hence are cross-validated, this 

reflects a 5% increase in performance for new patients.
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Table 1 presents the results from the Cox regression analysis. Included are VIMP indices 

and other quantities obtained from B = 1000 bootstrapped Cox regression models. Column β̂ 

lists the coefficient estimate for each β variable, and β̂inbag is the averaged coefficient 

estimate from the 1000 bootstrapped models. These 2 values agree closely, which is to be 

expected if the number of iterations B is selected suitably large. Table 1 has been sorted in 

terms of the VIMP index, δβ. Interestingly, ordering by VIMP does not match ordering by P 
value. For example, insulin-treated diabetes has a near-significant P value of 6%; however, 

its VIMP of 0.07% is relatively small compared with other variables. The top variable peak 

VO2 has a VIMP of 1.9%, which is more than 27 times larger.

MARGINAL VIMP

Peak oxygen consumption (VO2), blood urea nitrogen (BUN), and treadmill exercise time 

are the top 3 variables identified by the VIMP index. Following these are an assortment of 

variables with moderate VIMP: sex, use of beta-blockers, use of digoxin, serum sodium 

level, and age of the patient. Then are variables with small but non-zero VIMP, starting with 

patient resting heart rate and terminating with presence of coronary artery disease. VIMP 

indices become zero or negative after this. These latter variables, with zero or negative 

VIMP indices, can be viewed as “noisy” variables that degrade model performance. This can 

be seen by considering the column labeled as Errstep. This equals the OOB prediction error 

for models formed using variables ordered by VIMP. For example, the third line, 30.80, is 

the OOB error for the model using top 3 variables. The fourth line is the OOB error for the 

top 4 variables, and so forth. Table 1 shows that Errstep decreases for models with positive 

VIMP, but rises once models begin to include noisy variables with zero or negative VIMP.

The entry Errstep in Table 1 is the motivation for our marginal VIMP index. Relative to its 

previous entry, Errstep estimates the effect of a variable when added to the current model. For 

example, the effect of adding exercise time to the model with peak VO2 and BUN is the 

difference between the second row (model 2), 30.81, and the third row (model 3), 30.80. The 

effect of adding exercise time is therefore 0.01 (30.81 minus 30.80). This is much smaller 

than the VIMP index for exercise time, which equals 1.37. These values differ because the 

stepwise error rate estimates the effect of adding treadmill exercise time to the model with 

Peak VO2 and BUN. We call this the discovery effect size of the variable. Marginal VIMP 

(see entry Δβ
marg in Table 1) is a generalization of this concept. It calculates the discovery 

effect of a variable by comparing the prediction error of the model with and without the 

variable added. The Appendix E1 presents a formal description of this algorithm. We 

summarize the difference between marginal VIMP and the VIMP index as follows:

• VIMP is calculated by setting a variable’s regression coefficient to zero

• Marginal VIMP removes a variable and refits the model with the remaining 

variables

Table 1 reveals that marginal VIMP is generally much smaller than the VIMP index. This is 

to be expected because of the large number of variables in the model, because as the number 

of variables becomes large, it will be difficult for the addition of a single variable to the 

model to improve prediction performance. However, Table 1 shows there are a small 
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collection of variables whose discovery effect are relatively large compared with their VIMP 

index. The most interesting is sex (see row entry “Male”), which has the largest discovery 

effect among all variables (being tied with BUN). The explanation for this is that adding sex 

to the model supplies new information not contained in other variables. Marginal VIMP is in 

some sense a statement about correlation. For example, correlation of exercise time with 

peak VO2 is 0.87, whereas correlation of BUN with peak VO2 is −0.40. This allows BUN to 

have a high discovery effect when peak VO2 is included in the model, while exercise time 

cannot.

ROBUSTNESS OF VIMP TO THE SAMPLE SIZE

Here, we demonstrate the robustness of VIMP to sample size changes. We use the systolic 

heart failure data as before, but this time using only a fraction of the data. We used a random 

10%, 25%, 50%, and 75% of the data. This process was repeated 500 times independently. 

For each data set, we saved the P values and VIMP indices for all variables. Figure E1 

displays the logarithm of the P values from the experiment (large negative values correspond 

to near zero P values). Figure E2 displays the VIMP indices. What is most noticeable is that 

VIMP indices are informative even in the extremely low sample size setting of 10%. For 

example, VIMP interquartile values (the lower and upper ends of the boxplot) are above zero 

for peak VO2, BUN, and treadmill exercise time, showing that VIMP is able to consistently 

identify the top 3 variables even with limited data. In contrast, for the low sample setting of 

10%, no variable had a median log P value below the threshold of log(0.05), showing that no 

variable met the 5% level of significance on average. Furthermore, even with 75% of the 

data, the upper end of the boxplot for exercise time is still above the threshold, showing its 

significance is questionable.

