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Virus-encoded miRNAs in Ebola 
virus disease
Janice Duy1, Anna N. Honko   2, Louis A. Altamura   1, Sandra L. Bixler2, Suzanne Wollen-
Roberts2, Nadia Wauquier3,5, Aileen O’Hearn1, Eric M. Mucker2, Joshua C. Johnson   2, Joshua 
D. Shamblin2, Justine Zelko2, Miriam A. Botto2, James Bangura3, Moinya Coomber3, M. Louise 
Pitt2, Jean-Paul Gonzalez4,6, Randal J. Schoepp1, Arthur J. Goff2 & Timothy D. Minogue1

Ebola virus (EBOV) is a negative-strand RNA virus that replicates in the cytoplasm and causes an often-
fatal hemorrhagic fever. EBOV, like other viruses, can reportedly encode its own microRNAs (miRNAs) 
to subvert host immune defenses. miRNAs are short noncoding RNAs that can regulate gene expression 
by hybridizing to multiple mRNAs, and viral miRNAs can enhance viral replication and infectivity by 
regulating host or viral genes. To date, only one EBOV miRNA has been examined in human infection. 
Here, we assayed mouse, rhesus macaque, cynomolgus macaque, and human samples infected with 
three EBOV variants for twelve computationally predicted viral miRNAs using RT-qPCR. Ten miRNAs 
aligned to EBOV variants and were detectable in the four species during disease with several viral 
miRNAs showing presymptomatic amplification in animal models. miRNA abundances in both the 
mouse and nonhuman primate models mirrored the human cohort, with miR-1-5p, miR-1-3p, and miR-
T3-3p consistently at the highest levels. These striking similarities in the most abundant miRNAs during 
infection with different EBOV variants and hosts indicate that these miRNAs are potential valuable 
diagnostic markers and key effectors of EBOV pathogenesis.

The most recent outbreak of Ebola virus disease (EVD) in West Africa in 2013–2016 caused over 28,000 reported 
cases and greater than 11,000 deaths1, highlighting the need for accurate and rapid diagnostic tests for patient 
triage and management of disease spread2. The gold standard for diagnosis of EVD is the amplification of viral 
sequences using RT-PCR. Several assays that target different Ebola virus (EBOV) genes are now available3, but the 
detection of virus in blood samples typically occurs after the onset of clinical symptoms4,5. A definitive diagnosis 
prior to this time can only be achieved by a more sensitive assay, or by targeting other indicators of disease that 
are more abundant at earlier time points. As an example of the latter, we recently reported a proof-of-concept 
classifier of EVD using eight host-derived microRNAs (miRNAs) that could potentially be used for presympto-
matic diagnosis6.

miRNAs are short ~22-nt noncoding RNA species that can post-transcriptionally regulate multiple mRNAs, 
typically by binding a stretch of 6–8 nts at the 3′ untranslated region. miRNA biogenesis traditionally begins in 
the nucleus, where a long RNA sequence containing the miRNA in a hairpin (primary miRNA, pri-miRNA) is 
transcribed and recognized by the complex of Drosha (an RNase III enzyme) and DGCR8 (a dsRNA-binding 
protein). This is cleaved into a shorter ~70-nt stem-loop structure called the precursor miRNA (pre-miRNA) 
and translocated by Exportin-5 into the cytoplasm, where it is processed by the endonuclease Dicer into the 
mature miRNA form. Only recently has it been proven that RNA viruses that do not have a nuclear DNA stage 
in their replication cycle (such as EBOV) can indeed encode their own miRNAs without compromising viral 
replication7–10.

To date, several groups have predicted that EBOV encodes its own miRNAs, which may be detectable in 
circulation prior to the viral genome. Liang et al.11 first reported on potential EBOV-encoded miRNAs by pre-
dicting two pre-miRNAs and three mature miRNAs in two species, Sudan virus (SUDV) and EBOV. In silico 
analysis showed that these pre-miRNAs were conserved in two SUDV variants and in six EBOV variants. Further, 
they confirmed mature miRNA production in cell culture by transfecting the two pre-miRNA sequences, and 
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determined that the production of the mature miRNAs was significantly reduced in Dicer-deficient cells. These 
results suggest that EBOV miRNA generation is dependent on cellular miRNA processing machinery. The three 
mature miRNAs were also able to effectively silence their target mRNA sequences in cell culture.

Other groups demonstrated similar findings, with a second report using 102 EBOV/Makona genome 
sequences from the 2014 outbreak to predict four pre-miRNAs and seven mature miRNA candidates12. This 
group computationally predicted 138 gene targets and their related signaling pathways for these miRNAs. They 
also showed that synthetic EBOV miRNAs can regulate the expression of several predicted target genes in HeLa 
cells. A third group used the EBOV/Boende-Lokolia variant13 from the 2014 outbreak to predict one pre-miRNA 
encoding for two mature miRNAs14. They confirmed that these miRNAs were produced in mammalian cell lines 
by transfecting the pre-miRNA sequence into these cells, and further demonstrated in vitro that one of the miR-
NAs (miR-1-5p) suppresses the expression of importin-α5, a nuclear transport protein that interacts with EBOV 
and may influence viral virulence in vivo.

Recently, Chen et al.15 predicted three pre-miRNAs using the EBOV/Yambuku-Mayinga sequence and 
retained one of these after alignment with 125 EBOV genomes from the 2014 viral outbreak. This pre-miRNA 
produces one mature miRNA sequence, miR-VP-3p, which was detected in the serum of EBOV-positive patients 
during the acute infection phase, but not during the convalescence phase (virus-negative by PCR). Further, 
miR-VP-3p was detectable in the serum of six virus-negative patients who were admitted for EVD-like symptoms 
and eventually tested positive for EBOV 1–2 days after initial evaluation. Since miR-VP-3p was found mostly in 
the exosomal fraction of patient serum, the authors postulated that it was released into circulation prior to the 
viral genome.

In this work, we investigated whether these putative miRNAs are detectable during EBOV infection using 
RT-qPCR. We targeted 12 candidate miRNAs with locked nucleic acid (LNA)-based primer sets, and tested for 
these miRNAs in EBOV cell culture extracts. Examination of nonhuman primate (NHP) plasma/serum samples 
from two separate EBOV infection cohorts allowed for selection of the most diagnostically relevant viral miR-
NAs. We also tested whole blood samples collected daily from a BALB/c mouse model of EVD to determine if 
virus-encoded miRNAs were detectable in this species, and if these miRNAs could be amplified presymptomat-
ically. Finally, we analyzed 15 human samples from the 2014 EBOV/Makona outbreak in Sierra Leone to verify 
translatability of our findings to a human cohort.

