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© We performed a large genome-wide association study to discover genetic variation associated with
. muscular strength, and to evaluate shared genetic aetiology with and causal effects of muscular
strength on several health indicators. In our discovery analysis of 223,315 individuals, we identified
101 loci associated with grip strength (P <5 x 10~8). Of these, 64 were associated (P < 0.01 and
consistent direction) also in the replication dataset (N=111,610). eQTL analyses highlighted several
genes known to play a role in neuro-developmental disorders or brain function, and the results from
meta-analysis showed a significant enrichment of gene expression of brain-related transcripts.
Further, we observed inverse genetic correlations of grip strength with cardiometabolic traits, and
positive correlation with parents’ age of death and education. We also showed that grip strength had
shared biological pathways with indicators of frailty, including cognitive performance scores. By use of
Mendelian randomization, we provide evidence that higher grip strength is protective of both coronary
heart disease (OR=0.69, 95% Cl 0.60-0.79, P < 0.0001) and atrial fibrillation (OR=0.75, 95% Cl 0.62—
0.90, P =0.003). In conclusion, our results show shared genetic aetiology between grip strength, and
. cardiometabolic and cognitive health; and suggest that maintaining muscular strength could prevent
. future cardiovascular events.

Hand grip strength is a simple and non-invasive measurement of general muscular strength and it has been

shown to predict disability in older adults, fracture risk, nutritional status, cardiovascular disease events and
- all-cause mortality!—>. Several behavioral and environmental factors, such as physical activity and nutrition, affect
. the variability of grip strength, but family studies have suggested that genetic factors also have a significant role**,
. with estimated 56% heritability®. The identification of genetic variants affecting grip strength variability could
* help in the understanding of biological mechanisms of muscular fitness, as well as lend biological insights to
. physical functioning late in life and healthy aging.
So far, two genome-wide association studies (GWAS) of maximal grip strength have been conducted”®. The
. largest study, also conducted in the UK Biobank, included 195,180 individuals and identified 16 loci associated
- with grip strength. In this study, we conducted traditional and gene-based GWAS for 334,925 individuals from
- the UK Biobank to discover novel loci for relative grip strength®', and evaluated shared genetic aetiology and
- causal effects of grip strength on several health indicators.

Results

Genetic associations for grip strength in biologically relevant loci. In our discovery GWAS (ran-

dom 2/3 sample from eligible individuals; N =223,315) adjusted for age, sex, genotype array, and 10 principal
. components, we identified 101 genome-wide significant loci for grip strength (Fig. 1). Four variants were inde-
. pendent single-nucleotide polymorphisms (SNPs) from loci with another lead variant, identified through condi-
© tional analyses (rs62106258 near LINC01874, rs78648104 in TFAP2D, rs800895 in TRPSI and rs10871777 near
: ENSG00000267620). Out of 101 variants, 64 were associated (P < 0.01 and consistent direction) in the replication
. dataset (remaining 1/3 of eligible individuals; N =111,610; Supplementary Table S1). Most of the 64 replicating

SNPs were located in introns (48%) or in intergenic regions (22%), while only 8% were located in exons. The
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Figure 1. Manhattan plot of genetic associations with grip strength in discovery sample.
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Figure 2. Gene-based manhattan plot of genetic associations with grip strength in discovery sample. The most
significant gene for each chromosome is labeled.

corresponding proportions across all SNPs were 57%, 28% and 1% (for intronic, intergenic and exonic SNPs,
respectively). Thus, exonic SNPs were replicated at higher rate compared to intronic and intergenic SNPs, which
has been suggested in some prior literature'’.