MISSPECIFIED MODEL

We used the following simulation (n = 1000) from a Cox regression model to demonstrate 

robustness of VIMP to model misspecification. The first 2 variables are “prostate-specific 

antigen (psa)” and “tumor volume” and represent variables associated with the survival 

outcome. The remaining 3 variables are noise variables with no relationship to the outcome. 

These are called X1, X2, X3. The variable psa has a linear main effect, but tumor volume has 

both a linear and nonlinear term. The true regression coefficient for psa is 0.05, and the 

coefficient for the linear term in tumor volume is 0.01. A censoring rate of approximately 

70%was used. The log of the hazard function used in our simulation is given in the left panel 

of Figure 1. Mathematically, our log-hazard function assumes the following function:

log (h(t)) = α0 + 0.05 × psa + 0.01 × tumor volume + ψ(tumor volume),

where ψ(x) = 0.04x2 − 0.005x3 is a polynomial function with quadratic and cubic terms. The 

right panel of Figure 1 displays the log-hazard for the misspecified model that does not 

include the nonlinear term for tumor volume.

We first fit a Cox regression model to the data using only linear variables as one might 

typically do. This model was bootstrapped B = 1000 values and VIMP and marginal VIMP 
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calculated. This entire procedure of simulating a data set, fitting a Cox model and 1000 

bootstrapped Cox models, was repeated M = 1000 times. The results from these 1000 

experiments were averaged. These values are summarized in Table 2. The table shows that 

the P value has no difficulty in identifying the strong effect of psa, which is correctly 

specified in the model. However, the P value for tumor volume is 0.267, indicating a 

nonsignificant effect. The P value tests whether this coefficient is zero, assuming the model 

is true, but the problem is that the fitted model is misspecified. The estimated Cox regression 

model inflates the coefficient for tumor volume in a negative direction (estimated value of 

−0.03, but true value is 0.01) in an attempt to compensate for the nonlinear effect that was 

excluded from the model. This leads to the invalid P value. In contrast, both the VIMP and 

marginal VIMP values for tumor volume are positive. Although these values are 

substantially smaller than the values for psa, VIMP is still able to identify a predictive effect 

size associated with tumor volume. Once again, this is possible because VIMP is based on 

prediction error, which does not require the underlying model to be correct. Also, notice that 

all 3 noise variables are correctly identified as uninformative. All have negative VIMP 

values.

Typically, a standard analysis would end after looking at the P values. However, a researcher 

with access to the entire Table 2 might be suspicious of the small positive VIMP of tumor 

volume and its negative coefficient value, which is unexpected from previous experience. 

This combined with the high OOB model error (equal to 43%) should alert them to consider 

more sophisticated modeling. This is easily done using standard statistical methods. Here we 

use B-splines9 to add nonlinearity to tumor volume. This expands the design matrix for the 

Cox regression model to include additional columns for the B-spline expansion of tumor 

volume.

The results from the B-spline analysis are displayed in Table 3. As before, the entire 

procedure was repeated M = 1000 times, with values averaged. Notice the large value of 

VIMP for tumor volume, which shows the effectiveness of the B-splines in identifying the 

true effect. The same holds true for the P value, which is now very small for tumor volume. 

However, the P value is very sensitive to the distribution of the data and can easily become 

unstable. To demonstrate this, we altered the simulation to introduce a positive correlation 

between psa and tumor volume (correlation of approximately 0.71). This creates collinearity 

in the variables which heavily affects the P value. The right-hand side of Table 3 with the 

heading “correlated” displays the results from this analysis. The correlation leads to the very 

misleading result that although tumor volume is highly significant, psa is not. In contrast, 

VIMP is able to maintain large positive values for both variables even in the presence of the 

high collinearity.

DISCUSSION

In this article, we introduced VIMP as an alternative approach to P values in regression 

models. Although VIMP has not been used in this context before, variable importance is a 

fairly old concept used in machine learning. One of its earliest uses was for variable ranking 

in Classification and Regression Trees (see Chapter 5 of Breiman and colleagues).10 The 

idea was later extended to variable selection in random forest regression and classification 
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models.4,11 See also Ishwaran and colleagues12 for applications to random survival forest 

models. What we have done here is to take regression methods with which all the readership 

will be familiar, borrow from these concepts used in machine learning, which with readers 

may not be familiar, and apply them in an understandable way to come up with the VIMP 

index, a new statistic that can supplant P values.