Results
Candidate miRNA sequence alignments to EBOV genomes.  We performed a BLAT search in 
the UCSC Ebola Genome Browser (with default reference sequence Ebola virus/H.sapiens-wt/SLE/2014/
Makona-G3686.1) for putative EBOV pre-miRNA and mature miRNA sequences as four independent groups 
have predicted 12 viral miRNAs from different reference genomes: Liang et al.11 used SUDV and EBOV/
Yambuku-Mayinga, Teng et al.12 used EBOV/Makona, Chen et al.15 used EBOV/Yambuku-Mayinga, and Liu 
et al.14 used EBOV/Boende-Lokolia. The Genome Browser uses the EBOV/Makona KM034562.1 reference 
sequence, and aligns 158 Ebola genomes from outbreaks spanning 1976–2014, as well as two Marburgvirus 
genomes for comparison.

The BLAT search revealed significant alignments to putative EBOV pre-miRNAs and mature miRNAs (Fig. 1). 
Candidate EBOV pre-miRNA and mature miRNA sequences and their locations in the consensus genome are 
given in Supplementary Table S1. All miRNAs except miR-VP-3p derived from the complementary RNA (cRNA) 
strand, which is the coding (mRNA) strand. Examination of the genome alignment revealed a single G to A sub-
stitution in the EBOV-miR-T4-3p sequence at position 572 of the reference, which is the 19th nucleotide of the 
miRNA sequence.

A BLAT search of EBOV-miR-1-3p (Liang) and EBOV-miR-1-5p (Liang) did not produce a significant align-
ment, and NCBI BLAST results showed that these sequences were only found in SUDV. Similarly, miR-1-5p was 
not initially found in the UCSC reference but closer inspection of the pre-miR-1 annotation revealed that miR-
1-5p spanned genome position 9892–9913, with a G to A substitution at position 9911 of the EBOV/Makona 
variant (20th nucleotide of the miRNA sequence); no mismatches were present in the genomes of other EBOV 
variants.

Further inspection using the Genome Browser revealed the same sequence alignments in the mouse-adapted 
variant EBOV/May-MA genome, except for a single A to G mismatch at position 683 for miR-T1–5p; this corre-
sponds to the fifth nucleotide in the sequence and is part of the miRNA seed.

Figure 1.  Ten of twelve candidate EBOV miRNAs align to viral genome. Putative miRNA sequences were 
aligned to the UCSC Ebola Genome Browser using a BLAT search of the Zaire ebolavirus isolate Ebola virus/H.
sapiens-wt/SLE/2014/Makona-G3686.1 reference sequence, with relative positions denoted. Genome segments 
are not drawn to scale.
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Primer set testing and downselection.  We selected LNA-based miRNA primer sets because of demon-
strated superior selectivity and sensitivity in multiple studies16–18. The top two LNA-based primer sets designed 
by the Exiqon web tool were tested with corresponding synthetic miRNAs and a water-only cDNA control 
(non-template control, NTC) to assess performance and nonspecific binding. All primers detected the intended 
targets with low variability and only primer miR-T4-3p-1 showed nonspecific amplification (Cq < 40 for NTC). 
Therefore, we tested all primer sets with EBOV/Kikwit cell culture supernatant RNA. At 106 PFU/mL of virus 
(highest concentration tested), 20 of the 24 primer sets showed detection for ten of the twelve reported EBOV 
miRNAs (Fig. 2). As expected, primers designed to miR-1-3p (Liang) and miR-1-5p (Liang), which only aligned 
to SUDV variants, showed no target amplification (data not shown).

The abundances of different EBOV miRNAs varied greatly within the same sample. In viral cell culture super-
natants, average viral loads for 106 PFU/mL each of EBOV/Kikwit, EBOV/Gabon, and EBOV/Makona were 12.9 
pM, 7.62 pM, and 3.08 pM, respectively. For all primer sets tested, viral miRNA amounts were highest in the 
EBOV/Kikwit sample, trailed by EBOV/Gabon, then EBOV/Makona (Fig. 2, note scale). miR-1-3p, miR-1-5p, 
and miR-T3-3p were the most abundant in all variants tested. All miRNAs amplified in EBOV/Kikwit, while in 
EBOV/Gabon two primer sets (miR-2-3p-1 and miR-T2-3p-2) did not amplify their targets and miR-T4-3p-1 
showed Cq values similar to those from the NTC. In EBOV/Makona, both primer sets targeting miR-T3/

Figure 2.  EBOV-encoded miRNAs are present in cell culture supernatants from different EBOV variants. Cell 
culture supernatant RNA from 106 PFU/mL of (a) EBOV/Kikwit, (b) EBOV/Gabon, (c) EBOV/Makona, and 
(d) MARV/Musoke viral stocks were tested for candidate EBOV miRNAs. Data are presented as the mean ± SD 
of technical triplicates. EBOV viral concentration was determined by RT-qPCR of a glycoprotein sequence and 
miRNAs were assayed using custom LNA-based primer sets from Exiqon, Inc. following manufacturer’s protocols. 
Each putative miRNA was tested with the top two primer sets from the manufacturer’s web design tool.
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T4-5p, as well as miR-VP-3p-1, showed no amplification. Primer miR-T4-3p-2 showed late-cycle amplifica-
tion (Cq = 35.08) in one out of three replicates, with no detection in the remaining two replicates. We included 
cell culture supernatants from the related MARV/Musoke for preliminary cross-reactivity testing. No primer 
sets showed amplification except for miR-T3-3p-2 and miR-T4-3p-1, which also displayed amplification in the 
water-only control samples.

In subsequent analysis, we tested all primer sets with plasma samples with known EBOV titers from three 
rhesus macaques infected with EBOV/Kikwit through aerosol exposure (sample n = 14, Fig. 3). All putative miR-
NAs were detected in these samples, with miR-1-5p and miR-1-3p being most abundant, followed by miR-T3-3p, 
miR-T1-5p, miR-T4-3p, and miR-T3/T4-3p. While still detectable, miR-T1-3p, miR-2-3p, miR-T2-3p, and 
miR-VP-3p presented at far lower concentrations. Importantly, no primers amplified miRNAs in known 
virus-negative plasma samples (day -7 and day 0 relative to EBOV exposure) with the exception of miR-T4-3p-1.

While the most diagnostically relevant (most abundant) miRNAs are miR-1-3p, miR-1-5p, and miR-T3-3p 
based on these results, we carried the best-performing primer sets into further analysis for each miRNA to 
account for the diversity of our sample sets, which encompasses different species and EBOV variants.

Figure 3.  EBOV-encoded miRNAs were detectable in the plasma of EBOV/Kikwit-infected NHPs. Ten 
candidate miRNAs were detected by 19 LNA primer sets in rhesus macaque plasma from an EBOV/Kikwit 
infection cohort (NHP n = 3). Data are presented as the mean ± SD of biological replicates run in technical 
triplicate. miRNAs were assayed with custom LNA primer sets obtained from Exiqon, Inc. following 
manufacturer’s instructions (see Methods for details). Each miRNA target was amplified by two separate primer 
sets. Viral load was determined using an RT-qPCR assay which amplifies part of the viral glycoprotein sequence.
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EBOV miRNAs in longitudinally-collected NHP samples.  To determine if EBOV miRNAs can be 
used to diagnose EVD in the NHP model, we tested longitudinally collected, archived plasma samples from two 
separate studies. The first set was from six rhesus macaques exposed to EBOV/Kikwit, including samples from 
the three NHPs tested for primer set downselection. The second sample set included three cynomolgus macaques 
infected with EBOV/Makona.