The two loci with most significant associations were located in chromosome 16, in the intron of FTO
(rs1421085, 3 = —0.004, P=5.4 x 10 * and 3 = —0.004, P =4.9 x 10~?? in discovery and replication samples,
respectively) and ATXN2L (rs12928404, 3 =—0.003, P=1.0 X 10-* and 3=—0.002, P=1.1 x 1077). The FTO
locus has been previously shown to be associated with obesity'>!* and lipids', among other metabolic traits; and
according to the OMIM database, mutations in this gene can also cause growth retardation, developmental delay,
and facial dysmorphism. The other locus on chromosome 16 has been reported to be associated with intelligence
in a recent large study'®, and our lead variant has a high probability of being regulatory (Regulome score'® = 1b).
This is also in close vicinity of ATP2A1, a gene involved in muscular contraction and relaxation, and a causal
gene for a muscle disorder called Brody disease, which is characterized by muscle cramping after exercise. Our
gene-based analysis of the discovery sample identified ATP2AI as the most significant gene for grip strength
(P=3.9x 1077}, Fig. 2). Among the top three most significant loci was a nonsynonymous SNP in the exon of
SLC39A8 (rs13107325,3=—0.006, P=4.4 x 10~23 and 3= —0.005, P=2.0 x 10~1%), which has been identified as
a susceptibility variant for schizophrenia!” and metabolic traits'>'8. This variant had a CADD score! of 34.00, pre-
dicting deleterious effect, and mutations in SLC39A8 are also known to cause a severe congenital disorder of gly-
cosylation, characterized by delayed psychomotor development apparent from infancy, hypotonia, short stature,
seizures, visual impairment, and cerebellar atrophy.

To identify candidate genes regulated by the 64 replicated grip strength variants, we used the Genotype-Tissue
Expression (GTEx) database® for eQTL analyses across all tissues. In 25 loci, we found evidence of at least one
significant eQTL (FDR < 0.05, Supplementary Table S2). The largest number of significant eQTLs was associated
with gene expression in nerve (tibial), artery (tibial), and skin (sun-exposed lower leg). In seven loci, the most
significant eQTL was found for the gene in which they were located (ADCY3, TGFA, BDNF, KIF1B, LRRC43,
ARPP21, KIAA1598). Our top SNP in BDNF (rs6265,3=0.002, P=7.1 x 10~19), is located in the exon and has a
high CADD score (CADD = 24.1), highlighting that this is likely to be a pathogenic variant. This is an interesting
gene as it encodes brain-derived neurotrophic factor, an important growth factor promoting neurogenesis. BDNF
concentrations are increased in response to exercise and decreased in neurodegenerative diseases?'. Mutations
in BDNF might also cause congenital central hypoventilation syndrome, characterized by hypoventilation due
to the absence of primary neuromuscular, lung, or cardiac disease, or an identifiable brainstem lesion. KIF1B is
another interesting gene involved in Charcot-Marie-Tooth disease, which is characterized by distal limb muscle
weakness and atrophy due to peripheral neuropathy. TGFA encodes a growth factor that activates a signaling
pathway for cell proliferation, differentiation and development, and OMIM links include cancers, cleft lip and
Alstrom syndrome.

Interestingly, some variants regulated the expression of other genes having a role in developmental abnormali-
ties. The most significant eQTL was one of the lead variants, rs12928404 in ATXN2L, which had a significant associ-
ation with the expression of adjacent TUFM gene in several tissues (lowest P= 5.2 x 107%°, FDR =0.0003 for whole
blood). Mutations in TUFM have previously been shown to cause combined oxidative phosphorylation deficiency
4, a syndrome consisting of intrauterine growth retardation, developmental regression, hypotonia and respiratory
failure. Another interesting eQTL was rs6759321, which regulated DARS expression in thyroid (P =5.8 x 1077,
FDR =0.0002). DARS is a causal gene for another disorder including delayed motor development, mental retarda-
tion, among other features (“hypomyelination with brainstem and spinal cord involvement and leg spasticity”??).
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Trait Beta" Se P N
Physical activity (accelerometer) 0.018 | 0.006 |0.003 24282
Cardiorespiratory fitness (VO,) 0201 | 0.022 |3.1x107" |14681
General Health 0.068 0.007 1.3x 1072 112498
Slow walking speed —0.106 [0.011 |1.1x1072 | 112498
Falls —0.041 0.008 8.5x10°% 112498
Weight loss —0.067 |0.008 |9.9x107'° 112498
Tiredness —0.026 0.006 1.4%x10°° 112498
Fluid intelligence score 0.014 | 0.005 | 0.0046 36366
Reaction time —0.012 0.003 1.6 x 1073 111812