One of the strengths of VIMP is that it provides an interpretable measure of effect size 

robust to model misspecification. It uses prediction error based on OOB data and replaces 

statistical significance with predictive importance. The VIMP framework is feasible to all 

kinds of models including not only parametric models, such as those considered here, but 

also nonparametric models such as those used in machine learning. This latter point, of 

using VIMP with machine learning methods, brings up an important issue regarding the 

distinction between robustness of VIMP and power of the underlying model. VIMP is robust 

in the sense that because it is based on prediction error, it does not require the model to be 

true to be valid, but this should not be interpreted to mean VIMP can identify signal in any 

setting. To be effective in scenarios in which data complexity exists (for example, presence 

of interactions or nonlinear effects, and general violation of parametric assumptions), the 

underlying model must have power to discern these effects. In very complex settings, we 

should turn to machine learning methods over parametric models to improve power. This 

then allows the VIMP calculated under these more powerful models to be better able to 

discern signal.

We discussed 2 types of VIMP measures: the VIMP index and the marginal VIMP. The 

scientific application will dictate which of these is more suitable. VIMP indices are 

appropriate in settings in which variables for the model are already established and the goal 

is to identify the predictive effect size. For example, if several genetic markers are already 

identified as a genetic cause for coronary heart disease risk, VIMP can provide a rank for 

these and estimate the magnitude each marker plays in the prediction for the outcome. 

Marginal VIMP is appropriate when the goal is new scientific discovery. For instance, if a 

researcher is proposing to add a new genetic marker for evaluating coronary heart disease 

risk, marginal VIMP can yield a discovery effect size for how much the new proposed 

marker adds to previous risk models.

From a statistical perspective, VIMP indices are an OOB alternative to the regression 

coefficient P value. An important feature is that degrees of freedom and other messy details 

required with P values when dealing with complex modeling are never an issue with VIMP. 

Marginal VIMP is an OOB analog to the likelihood-ratio test. In statistics, likelihood-ratio 

tests compare the goodness-of-fit of 2 models, one of which (the null model with certain 

variables removed) is a special case of the other (the alternative model with all variables 

included). Marginal VIMP compares the prediction precision of these two scenarios.

There are some limitations to VIMP. Researchers will need to be diligent in reporting the 

measure of prediction performance used in their VIMP analyses. Because VIMP 

interpretation depends implicitly on the performance measure, these 2 values must go hand 

in hand. Researchers will also need to familiarize themselves with performance measures 

that have universal meaning and which are appropriate for VIMP. In survival analysis, the 
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Harrell concordance index is appropriate. For example, a 0.05 VIMP value for 2 different 

variables from 2 different survival datasets is comparable—both imply a 5% improvement in 

the ability to rank a patient’s risk. In logistic regression analysis, users can report 

misclassification error, which lends itself to a VIMP interpretation of improved ability to 

classify patients. However, mean squared error (MSE), which is a common measure of 

performance used in linear regression, is not appropriate because of its lack of scale 

invariance and interpretation. Instead, standardized MSE, defined as the MSE divided by the 

variance of the outcome, should be used. Standardized MSE can be converted to the percent 

of variance explained by a model which has an intuitive and universal interpretation. 

Another limitation of VIMP is that it is more computationally demanding. In place of having 

to fit one model, the researcher will be required to fit a thousand or more models. This will 

take more time, but computational solutions such as parallel processing can help 

tremendously. The Appendix E1 discusses this in greater depth.

One of the tremendous advantages of VIMP is that it removes the arbitrariness of having to 

select a cutoff value. Regardless of the problem, a VIMP of zero always represents an 

appropriate cutoff, as it reflects the point at which a variable no longer contributes predictive 

power to the model. Of course, in practice one may observe VIMP values close to zero, and 

the meaning of what constitutes being “zero” may be unclear. However, this poses a 

challenge only in the sense that we must assess whether the variable is truly predictive or 

not, not whether zero is a reasonable VIMP cutoff value. To answer the question of whether 

the observed VIMP really differs from zero, we must estimate its standard error. Although 

not described here, it turns out that fast and efficient subsampling algorithms are available 

for accurate estimation of VIMP standard error. Thus, if the observed VIMP exceeds the 

zero cutoff value, up to a tolerance depending on the estimated standard error, we can be 

confident that the variable is adding predictiveness to the model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX E1. CALCULATING THE VIMP INDEX FOR A VARIABLE

The variable importance (VIMP) index for estimating the predictive effect size for a variable 

is obtained by a slight extension to the out-of-bag (OOB) error rate calculation. For 

concreteness, call the variable of interest β and let δβ denote its VIMP index. The VIMP 

index δβ is calculated by averaging the VIMP index for β from each bootstrap sample b, 

which we denote by δβ,b. This latter value is calculated as follows. For a given bootstrap 

sample b, take the OOB data for β and “noise it up.” Noising the data is intended to destroy 

the association between β and the outcome. Use this altered OOB data to calculate the 

prediction error for the model. Call the noised-up prediction error Errβ,b. The VIMP index 

for β for the b bootstrap sample is

Δβ, b = Errβ, b − Errb .