All EBOV miRNAs were detectable in EBOV/Kikwit rhesus macaque samples at symptomatic timepoints 
(Table 1 and Supplementary Fig. S1a). In this cohort, miR-1-5p and miR-1-3p yielded the highest concentrations, 
followed by miR-T1-5p and miR-T3-3p. Viral load for this infection model increased from day 6 to day 7 or from 
day 6 to day 8 with all miRNA concentrations rising concomitantly.

Similarly, miR-1-5p was most abundant in the EBOV/Makona group, followed by miR-T3-3p, miR-T4-3p, 
miR-T3/T4-5p, and miR-1-3p (Table 2 and Supplementary Fig. S1b). Circulating virus peaked and then declined 
after day 6 with viral miRNAs following two trends: (1) mirroring viral load (miR-1-3p, miR-1-5p, miR-2-3p, 
miR-T1-5p) and (2) increasing over time independent of viral load (miR-T1-3p, miR-T2-3p, miR-T3-3p, miR-T3/
T4-5p, miR-T4-3p, miR-VP-3p). In contrast to the EBOV/Kikwit cohort, one technical replicate in one NHP 
showed presymptomatic amplification of the most-abundant miR-1-5p at day 3 without direct detection of EBOV 
(miRNA Cq = 34.79, NTC Cq not detected after 45 cycles). In both rhesus and cynomolgus macaque models, 
miRNAs at the lowest concentrations were miR-2-3p, miR-T2-3p, and miR-VP-3p.

Average peak circulating virus levels were 10.7 times higher in the EBOV/Kikwit samples compared to those 
from EBOV/Makona (peak titers ranged from 12.7 to 365 pM and 2.1 to 32 pM, respectively). Corresponding 
mean miRNA abundances in EBOV/Kikwit were 5.2 times higher than those from EBOV/Makona. The con-
centration of the most-abundant miR-1-5p was only 54-fold lower than circulating virus in the EBOV/Makona 
cohort despite the G-to-A substitution in the 20th nucleotide of the EBOV/Makona sequence; it was ~257-fold 
lower than virus in the EBOV/Kikwit group. We tested the miR-1-5p-1 primer set with synthetic mismatched 

EBOV miRNA

miRNA concentration by day post-exposure (fM)

Day −7 (EBOV 
load ND) Day 0 (ND) Day 3 (ND) Day 6 (51.71 pM) Day 7 (287.17 pM) Day 8 (295.55 pM)

miR-1-3p ND ND ND 58.37 ± 20.57 557.04 ± 111.82 245.68 ± 48.88

miR-1-5p ND ND ND 216.36 ± 15.75 1424.69 ± 108.41 1151.34 ± 72.38

miR-2-3p ND ND ND 1.74 ± 1.32 8.02 ± 1.68 5.20 ± 3.76

miR-T1-3p ND ND ND 2.13 ± 0.52 12.04 ± 1.11 9.94 ± 0.55

miR-T1-5p ND ND ND 4.64 ± 1.06 31.27 ± 1.44 87.08 ± 5.19

miR-T2-3p ND ND ND 0.98 ± 0.36 5.95 ± 0.23 5.51 ± 0.64

miR-T3-3p ND ND ND 17.85 ± 3.27 38.15 ± 8.54 52.42 ± 8.10

miR-T3/T4-5p ND ND ND 7.02 ± 1.39 22.00 ± 2.37 17.83 ± 1.39

miR-T4-3p ND ND ND 8.07 ± 2.23 22.49 ± 8.60 22.56 ± 4.73

miR-VP-3p ND ND ND 0.70 ± 0.62 1.05 ± 0.20 2.93 ± 1.90

Table 1.  EBOV miRNAs were detected in rhesus macaques exposed to aerosolized EBOV/Kikwit. Note: Data 
are presented as the mean ± SD of biological replicates assayed in technical triplicate. The corresponding EBOV 
load at each timepoint is given in parentheses below each day. ND = not detected.

EBOV miRNA

miRNA concentration by day post-exposure (fM)

Day −1 (EBOV 
load ND) Day 3 (ND) Day 6 (10.01 pM) Day 9 (1.35 pM) Day 10 (4.19 pM)

miR-1-3p ND ND 9.95 ± 15.74 2.74 ± 2.79 35.69 ± 31.42

miR-1-5p ND 0.37 ± 0.64 250.82 ± 22.56 203.89 ± 15.91 328.52 ± 34.95

miR-2-3p ND ND 2.11 ± 1.40 1.40 ± 0.913 6.96 ± 7.69

miR-T1-3p ND ND 1.60 ± 0.39 4.47 ± 0.50 5.81 ± 0.85

miR-T1-5p ND ND 4.20 ± 1.23 1.96 ± 0.72 4.91 ± 1.52

miR-T2-3p ND ND 0.68 ± 0.30 1.17 ± 1.23 2.39 ± 0.92

miR-T3-3p ND ND 19.62 ± 10.17 50.21 ± 5.74 59.64 ± 10.12

miR-T3/T4-5p ND ND 10.56 ± 2.24 30.60 ± 7.27 36.44 ± 2.32

miR-T4-3p ND ND 12.06 ± 4.48 29.20 ± 5.80 38.83 ± 6.22

miR-VP-3p ND ND 0.02 ± 0.02 0.23 ± 0.40 0.24 ± 0.27

Table 2.  EBOV miRNAs were detected in cynomolgus macaques intramuscularly injected with EBOV/
Makona. Note: Data are presented as the mean ± SD of biological replicates assayed in technical triplicate. 
Values in bold font indicate amplification in only one of three biological samples, with mean ± SD only for that 
sample. The corresponding EBOV load at each timepoint is given in parentheses below each day. ND = not 
detected.
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RNA to assess the effect of the non-seed mutation and found no differences in amplification efficiency compared 
to the perfect-match sequence, indicating both variants are equivalently detected (data not shown).

EBOV miRNAs in mouse whole blood collected at early infection timepoints.  We next assayed 
mouse whole blood samples collected during daily terminal bleeds for all EBOV miRNAs to determine whether 
these miRNAs are: (1) detectable during infection in a different mammalian model and (2) viable presympto-
matic markers of disease. We found that viral miRNAs were also present in the EBOV/May-MA mouse model of 
infection (Table 3 and Supplementary Fig. S2). Nonspecific amplification at late cycles (Cq > 37) was observed in 
known virus-free (day 0) samples and was used as the new baseline for this set (data not shown).