Table 1. Association between genetic risk score for grip strength and frailty indices. “Per SD in genetic risk
score and outcome variable. Genetic risk score was calculated as a sum of grip strength increasing alleles,
weighted with the effect sizes from discovery analysis. Associations with frailty indices were tested in the
replication sample. VO,: net oxygen consumption.

Further, rs12599952 regulated the expression of DHODH in several tissues (lowest P=1.6 x 107!, FDR =0.0003
for tibial artery), a gene responsible for Miller syndrome including severe micrognathia, cleft lip and/or palate,
hypoplasia, eyelid coloboma, and accessory nipples and several other developmental abnormalities.

Finally, several genes located nearest to the lead variants (which generally does not demonstrate causality, but
sometimes can be indicative of the mechanisms) are also known to play roles in different developmental disorders
(Supplementary Table S2). These include patent ductus arteriosus, a form of congenital heart defect (TFAP2B), myo-
tonic dystrophy type 1, which is the most prevalent adult onset muscular dystrophy (CELFI), Pitt-Hopkins syndrome,
which is characterized by intellectual disability, distinctive facial features, poor muscular development and abnormal
breathing (TCF4), mental retardation with language impairment and with or without autistic features (FOXPI) and
hyaline fibromatosis syndrome, characterized by abnormal growth of hyalinized fibrous tissue (ANTXR2).

Geneticrisk score analysis.  Next, we calculated a genetic risk score (GRS) as a weighted sum of the 101
grip strength variants identified in the discovery dataset and estimated its associations with the measures of
fitness, general health and indicators of frailty?® in the replication dataset (Table 1). The GRS was significantly
associated with cardiorespiratory fitness (VO,, N =14,681), objective measurement of physical activity (aver-
age acceleration measured with a wrist-worn accelerometer, N =24,282), self-reported good or excellent overall
health (N =112,498), and fluid intelligence score (N = 36,366). The significant inverse associations were observed
with slow walking speed (N =112,498), frequent feelings of tiredness / lethargy in last 2 weeks (N =112,498),
falls during the last year (N =112,498), weight loss during the last year (N =112,498), and reaction time
(N=111,812). All association remained significant after multiple testing correction (alpha threshold =0.05/9).

Meta-analysis. To maximize power for pathway and Mendelian randomization (MR) analyses and to sug-
gest additional associations, we also performed a meta-analysis of the discovery and replication samples. This
analysis revealed 139 independent loci reaching genome-wide significance for grip strength (r2=0.05, clumping
window = 500kb, Supplementary Table S3). These variants explained 1.7% of the grip strength variance. In a sen-
sitivity analysis, we tested for associations between the effects of these 139 SNPs on our definition of grip strength
and the effects on alternative measures of grip strength (grip strength divided by BMI, as well as maximum grip
strength). The correlations between the effect sizes were high (r = 0.99 for grip strength divided by BMI, r=0.79
for maximal grip strength). Based on LD-score regression of meta-analyzed results, the genome-wide “chip”
heritability of grip strength was 0.13 (SE =0.004). This is lower than the heritability reported in a recent GWAS
study of maximum grip strength (0.24, SE=10.027)8. This discrepancy is likely due to a different phenotype defi-
nition; we used relative instead of absolute grip strength to reduce confounding effect of body size (which also
may have driven up the heritability estimate of the prior study somewhat). We observed significant inflation of
P-values (A\gc=1.55), but the LD-score regression intercept of 0.9 (SE =0.01) suggested that this was due to poly-
genicity, rather than population stratification.