The prediction error for the noised-up data will increase if β has a real effect in the model. 

Hence, comparing this prediction error to the original prediction error will yield a positive 

VIMP index δβ,b if β is predictive. The VIMP index for β is obtained by averaging these 

values over the bootstrap realizations:

Δβ = 1
B ∑

b = 1

B
Δβ, b = 1

B ∑
b = 1

B
[Errβ, b − Errb] .

It follows that a large positive value indicates a variable β that has a large test-validated 

effect size (predictive effect size). Algorithm 1 provides a formal statement of this 

procedure. We make several remarks regarding the implementation of Algorithm 1.

ALGORITHM 1

VIMP index for a variable β

1: for b = 1, …, B do

2: Draw a bootstrap sample of the data; fit the model to the bootstrap data.

3: Calculate the prediction error, Errb, using the OOB data.

4: Noise up the OOB data for β; use this to calculate the OOB error, Errβ;b.

5: Calculate the bootstrap VIMP index δβ;b = Errβ;b − Errb.

6: end for
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7:
Calculate the VIMP index by averaging: Δβ = ∑b = 1

B Δβ, b/B.

8:
The OOB error for the model can also be obtained using 

Erroob = ∑b = 1
B Errb/B

1 As stated the algorithm provides a VIMP index for a given variable β but in practice one applies the same 
procedure for all variables in the model. The same bootstrap samples are to be used when doing so. This 
is required because it ensures that the VIMP index for each variable is always compared with the same 
value Errb.

2 Because all calculations are run independently of one another Algorithm 1 can be implemented using 
parallel processing. This makes the algorithm extremely fast and scalable to big data settings. The most 
obvious way to parallelize the algorithm is on the bootstrap sample. Thus on a specific computing 
machine on a cluster a single bootstrap sample is drawn and Errb determined. Steps 4 and 5 are then 
applied to each variable in the model for the given bootstrap draw. Results from different computing 
machines on the computing cluster are then averaged as in Steps 7 and 8.

3 Noising up a variable is typically done by permuting its data. This is called permutation noising up and is 
used for nonparametric regression models. In the case of parametric and semiparametric regression 
models (such as Cox regression) in place of permutation noising up the regression coefficient estimate for 
b is set to zero. Setting the coefficient to zero is equivalent to setting the OOB data for β to zero and is a 
special feature of parametric models that provides a more direct and convenient way to noise up the data.

4 As a side effect the algorithm can also be used to return the OOB error rate for the model Erroob (see Step 
8). This can be useful for assessing the effectiveness of the model and identifying poorly constructed 
models.

5 Algorithm 1 requires being able to calculate prediction error. The type of prediction error used will be 
context specific. For example in linear regression prediction error can be measured using mean squared 
error or standardized mean squared error. In classification problems prediction error is typically defined 
by misclassification. In survival problems a common measure of prediction performance is Harrell’s 
concordance index. Thus unlike the P value the interpretation of the VIMP index will be context specific.

CALCULATING THE MARGINAL VIMP

The marginal VIMP is calculated by a simple modification to Algorithm 1. In place of 

noising up a variable β, a second model is fit to the bootstrap data, but with β removed. The 

OOB error for this model is compared with the OOB error for the full model containing all 

variables. Averaging these values over the bootstrap realizations yields Δβ
marg. Algorithm 2 

provides a formal description of the procedure.

ALGORITHM 2

Marginal VIMP index for a variable β

1: for b = 1, …, B do

2: Draw a bootstrap sample of the data; calculate the model OOB prediction error, Errb.

3:
Fit a second model, but without β, and calculate its OOB prediction error, Errβ, b

marg

4: end for

5:
Calculate the marginal VIMP by averaging: Δβ

marg = ∑b = 1
B [Errβ, b

marg − Errb]/B

Lu and Ishwaran Page 10

J Thorac Cardiovasc Surg. Author manuscript; available in PMC 2018 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Central Message

We replace P values with VIMP, which measures predictive and discovery effect sizes for 

a variable that are valid whether the regression model is correct or not.
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FIGURE 1. 
Log-hazard function from Cox simulation example. The left panel displays the true log-

hazard function, which includes the nonlinear term for tumor volume. The right panel 
displays the log-hazard function, assuming linear variables only. psa, Prostate-specific 

antigen.
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