In this cohort, the EBOV titer remained low until day 3, peaked at day 4, and declined by day 7 post-exposure, 
with levels lower than those seen during NHP infection (4.17E-05 to 36 pM). Similar to the NHP findings, the 
miRNAs at the highest levels were miR-1-5p and miR-T3-3p, followed by miR-1-3p, miR-T4-3p, and miR-T3/
T4-5p. Inspection of the data revealed miRNA expression trends that could be grouped into: (1) miRNAs that 
increased steadily during disease (miR-1-3p, miR-2-3p, and miR-VP-3p); (2) miRNAs that remained low until 
day 4, then increased on day 7 (miR-1-5p, miR-T1-3p, miR-T3-3p, miR-T3/T4-5p, and miR-T4-3p); and (3) one 
miRNA that was highest on day 4/peak viremia (miR-T2-3p). Analogous to the NHP cohorts, the least abundant 
miRNAs were miR-2-3p, miR-T2-3p, and miR-VP-3p. Mouse samples from day 0 onward showed low levels 
of amplification for miR-T1-5p (Cq values ranging from 34.94 to 40) despite the A-to-G mismatch in the seed 
sequence of the mouse-adapted viral variant. We tested the miR-T1-5p-2 primer set with the synthetic mis-
matched miRNA and found that the primer set amplified the mouse-adapted sequence, albeit at an average of a 
60-fold reduction in efficiency (data not shown). Examination of the melt curves showed different characteristics 
for the mouse-adapted amplicon, which suggests either abolishment of miR-T1-5p or low levels of nonspecific 
amplification for this assay. Analysis of the effect of the A-to-G substitution in the seed sequence revealed signif-
icant differences between functionalities of the two sequences, with a biological process similarity score of 0.234 
(a score of 1 represents identical functionality) calculated using miRmut2GO19.

In the mouse samples, average viral load was 5.22 ± 0.27 pM, with miR-1-5p concentrations ~400-fold lower 
over the course of infection. The EBOV glycoprotein sequence amplified as early as day 1 post-exposure, and was 
detectable before any miRNAs. However, miR-1-5p, miR-T3-3p, miR-T3/T4-5p, and miR-T4-3p were detectable 
in three different mice as early as day 2 post-exposure, when animals were asymptomatic for EVD. miR-T3-3p 
and miR-T3/T4-5p amplified in the same mouse on this day. In contrast to the other miRNAs which were ampli-
fied starting on day 3, miR-T2-3p (second-least abundant) was detectable only on days 4 and 7 post-infection.

EBOV miRNAs in human samples from the 2014 outbreak.  To assess the applicability of targeting 
EBOV-encoded miRNAs in clinical samples, we tested human plasma and serum samples acquired in Sierra 
Leone in 2014 (Table 4 and Supplementary Fig. S3). Samples were collected 2–27 days post-symptom onset 
(self-reported by patients during admission). All samples were PCR-positive for EBOV, with titers ranging from 
2.1 × 10−5 pM to 7.64 pM (equivalent to 19.4 PFU/mL to 6.58 × 105 PFU/mL, data not shown), with an average 
of 1.06 ± 2.65 pM.

miRNAs were detected in samples collected 2–18 days post-symptom onset, and samples with the highest 
viral load (G5 and G6) were positive for all miRNAs assayed. Similarly, all miRNAs except miR-VP-3p were 
detected in sample G2, which had the third-highest viral concentration. miR-1-5p was the most abundant miRNA 
(mean concentration 99.43 ± 142.16 fM), followed by miR-T3-3p (mean 15.76 ± 14.48 fM), miR-1-3p (mean 
15.51 ± 9.00 fM) and miR-T3/T4-5p (mean 10.28 ± 11.14 fM). miR-T2-3p, miR-2-3p, and miR-VP-3p were at 
the lowest concentrations, comparable to results from the NHP and mouse cohorts.

EBOV miRNA

miRNA concentration by day post-exposure (fM)

Day 0 (EBOV 
load ND) Day 1 (4.17E-05 pM) Day 2 (0.04 pM) Day 3 (3.99 pM) Day 4 (20.20 pM) Day 7 (0.22 pM)

miR-1-3p ND ND ND 8.82 ± 6.92 20.94 ± 14.68 51.32 ± 37.27

miR-1-5p ND ND 1.08 ± 0.99 8.52 ± 1.51 25.11 ± 2.55 129.37 ± 6.68

miR-2-3p ND ND ND 2.40 ± 1.23 5.00 ± 1.11 12.41 ± 2.36

miR-T1-3p ND ND ND 0.74 ± 0.16 1.78 ± 0.41 18.44 ± 1.83

miR-T1-5p ND ND ND ND 14.57 ± 8.14* ND

miR-T2-3p ND ND ND ND 2.49 ± 0.77 1.26 ± 0.92

miR-T3-3p ND ND 0.83 ± 0.82 3.45 ± 2.86 12.46 ± 6.77 101.75 ± 10.34

miR-T3/T4-5p ND ND 0.07 ± 0.12 2.32 ± 0.76 3.74 ± 0.92 46.81 ± 3.31

miR-T4-3p ND ND 1.19 ± 2.06 3.67 ± 1.16 6.25 ± 3.87 55.58 ± 7.26

miR-VP-3p ND ND ND 0.05 ± 0.10 0.30 ± 0.46 0.62 ± 1.07

Table 3.  EBOV miRNAs were detected in BALB/c mice intraperitoneally injected with mouse-adapted EBOV/
Mayinga. Note: Data are presented as the mean ± SD of biological replicates assayed in technical triplicate. 
Values in bold font indicate amplification in only one of three biological samples, with mean ± SD only for that 
sample. The corresponding EBOV load at each timepoint is given in parentheses below each day. ND = not 
detected. *Value given is based on the mismatched miR-T1-5p sequence.



www.nature.com/scientificreports/

7SCIEnTIFIC REPOrTS |  (2018) 8:6480  | DOI:10.1038/s41598-018-23916-z

miR-1-5p was detected in the most samples (7 patients), followed by miR-T3/T4-5p and miR-T1-3p (5 
patients). While viral load was quantifiable in all samples tested, miRNAs were not amplified in samples G7, G10–
G13 and G15, when circulating virus levels dropped to less than 0.2 fM (<150 PFU/mL). However, miR-1-5p was 
detected in sample G9 (viral load = 0.161 fM) and miR-T3-3p amplified in one technical replicate of sample G14 
(viral load = 0.104 fM, 18 days after symptom onset).

The majority of miRNAs were at lower concentrations compared to circulating EBOV, but miR-1-5p was 
40-fold and 1.3-fold higher than viral glycoprotein in samples G8 and G9, respectively. Similarly, miR-T3-3p was 
present at a concentration 26 times higher than virus in sample G14, miR-T3/T4-5p was 5-fold higher in sample 
G8, and miR-1-3p was 1.8-fold higher in sample G4. In these patient samples with increased miRNA/viral RNA 
ratios, EBOV load was low (<13 fM).