Using the full distribution of SNP P-values from the meta-analysis, we observed a significant positive rela-
tionship between genes highly expressed in brain and genetic associations for grip strength (Fig. 3). When using
only the nearest genes in meta-analysis as input genes, we observed the most significant enrichment of differen-
tially expressed genes in muscle (down-regulated genes P=0.003, adjusted P =0.09, N genes in category =4,396,
N overlapping genes = 134). Further, the proportion of overlapping genes in GO biological processes gene
sets was highest for “regulation of skeletal muscle contraction” (overlapping genes GSTM2, CASQI, ATP2Al1,
P=6.3 x 105, adjusted P =0.009), which is described as any process that modulates the frequency, rate or extent
of skeletal muscle contraction.

Genetic correlations. To evaluate genome-wide heritability (h%,), partitioned heritability by functional cat-
egories, and genetic correlation between other traits, we applied LD-score regression®*-*’ on the results from
our meta-analysis. In line with 17 complex diseases and traits analyzed by Finucane et al.?’, we identified strong
enrichment of grip strength loci in conserved regions (proportion of heritability / proportion of SNPs =15.6,
P=5.0 x 1072, FDR =2.6 x 107'8). When testing for genetic correlations between grip strength and all traits in
LD Hub?, we observed significant genetic correlations with 78 traits (P threshold = 0.05/231, Fig. 4), of which
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Figure 4. Significant genetic correlations with grip strength. Abbreviations: HOMA-IR, homeostasis model
assessment-estimated insulin resistance; HOMA-B, homeostasis model assessment-estimated beta-cell
function; ADHD, attention deficit hyperactivity disorder; VLDL, very low density lipoprotein; HbA1c, glycated
haemoglobin; IQ, intelligence quotient; HDL, high density lipoprotein.

most of them were cardiometabolic traits. The strongest negative correlations were observed with obesity meas-
ures and leptin. Interestingly, strong negative correlations were also detected with attention deficit hyperactivity
disorder and depressive symptoms. The strongest positive correlations were observed with parent’s age at death,
high-density lipoprotein, years of schooling and forced vital capacity.

Mendelian randomization. We selected 139 SNPs associated with grip strength in the meta-analysis as our
genetic instrument and used it to estimate the causal effects of grip strength on coronary heart disease (CHD)
and atrial fibrillation (AF). At an alpha level of 0.05, the statistical power to detect a causal effect size of 0.79 (per
SD-increase of grip strength; corresponding to the observed association?®) for grip strength and CHD was 100%.
For grip strength and AF, the power was 99% (effect size 0.75%%). The results from the two-sample MR indicated a
causal effect of grip strength on CHD (inverse-variance weighted [[VW]: OR =0.59, 95% CI 0.49-0.71, P < 0.0001;
weighted median: OR =0.52, 95% CI 0.43-0.63, P < 0.0001, MR Egger: OR =0.36, 95% CI 0.19-0.69, P=0.002) and
AF (IVW: OR=0.69, 95% CI 0.57-0.84, P < 0.0001; Weighted median: OR=0.64, 95% CI 0.49-0.82, P < 0.0001,
MR Egger: OR=0.35, 95% CI 0.17-0.70, P =0.003). For CHD, our analyses showed no significant horizontal plei-
otropy (all P >0.10). For AFE, Egger regression indicated significant pleiotropy (P < 0.05).
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As our initial analyses indicated significant heterogeneity of the genetic instruments, we excluded SNPs based
on their contribution to a heterogeneity test statistic®®. This resulted in more consistent causal effect estimates
across different methods (CHD: IVW: OR=0.69, 95% CI 0.60-0.79, P < 0.0001; Weighted median: OR=0.65,
95% CI 0.54-0.79, P < 0.0001, MR Egger: OR=0.52,95% CI 0.31-0.87, P=0.01; AF: IVW: OR=0.75, 95% CI
0.62-0.90, P =0.003; Weighted median: OR=0.67, 95% CI 0.52-0.86, P =0.002, MR Egger: OR =0.40, 95% CI
0.19-0.84, P=0.02, Supplementary Tables S4-S5). Horizontal pleiotropy was not detected in this analysis restrict-
ing our IV to less heterogeneous (and likely less pleiotropic) variants (P >0.05).

Discussion

In our GWAS of 223,315 individuals in the discovery and 111,610 in replication sample, we report 64 loci robustly
associated with grip strength. The largest number of significant eQTLs was observed for tibial nerve, and our
eQTL analyses highlighted several genes known to have a role in neurodevelopmental disorders or brain func-
tion. In our meta-analysis of discovery and replication samples, the number of significant loci reached 139 inde-
pendent variants, and we observed a significant enrichment of gene expression in brain. We observed inverse
genetic correlations with cardiometabolic traits, but also attention deficit hyperactivity disorder and depressive
symptoms; and positive correlation with parents’ age of death and education. To further assess shared biological
pathways with physical and cognitive health, we tested for association between a grip strength GRS and health
indicators, including cognitive performance scores, and found that higher GRS was associated with higher levels
of self-reported general health, physical activity and fitness, and fluid intelligence score. Inverse associations were
observed with reaction time and frailty indicators. Finally, our MR analyses suggest that maintaining muscular
strength may prevent future cardiovascular events.

Our results allow us to draw several conclusions. First, it is well known that muscular strength depends not
only on the quantity of the involved muscles, but also on the ability of the nervous system to appropriately recruit
muscle cells®. This is consistent with our results highlighting the role of the brain in regulating muscular strength.
Second, the underlying biology of grip strength points to genes with a known role in muscle and brain function,
and neurodevelopmental disorders; many of which are characterized by disturbances in motor development and
intellectual disability. Third, our GRS analyses suggest shared genetic aetiology between muscular strength and
cognitive performance, which is concordant with observational and experimental findings about the beneficial
effects of exercise training on brain health?!. The underlying biological mechanisms could relate to the stimulating
effects of exercise in the brain, promoting neuroplasticity. This hypothesis also gets support in an evolutionary
context®!. Finally, the existing literature shows that higher grip strength is associated with lower risk of all-cause
and cardiovascular mortality!, and incidence of cardiovascular events®®, which is consistent with our findings of
high positive genetic correlation with parents’ age of death, negative correlation with several cardiometabolic
traits and causal effects of grip strength on cardiovascular events. These findings suggest that maintaining good
strength has a key role in preventing future cardiovascular events, which is in line with previous randomized
controlled trials showing favorable effects of resistance training on cardiovascular risk factors®~.

A main strength of our study is the very large sample size, which enabled us to detect a much larger number
of genetic variants compared to previous studies”®. In turn, this resulted in much better power to detect causal
effects for cardiovascular events, when compared to a recent GWAS for grip strength®. We estimate that with the
16 grip strength variants they analyzed, the power to detect a causal estimate for CHD in their analysis was only
51% (effect size = 0.84 per SD-increase of maximal grip strength in the UK Biobank, R2 =0.003), while our power
was 98.5% for the same effect size. Thus, this highlights that assessing power in MR studies is essential in order to
prevent false causal inference. We also used relative grip strength as our phenotype, which is less confounded by
body size and more suitable to reflect general muscular fitness than maximal grip strength®!%.