Comparison of EBOV miRNA profiles during mouse, macaque, and human disease.  To bet-
ter visualize EBOV miRNA trends in these different disease models, we plotted the relative abundance of each 
miRNA species as a percentage of the total EBOV miRNA content per day (Fig. 4). In the mouse model, miR-1-5p 
was the most abundant on all days, representing an average of 31.0% of the total over the disease course, followed 
by miR-T3-3p and miR-1-3p at 22.4% and 15.4%, respectively. In rhesus macaques, miR-1-5p dominated the 
total EBOV miRNA content at 69.1% over all days, followed by miR-1-3p at 21.3% and miR-T3-3p at 2.7%. miR-
1-5p was also the most represented miRNA in the cynomolgus macaque EBOV/Makona infection at an average 
of 67.7% of the total over all days, followed by miR-T3-3p (11.2%), miR-T4-3p (6.9%), miR-T3/T4-5p (6.7%), 
and miR-1-3p (4.2%). In the human cohort, a similar pattern of miRNA abundances emerged, with miR-1-5p 
garnering an average of 73.4% over all days, and trailed by miR-T3-3p (6.6%), miR-1-3p (6.5%), and miR-T3/
T4-3p (5.4%).

In all EBOV infection models, miR-1-5p was the most abundant miRNA, comprising ~70% of the EBOV 
miRNAs detected in two macaque species and in humans. While still the main miRNA present in mouse EVD, 
miR-1-5p abundance was proportionally lower and closer to the next most-abundant miRNAs miR-T3-3p and 
miR-1-3p. These latter two are also among the top miRNAs detected in all EBOV models, along with miR-T3/
T4-5p. No significant correlations were observed between viral load and individual miRNA abundances in any 
of the infection cohorts.

Viral miRNA target prediction and gene set analysis.  To determine whether viral miRNAs elicit sim-
ilar responses in the species tested, we predicted gene targets using TargetScan Custom v5.2, which uses the 
miRNA seed sequence to calculate binding probabilities in various species; here, we searched for hits against 
human, rhesus macaque, and mouse. Input of the miR-T1-3p seed sequence revealed that it is identical to that 
of the endogenous mouse miRNA mmu-miR-470. None of the other EBOV miRNA seed sequences mapped to 
host-encoded miRNAs using this method.

We found that each EBOV-encoded miRNA targeted many of the same genes, regardless of species (Fig. 5). 
The intersection of genes comprised an average of 52%, 57%, and 73% of the total number of human, rhesus 
macaque, and mouse genes predicted, respectively (data not shown). The top three miRNAs with the most pre-
dicted gene targets were miR-1-5p, miR-T2-3p, and miR-VP-3p.

We then investigated the potential regulatory functions of the top 3 most-abundant miRNAs in all species, 
miR-1-3p, miR-1-5p, and miR-T3-3p. As human miRNA-mRNA interactions are currently better annotated 
through experimental validation20, we used the human target gene predictions as input into ToppFun21 to explore 
possible effects on biological function through enrichment analyses. The top three viral miRNAs appear to reg-
ulate divergent biological processes (Table 5). Genes targeted by miR-1-3p are involved in clathrin-mediated 

EBOV miRNA

miRNA concentration by patient sample designator (fM)

G1
(0.031 pM)

G2
(0.367 pM)

G3
(0.336 pM)

G4
(0.012 pM)

G5
(7.64 pM)

G6
(7.50 pM)

G8
(3.47E-05 pM)

G9
(1.61E-04 pM)

G14
(1.04E-04 pM)

miR-1-3p 2.67 ± 4.62* 21.74 ± 23.92 15.87 ± 10.68 21.78 ± 10.63

miR-1-5p 0.48 ± 0.11 110.09 ± 1.86 4.17 ± 0.87 361.67 ± 48.69 217.95 ± 5.70 1.39 ± 0.95 0.21 ± 0.26

miR-2-3p 0.86 ± 0.74 1.38 ± 0.58 1.84 ± 0.25

miR-T1-3p 4.62 ± 1.02 0.38 ± 0.17 1.36 ± 0.45 9.42 ± 1.41 5.03 ± 2.31

miR-T1-5p 0.58 ± 0.99 4.55 ± 1.39 6.47 ± 0.56

miR-T2-3p 0.83 ± 0.87 2.80 ± 0.67 2.48 ± 1.26

miR-T3-3p 9.89 ± 4.67 36.29 ± 8.78 14.15 ± 8.30 2.71 ± 4.70*
miR-T3/T4-5p 14.17 ± 1.46 0.34 ± 0.35 27.02 ± 4.75 9.73 ± 2.65 0.17 ± 0.24

miR-T4-3p 8.52 ± 1.75 19.69 ± 5.15 5.02 ± 2.13

miR-VP-3p 0.28 ± 0.41 0.08 ± 0.14*

Table 4.  EBOV miRNAs were present in human samples during infection with EBOV/Makona. Note: Data are 
presented as the mean ±SD of three technical replicates. Values in bold font indicate amplification in only one 
of three replicates. Blank cells indicate that the corresponding miRNA was not detected. The corresponding 
EBOV load for each individual is given in parentheses below the patient designator. Values in italicized font 
denote miRNA concentration higher than viral load.
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endocytosis, while those regulated by miR-1-5p participate in c-MET signaling. miR-T3-3p target genes, mean-
while, are implicated in activin antagonism.

Discussion
In this work, we demonstrated that putative EBOV-encoded miRNAs are detectable in circulation in different 
infection models (mouse, rhesus macaque, cynomolgus macaque, and human) of various EBOV variants (EBOV/
Mayinga-MA, EBOV/Kikwit, and EBOV/Makona). We established experimentally that predicted EBOV miRNAs 
are conserved in four mammalian species, in agreement with computational alignment to viral genomes.

EBOV miRNAs amplified in cell culture supernatants, with the most abundant miRNAs being miR-1-5p, 
miR-1-3p, and miR-T3-3p. However, despite standardizing viral input, differing copy numbers and miRNA levels 
were detected by PCR. Currently there are no clear relationships between EBOV in clinical samples, PFU/mL, and 
copies/mL, but estimates suggest that viral copies are 100- to 10,000-fold more abundant than infectious virus22,23. 
In this work, 1 PFU of TRIzol LS-inactivated stock virus corresponded to ~2800 viral copies of the RNA standard.

Ten of the twelve predicted EBOV miRNAs were detectable in NHP plasma from rhesus macaques chal-
lenged with EBOV/Kikwit, and in cynomolgus macaques injected with EBOV/Makona. miR-1-5p, miR-1-3p, 
and miR-T3-3p were among the top miRNAs detected in both groups, with lower miRNA-to-virus ratios for the 
EBOV/Makona group; for example, miR-1-5p concentrations were ~257-fold lower than virus in the EBOV/
Kikwit group compared to ~54-fold lower in the EBOV/Makona cohort. A majority of miRNA levels also 
increased over the disease course despite dissimilar patterns in EBOV abundance. These results could indicate 
that miRNAs are actively secreted15 or are released during cell death24 as EVD progresses. Intriguingly, miR-
1-5p was detected in one presymptomatic, virus-negative (day 3) cynomolgus macaque infected with EBOV/
Makona (out of three NHPs assayed). No miRNAs were detected presymptomatically in the EBOV/Kikwit rhesus 
macaque group, despite higher overall viral and miRNA concentrations in that cohort. However, for both NHP 