Our study also has some limitations. First, the response rate in UK Biobank was low (5.5%), and hence, the
generalizability of our results is unknown?’. Second, the measurement accuracy might be limited for some of the
traits used in this study. For example, cognitive performance was evaluated with crude measurements of cognitive
capacity (fluid intelligence score and reaction time) and cardiorespiratory fitness was measured with a submax-
imal fitness test, which is less accurate than maximal fitness test. Also, even though grip strength is a commonly
used proxy for muscular fitness, it captures mainly upper body strength, especially when measured in sitting posi-
tion. However, it is highly correlated with knee extension muscle strength (measured as a maximal total strength
of left plus right leg, r=0.77 to 0.81)%; and due its feasibility, it is convenient proxy for muscular strength in large
samples, which are required in genetic association studies. Third, we note the possibility that the enrichment of
genetic correlations with cardiometabolic traits might be biased as they are the most commonly studied traits in
GWAS. To partly address this, we applied Bonferroni correction to declare significant genetic correlations, which
in this case is overly conservative due to high correlations among the traits. Also, in our analysis, the majority of
traits included in genetic correlation analysis were not categorized as “cardiometabolic”, “lipids”, or “glycemic”.
Fourth, we used multiple SNPs in our genetic instrument to increase power in our MR analysis, which may
increase the risk of including pleiotropic effects. That said, we applied a series of sensitivity analysis and robust
MR methods to minimize the effect of pleiotropic SNPs; hence, minimizing the risk of horizontal pleiotropy,
which would violate MR assumptions. It is important to note, however, that there may still be vertical pleiotropy
(or mediation) that does not violate the assumptions. Finally, our GWAS were conducted in unrelated European
samples only to avoid population stratification. Thus, the generalizability to other ethnicities is unknown.

In conclusion, we identified a large number of genetic loci associated with hand grip strength providing
insights of biological processes involved in individual variation in muscular strength and providing clues for
discovery of new treatments for muscle-related diseases. Our results highlight the key role of the central nerv-
ous system in strength performance and the importance of maintaining muscular strength to prevent cardio-
vascular disease.
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Materials and Methods

Study sample. The UK Biobank is a large longitudinal cohort study including over 500,000 individuals aged
40-69 years. Participants were enrolled in 22 study centers located in England, Scotland and Wales during 2006-2010.
Extensive baseline data on medical history, health behavior, and physical measurements were collected by ques-
tionnaires and clinical examination. Participants also provided samples blood, urine and saliva and have agreed
to have their future health, including disease events, monitored. The UK Biobank study was approved by the
North West Multi-Centre Research Ethics Committee and all participants provided written informed consent to
participate in the UK Biobank study. All experiments were performed in accordance with relevant guidelines and
regulations. The study protocol is available online®.

Phenotypes. Grip strength was measured in a sitting position using a Jamar J00105 hydraulic hand
dynamometer. This measures grip force without movement and adjusts the participant’s hand size. The partici-
pants were asked to squeeze the device as hard as they could for three seconds, and the maximum value that was
reached during that time was recorded. Both hands were measured in turn (UK Biobank field ID 46 for left and 47
for right hand). Due to its high correlations with body size measurements, relative grip strength (absolute strength
corrected for body size) has been suggested to be more accurate measurement of strength. Strength might be
higher in obese individuals, but the relative strength (muscle strength per kilogram of body weight) is much
lower®1%33, Thus, we calculated relative grip strength as an average of measurements of right and left hand divided
by weight (ID 21002)”1°. Weight was measured with bioelectrical impedance analysis (BIA) Tanita BC418MA.
Objective measurement of physical activity was measured with Axivity AX3 wrist-worn triaxial accelerometer®.
Cardiorespiratory fitness was measured with the cycle ergometry on a stationary bike (eBike, Firmware v1.7). We
calculated net oxygen consumption (VO,) according to Swain et al.’® from individuals’ body weight and maxi-
mum workload using the equation VO, =7 4 10.8(workload)/weight. Fluid intelligence score was calculated as a
sum of the number of correct answers given to the 13 fluid intelligence questions. Reaction time was determined
as mean time to correctly identify matches in snap reaction speed game. The categorical variables of self-reported
general health and frailty indicators were recoded to binary variables; overall health: good or excellent, 1, others, 0;
slow walking speed: slow pace, 1, others, 0; feelings of tiredness / lethargy in last 2 weeks was defined: more than
half of the days or more frequently, 1, others, 0; falls during the last year: one or more falls, 1, others, 0; and weight
loss during the last year, yes - lost weight, 1, others, 0.

Genotypes. Genotyping was performed with the UK BILEVE and UK Biobank Axiom arrays (Affymetrix
Research Services Laboratory, Santa Clara, California, USA) including 807,411 and 825,927 markers, respectively.
Initial quality control (QC) was conducted centrally by the UK Biobank, and has been described in detail by
Bycroft et al.*. In short, poor quality genetic markers were detected based on statistical tests for batch effects, plate
effects, departures from Hardy-Weinberg Equilibrium (HWE), sex effects, array effects, and discordance. Poor
quality samples were identified based on the metrics of missing rate and heterozygosity. After quality control, the
data consisted of 488,377 samples (N =49,950 and 438,427 individuals with the UK BiLEVE and UK Biobank
Axiom arrays, respectively) and 805,426 single nucleotide polymorphisms (SNPs), which were the imputed with
IMPUTE2 by using both HRC and 1000 Genomes Phase 3 merged with the UK10K haplotype reference panels,
so that the HRC was preferred for SNPs present in both panels. In our analysis, we used July 2017 release of the
imputed genetic marker data, by excluding genetic markers imputed with the UK10K + 1000 Genomes reference
panel due to reported imputation error. We further excluded genetic markers with minor allele count <30 and
imputation quality <0.8. Thus, the total number of genetic markers included in our analysis was 15,275,733.
Further, we included only unrelated individuals in the maximum unrelated subset used for principal component
analysis, and with self-reported white British descent at the baseline visit and European/Caucasian ethnicity
based on the clustering in principal component analysis. The definitions of these subgroups were done centrally
by the UK Biobank™®, and have been used in multiple prior studies**-42.

Association analysis. The discovery GWAS was carried out in the random sample of 223,315 individuals.
Analysis was performed with a linear regression by using PLINK** (version 2.0) assuming an additive model
for association between phenotypes and genotype dosages. For top loci, we performed a conditional analysis
for a region around the lead SNP to identify additional independent variants; we identified regions containing
one or more genome-wide significant SNPs (p < 5 x 10~8) by screening a window of 500kb adjacent to the first
genome-wide significant SNP on each chromosome. If no additional SNPs were identified, the region was lim-
ited to that specific SNP, and screening was continued at the next significant SNP. If additional genome-wide
significant SNPs were present in this 500 kb window, the window was expanded with 300kb from the last SNP,
and screened for additional SNPs with p <5 x 107% until there were no more genome-wide significant SNPs
within the next 300 kb. Within each region, the SNP with lowest p-value was assigned as the index SNP. For each
region, conditional association analysis was performed adjusting for all index SNPs found on the chromosome.
This was repeated until no SNPs reached p <5 x 1078 in the conditional analyses. For replication, we used the
remaining data of 111,610 individuals. Age, sex, genotype array and 10 principal components were used as covar-
iates. Finally, we conducted an inverse-variance weighted fixed-effect meta-analysis with METAL software** with
genomic control correction. In this meta-analysis, independent variants were obtained with linkage disequilib-
rium pruning (r2 =0.05, clumping window = 500kb), rather than conditional analysis.

Functional annotation. We mapped the genomic positions of all replicated lead SNPs from our discovery
analysis and annotated them with the closest gene with ANNOVAR. We used OMIM database to search for
known genetic disorders for mapped genes. In addition, we obtained CADD scores'?, the score of deleteriousness
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of SNPs predicted by 63 functional annotations, and RegulomeDB scores'é, representing regulatory functionality
of SNPs based on eQTLs and chromatin marks. SNPs were also mapped with tissue-specific gene expression levels
by utilizing GTEx database®. We searched for significant eQTLs (FDR < 0.05) across all available tissues.