Figure 4.  EBOV miRNA distributions are similar in different disease models. The relative abundance of each 
EBOV miRNA species detected was plotted as a percentage of the total EBOV miRNA content per day in the (a) 
BALB/c mouse model infected with mouse-adapted EBOV/Mayinga, (b) rhesus macaque model infected with 
EBOV/Kikwit, (c) cynomolgus macaque model infected with EBOV/Makona, and (d) human samples from the 
EBOV/Makona outbreak in 2014. In the animal models, samples were grouped by day post-exposure, whereas 
human samples are shown individually and arranged by day post-symptom onset. The aggregated miRNA 
distributions for each model are given in the last bar for each graph. EBOV viral loads (mean ± SD of biological 
replicates, where applicable, assayed in technical triplicate) are shown for comparative purposes, and filled 
circles represent a positive PCR result for the viral glycoprotein sequence.
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studies no blood was collected between day 3 (infected but presymptomatic and virus-negative) and day 6, when 
animals were typically acutely symptomatic and presented high EBOV titers. Daily blood collection in these 
models may resolve whether EBOV miRNAs can be reliable markers of EVD prior to the detection of circulating 
virus. One report of the amplification of miR-VP-3p in virus-negative but symptomatic human cases found this 
miRNA in exosomes, and postulated that it is actively secreted by the virus prior to positive viral PCR15. If all 
EBOV miRNAs are secreted in exosomes, these may be accessible targets before viral load is detectable and prior 
to the onset of symptoms.

We investigated the potential of EBOV miRNAs as presymptomatic markers of disease in the mouse 
model, as daily terminal bleeds were collected in this study. Similar to the NHP groups, miR-1-5p, miR-1-3p, 
and miR-T3-3p were also present at the highest levels in this cohort, albeit with more balanced proportions of 
these top miRNAs relative to the total miRNA amount. The temporal patterns of EBOV miRNA abundance also 
exhibited varied trends, with the majority of miRNAs at low levels until day 7. Again, elevated miRNA levels 
could be products of miRNA release due to cell apoptosis or necrosis from EVD. miR-T1-5p, with a mismatch 
in the miRNA seed sequence, showed low levels of amplification at high Cq values (>35), with a different melt 
curve compared to the actual target. This suggests either low levels of amplification and/or a lack of predicted 
miR-T1-5p in mouse samples. Interestingly, the G-to-A substitution in the miR-T1-5p seed sequence corresponds 
to one of two key mutations in the viral genome that confers virulence to the mouse-adapted EBOV strain, likely 
by enabling the virus to evade the host antiviral type I interferon response25.

In this mouse model, we observed presymptomatic (day 2) detection of four miRNAs in three different mice, 
while viral glycoprotein amplified as early as day 1 post-infection. miRNA concentrations on day 7 rivaled those 
of viral load, with miR-1-5p only ~1.65 times lower than corresponding EBOV titer. These results indicate that 
viral miRNAs may also be feasible diagnostic targets of EVD for mouse-adapted EBOV infection.

Figure 5.  EBOV-encoded miRNAs target a conserved set of genes in human, rhesus macaque, and mouse. A 
majority of the EBOV-encoded miRNA target genes are conserved in humans, rhesus macaques, and mice. 
Venn diagrams denote the overlaps in the genes predicted using viral miRNA seed sequences input into 
TargetScan Custom v5.2 for each species.

miRNA Overrepresented pathway P-value

miR-1-3p

Cargo recognition for clathrin-mediated endocytosis 1.12E-05

Clathrin-mediated endocytosis 7.06E-05

Disease 1.02E-04

miR-1-5p

MET activates RAS signaling 2.57E-08

Signaling pathways regulating pluripotency of stem cells 7.96E-07

Hippo signaling pathway 3.81E-06

Signaling by MET 7.12E-06

Signaling events mediated by Hepatocyte Growth Factor Receptor (c-Met) 1.12E-05

miR-T3-3p Antagonism of Activin by Follistatin 1.61E-03

Table 5.  Human biological pathways potentially regulated by the most abundant miRNA target genes.
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Finally, we assayed serum/plasma from human EVD cases in Sierra Leone, and verified the presence of the ten 
predicted EBOV miRNAs in these samples. Similar to the NHP and mouse groups, miR-1-5p, miR-T3-3p, and 
miR-1-3p presented at the highest concentrations. The relative abundances of the miRNAs in this cohort mirrored 
the NHP groups, with miR-1-5p dominating the viral miRNA landscape. Paralleling the cynomolgus macaque 
cohort, miRNAs were relatively high compared to viral load, with the top 3 miRNAs at ~200 × lower. The obser-
vation that viral miRNA concentrations were reduced by orders of magnitude compared to viral genomes is not 
unexpected since Rouha et al. reported that viral copies of tick-borne encephalitis virus were ~140 × greater 
than miRNA copies in vitro at 48 h post-infection7. Unlike the animal models, however, in human infection we 
observed miRNA levels higher than circulating virus in samples where viral load was relatively low. Again, this 
indicates that the most abundant viral miRNAs may be used for EVD diagnosis.

A recent study reported that miR-VP-3p was detectable in 27 EBOV-positive patients and in 6 symptomatic 
patients 1-2 days prior to positive viral PCR15. Our findings on miR-VP-3p are in contrast to this study, where 
average EBOV load was 220.9 pM and the corresponding miR-VP-3p concentration was 205.3 fM (~1000-fold 
lower) by TaqMan miRNA assay15. In our human samples, EBOV/Makona viral loads were much lower and 
ranged from 2.1 × 10−5 to 7.64 pM (mean 1.06 pM), with average miRNA levels from the most abundant viral 
miRNA, miR-1-5p, at 99.43 fM (~11-fold lower). miR-VP-3p abundances for these same samples, as assayed by 
LNA-based primers, was reduced at 0.18 fM (almost 6000 times lower than viral load), and found only in 2 of 15 
samples tested. miR-VP-3p was also the least abundant miRNA in the four EBOV-infected species tested here. 
The discrepancy in miR-VP-3p quantitation between our study and that of Chen et al.15 could be attributed to 
differences in the miRNA amplification chemistries used. We selected LNA-based primer sets because of the high 
sensitivity and selectivity compared to TaqMan-based assays16–18. This technology choice may account for differ-
ences in miR-VP-3p quantitation, as side-by-side comparisons of the two platforms showed that copy number 
estimates for the same samples are statistically significantly different16. For this work, we originally tested two 
Exiqon primer designs and the TaqMan Small RNA Assay for miR-VP-3p with the same synthetic miR-VP-3p 
sequence and found that the Exiqon primers performed slightly better (Supplementary Fig. S5). In light of this, 
and because the TaqMan miRNA assay requires a separate cDNA synthesis for each miRNA to be amplified, we 
pursued testing only with Exiqon primers.