Gene-based association test was computed by MAGMA (v. 1.6)*, by mapping SNPs into 18,225 protein-coding
genes, and then testing the joint association of all markers in the gene with grip strength with a multiple linear prin-
cipal components regression. Bonferroni-correction was used to define genome-wide significance (alpha thresh-
old =0.05/18,225). To evaluate enrichment in tissue-specific gene expression, we tested for association between all
genetic associations from meta-analysis and gene expression in a specific tissue types by averaging gene-expression
per tissue type. Analysis was conducted for 30 tissue types with MAGMA tissue expression analysis using gene
expression data from GTEx. Differentially expressed gene (DEG) sets were obtained for the nearest genes using
hypergeometric test, and significant DEG sets were determined using Bonferroni correction for up-regulated,
down-regulated and both-sided sets separately. The nearest genes were also used for gene set enrichment analysis,
which were obtained from MsigDB (v. 5.2). Multiple test correction was performed for each category.

Analyses were conducted with FUMA platform* using functions SNP2GENE and GENE2FUNC.

Geneticrisk score analyses. We included 101 genome-wide significant SNPs identified in our discovery
sample for our GRS analysis (97 from the main and four from conditional analysis). These SNPs explained 1.5%
of grip strength variance. The GRS was calculated as a weighted sum of the grip strength increasing alleles, by
using the effect sizes from the discovery analysis as weights. We evaluated the association between the GRS and
cardiorespiratory fitness, objective measurement of physical activity, fluid intelligence score and reaction time
with linear regression models adjusted for age, sex, genotype array and 10 principal components. Both GRS
and the outcome variables were rank transformed to normal distribution (mean = 0, SD = 1). The associations
between the GRS and self-reported overall health, slow walking speed, frequent feelings of tiredness / lethargy in
last 2, falls during the last year, and weight loss during the last year were analyzed with logistic regression models
adjusted for age, sex, genotype array and principal components.

LD-score regression. By leveraging genome-wide information from our meta-analysis, we used LD-score
regression*~?’ to estimate heritability of grip strength, to evaluate partitioned heritability by functional catego-
ries and to identify genetic correlation with other traits. LD-score regression was conducted using the summary
statistics from the meta-analysis of discovery and replication. We used pre-calculated European LD scores and
restricted SNPs to those found in HapMap Phase III to ensure good quality imputation. We conducted parti-
tioned heritability analysis using 24 main annotations described by Finucane et al.?’. Enrichment was defined as
the proportion of SNP heritability explained divided by the proportion of SNPs in each functional category. We
considered FDR < 0.05 to indicate statistically significant enrichments. Genetic correlation was tested against all
traits in LD Hub?® after SNP filtering based on allele frequency, imputation quality, outliers in effect sizes, and
removing SNPs in MHC region. To identify significant genetic correlations, we set the P-value threshold by cor-
recting for the 231 phenotypes that were available in LD Hub at the time of analysis (0.05/231).

Mendelian Randomization. We performed two-sample MR, which estimates the causal effect by contrast-
ing the SNP effects on the exposure with the SNP effects on the outcome in independent datasets. SNPs from
the meta-analysis were used as instrumental variables and publicly available GWAS data for CHD*” and AF*
as an outcome. If the SNPs were not available in the outcome GWAS, we used proxies in high LD with the lead
variants (r? > 0.8) defined using 1000 Genomes European sample data. The effect sizes of SNPs were standard-
ized and the alleles from the exposure and outcome GWAS were harmonized to match the same effect allele.
In addition to standard inverse-variance weighted (IVW) regression, we used several sensitivity analyses*: 1)
we excluded SNPs with heterogeneous instrumental variable estimates (based on their contribution to Cochran’s
Q statistic), 2) we excluded SNPs if their association with other traits was more significant than with grip
strength, 3) we applied robust analysis methods including penalization methods, median-based methods, and
Egger regression. Consistency of the causal estimates across all SNPs was evaluated with heterogeneity statis-
tics and Egger regression were used to assess horizontal pleiotropy. Analyses were conducted with R-package
TwoSampleMR*, MendelianRandomization® and gtx. Power for MR analyses was estimated with an online tool
created by Burgess®2. Analyses were conducted with R (version 3.3.0).

Data availability. The data reported in this paper are available via application directly to the UK Biobank
(http://www.ukbiobank.ac.uk/). GWAS summary statistics are available in LD Hub (http://ldsc.broadinstitute.org/).
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