Current understanding of viral transcription indicates that EBOV mRNAs are sequentially processed from 
the 3′ end, leading to an mRNA gradient with nucleoprotein (NP) transcripts being most abundant, followed 
by VP35, VP40, GP, VP24, and L transcripts26. Quantitation of EBOV-encoded miRNAs in all infected sam-
ples indeed showed that miRNAs which aligned to the NP sequence were more abundant than miR-T2-3p, 
miR-VP-3p, and miR-2-3p, which are found closer to the 5′ end of the genome. miR-1-3p and miR-1-5p, which 
were among the top miRNAs detected, lie in the intergenic region between VP30 and VP24. This region is a long 
untranscribed span that is critical for the expression of neighboring genes27,28 and may account for the increased 
quantities of these viral miRNAs.

Analysis of the distributions of viral miRNAs in the four species revealed that miR-1-5p was the predomi-
nant EBOV miRNA in all infection models, followed by miR-T3-3p and miR-1-3p. In silico prediction of viral 
miRNA binding partners showed that the majority of targeted genes are conserved in human, rhesus macaque, 
and mouse. This indicates that viral miRNAs likely regulate similar pathways in different species. Enriched path-
ways from human target gene lists predict that miR-1-3p, miR-1-5p, and miR-T3-3p exert control over differ-
ent processes in EBOV pathogenesis. miR-1-3p putatively governs clathrin-mediated endocytosis, which is an 
entry mechanism used by EBOV29,30. miR-1-5p target genes, meanwhile, may control c-Met signaling. c-Met 
is a receptor tyrosine kinase (RTK) that triggers the PI3K signaling pathway to promote the infectivity of influ-
enza A virus31. Similarly, EBOV cell entry requires early activation of the PI3K pathway, which is controlled by 
RTKs32, but these initial interactions have not yet been experimentally elucidated in EBOV infection. Pathway 
analysis also showed that miR-T3-3p may control activin antagonism by follistatin. Activin A is a member of the 
TGF-β family and is tightly regulated by its binding protein, follistatin, with both proteins expressed in hepato-
cytes. Activin A triggers a complex range of immunoregulatory functions and can be pro- or anti-inflammatory 
depending on disease and immune context33. While activin A and follistatin have not been explicitly studied in 
EVD, EBOV infection activates TGF-β signaling and protein production in hepatocytes, and inhibition of kinases 
in this pathway substantially decreased viral replication in vitro34. We should note that TargetScan predicted only 
a few target genes for miR-T3-3p. As this algorithm uses only the miRNA seed sequence to search for 3′ UTR 
binding partners, miRNA interactions such as mRNA binding strength and target site accessibility are unac-
counted for in this model35.

Virus-encoded miRNAs are typically analogs of host miRNAs or specific to the virus. Analogs are miRNAs 
that share seed sequences (2-7 or 2–8 nt relative to the 5′ end), and virus-produced analogs can potentially control 
the hundreds of mRNAs that the host miRNA can bind. We found that miR-T1-3p shares the same seed sequence 
as the endogenous mouse miRNA mmu-miR-470, while miR-1-5p shares the same seed region as hsa-miR-
155-5p14, indicating that these may function as host miRNA analogs. It is also noteworthy that the most abundant 
EBOV miRNAs in EBOV-infected samples regulate target genes in vitro; for instance, miR-1-5p experimentally 
downregulated importin-α5 in HEK293T cells14, while miR-T3-3p inhibited the expression of HDAC5 and RIPK 
(genes not originally predicted for this miRNA by TargetScan)12. EBOV VP24 targets importin-α5 to repress 
STAT1 signaling and counteract the host antiviral interferon response36. Meanwhile, RIPK is a central mediator of 
the NF-κB and TNF signaling pathways; EBOV miRNA silencing of these could suppress host immune defenses 
and enhance viral replication and spread. Taken together, these results strongly suggest that EBOV miRNAs may 
play an integral role in promoting viral infectivity and are potentially targetable disease elements. While our pri-
mary effort was to determine the diagnostic applicability of these virus-encoded miRNAs, further study of these 
abundant miRNAs may provide greater insight into EBOV replication, infectivity, and pathogenesis.
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Materials and Methods
Candidate miRNA sequence alignments to EBOV genomes and prediction of miRNA seed 
sequence mismatch effects.  Predicted pre-miRNA and mature miRNA sequences were aligned to 
GenBank reference sequence KM034562.1 (Zaire ebolavirus isolate Ebola virus/H.sapiens-wt/SLE/2014/
Makona-G3686.1) using the BLAST-Like Alignment Tool (BLAT) of the UCSC Ebola Genome Browser37. The 
Genome Browser includes multiple alignments of 158 Ebola genomes from outbreaks spanning 1976–2014, as 
well as two Marburgvirus genomes for comparison. Candidate miRNAs were also used as input into the GenBank 
Nucleotide BLAST tool using default parameters for a short input sequence.

The effect of the single-base substitution in the seed sequence of miR-T1-5p was assessed using miR-
mut2GO19, which predicts the target genes and enriched functional annotations for the original and mutant 
miRNA sequences, and compares the similarity between the two groups of GO terms. It calculates a similarity 
score between 0 and 1 for the two miRNAs, with 0 indicating no similarity and 1 denoting functionally identical 
miRNAs.

miRNA sequences and primers.  miRNA sequences included in this study (12 miRNAs, Supplementary 
Table S1) were previously predicted and reported11,12,14,15. Synthetic miRNAs, as well as two LNA primer sets 
per target (custom miRCURY LNA™ Universal RT microRNA PCR Assays) were obtained from Exiqon, Inc. 
(Woburn, MA). Primer sets were designed using their custom qPCR primer web tool (https://www.exiqon.com/
mirna-qpcr-designer), and design IDs for each set are given in Supplementary Table S2.

NHP and human samples.  Ethics statement and disclosures.  Cynomolgus macaque, mouse, and rhesus 
macaque cell-free and whole blood samples were previously archived samples and not collected specifically for 
this study. Animal research was conducted under IACUC-approved animal protocols at the United States Army 
Medical Research Institute of Infectious Diseases (USAMRIID). These protocols complied with the Animal 
Welfare Act, Public Health Service Policy, and other Federal statutes and regulations relating to animals and 
experiments involving animals. The facility where this research was conducted is accredited by the Association 
for Assessment and Accreditation of Laboratory Animal Care, International and adheres to principles stated in 
the Guide for the Care and Use of Laboratory Animals38. Post-exposure, animals were evaluated daily for signs 
of illness. Following development of clinical signs, animals were checked multiple times daily. Institute scoring 
criteria were used to determine timing of humane euthanasia under anesthesia39. All animal experiments were 
conducted in USAMRIID’s ABSL-4 laboratory.

Research on human subjects was conducted in compliance with United States Department of Defense, federal, 
and state statutes and regulations relating to the protection of human subjects, and adheres to principles identified 
in the Belmont Report40. All data and human subjects research were gathered and conducted for this publication 
under a USAMRIID Institutional Review Board-approved protocol.

De-identified human serum and plasma samples were used in this study. These samples were determined by 
the USAMRIID Office of Human Use and Ethics to be Not Human Subject Research. All samples were collected 
and de-identified in Sierra Leone at Kenema Government Hospital. The samples had indirect identifiers upon 
receipt. None of the samples were collected specifically for this study. Samples were collected during the outbreak 
to perform emergency diagnostics. In this context, the need for written informed consent was waived by the 
Ministry of Health and Sanitation of the Republic of Sierra Leone.

The opinions, interpretations, conclusions, and recommendations contained herein are those of the authors 
and are not necessarily endorsed by the United States Army.

Rhesus macaques exposed to EBOV/Kikwit.  Plasma samples used in this work were archived samples not col-
lected for the purpose of this study, but were from the in vivo characterization of a challenge material work-
ing stock (stock propagation details in Supplementary Methods). Three male and three female adult rhesus 
macaques (Macaca mulatta) of Chinese origin were exposed to a target dose of 1000 plaque-forming units (PFU) 
of Ebola virus/H.sapiens-tc/COD/1995/Kikwit-9510621 (EBOV/Kikwit) in a head-only aerosol chamber within 
a biosafety level 4 (BSL-4) laboratory. Blood samples were collected prior to virus exposure at day -7 and day 0 
relative to infection. Additional samples were collected at post-exposure days 3, 6, and at euthanasia (days 7 and 
8). Whole blood was collected in K2 EDTA tubes and centrifuged to yield plasma. Plasma samples were mixed 
with 3 volumes of TRIzol LS (Life Technologies, Grand Island, NY) and stored at −80 °C. In this work, samples 
from the six NHPs exposed to aerosolized EBOV/Kikwit were assayed for EBOV miRNAs.

Cynomolgus macaques exposed to EBOV/Makona.  Plasma samples used in this work were archived samples not 
collected for the purpose of this study, but for a larger study (n = 15) investigating NHP infection with EBOV/
Makona at different doses and routes of infection41. Chinese-origin cynomolgus macaques (Macaca fascicula-
ris) were used for this study (age range: 3–9 years). Prior to initiation of the study, the animals were found to 
be negative for Herpes B Virus, SRV-1, -2, and -3, SIV, and STLV-1 and negative for EBOV-specific antibodies. 
NHPs were exposed to EBOV/Makona; this variant was produced from a master stock that was made from an 
isolate from serum of a 2014 Sierra Leone fatal human case (SL 3864.1, GenBank accession #KR013754.1, addi-
tional information in Supplementary Methods41). Samples used in this study were from three male cynomolgus 
macaques infected intramuscularly with 1000 PFU of virus. Blood samples were collected at various time points 
for isolation of plasma and serum for analysis of chemistry and hematological parameters, detection of viral 
genomes by RT-qPCR, and assessment of antibody responses.

https://www.exiqon.com/mirna-qpcr-designer
https://www.exiqon.com/mirna-qpcr-designer
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BALB/c mice exposed to mouse-adapted EBOV/Mayinga.  BALB/c mice (7–9 weeks old) were infected with 100 
PFU mouse-adapted EBOV/Mayinga (EBOV/May-MA) by intraperitoneal injection. Additional details on viral 
stock propagation are available in Supplementary Methods42. Five naïve mice served as controls and were eutha-
nized at day 0 relative to virus exposure. In this serial sacrifice study design, five mice were scheduled for euthana-
sia at 1, 2, 3, 4, and 7 days post-exposure to collect whole blood and serum. Mice were deeply anesthetized before 
exsanguination by intercardiac puncture, and whole blood (300 µL) was immediately added to a prepared solution 
of 300 µL of water and 1.8 mL (3 volumes) TRIzol LS.

In this work, BALB/c mouse whole blood samples (n = 17) were investigated for EBOV miRNAs. Mouse sam-
ples from three terminal bleeds were collected on days 0, 1, 2, 3, and 4 post-infection, and samples from two mice 
were obtained from day 7 terminal bleeds.

Human samples from 2014 EBOV/Makona outbreak.  Fifteen human clinical serum or plasma samples6 were 
obtained from Kenema Government Hospital between June and August 2014 during the EBOV/Makona out-
break in the Republic of Sierra Leone, West Africa. The patient set consists of seven males and seven females, 
with ages ranging between 17 and 58 years (median age 39 years). Two samples from the same subject, taken 4 
days apart, were included in this set. Patients were classified as EBOV-positive using fielded diagnostic assays43. 
Date of symptom onset was recorded based on patient self-reporting. Samples were collected during the outbreak 
to perform emergency diagnostics, and were inactivated with three volumes of TRIzol LS prior to processing, 
storage, and shipment. All archived human samples were further processed at a BSL-2 laboratory at USAMRIID.

Total RNA extraction.  Total RNA extractions from EBOV cell culture supernatants and mouse, NHP 
and human samples mixed with 3 volumes of TRIzol LS were performed using a previously optimized spin 
column-based method with the addition of glycogen and synthetic RNA spike-ins44. For NHP and human sam-
ples, archived aliquots of 50 μL plasma were processed with either the miRNeasy Mini Kit (50 μL elution), or with 
the miRNeasy Serum/Plasma Kit (12 µL elution). Mouse whole blood samples (175 µL) were extracted with the 
miRNeasy Mini Kit (50 µL elution). All kits were from QIAGEN, Inc. (Valencia, CA).

Viral load determination using RT-qPCR.  Viral loads in samples were determined with RT-qPCR using 
an internally validated TaqMan probe assay targeting an 80-bp sequence in the glycoprotein45 that amplifies both 
EBOV/Kikwit and EBOV/Makona46. A standard curve was created from serial dilutions of the EBOV/Kikwit 
challenge stock (provided as PFU/mL based on plaque assay) extracted identically to plasma samples, and Cq 
values were calculated using the second derivative maximum method implemented in the integrated Roche 
LightCycler 480 software version 1.5.1 (Roche, San Francisco, CA).

Viral copy numbers (given as copies/mL) were determined using the same RT-qPCR assay run with synthetic 
RNA spanning the glycoprotein target sequence, as previously described45.

cDNA synthesis and miRNA profiling.  Synthetic miRNA and extracted total RNA was reverse-transcribed 
with the cDNA Synthesis Kit II (Exiqon, Inc.) using 2 μL RNA for each 10 μL cDNA mix. cDNA samples were diluted 
40× (per manufacturer’s instructions) and amplified on a LightCycler 480 II. For quantitation of candidate miRNAs, 
synthetic miRNAs were serially diluted from 50 to 0.000005 pM (8 dilutions) and used to construct standard curves for 
interpolation/extrapolation and to evaluate primer set performance (Supplementary Fig. S4).

LNA-based miRNA primer testing and downselection.  Synthetic miRNA targets and a no-template cDNA 
synthesis control were used to test the amplification efficiencies and specificities of the LNA-based primes. Next, to 
determine whether putative miRNAs are present in EBOV cell culture supernatant, primer sets were tested with total 
RNA from serially-diluted EBOV/Kikwit viral stock (106–100 PFU/mL). We tested for putative miRNAs in other EBOV 
variants using RNA from 106 PFU/mL of EBOV/Gabon and EBOV/Makona. Specificity was also tested by using RNA 
from 106 PFU/mL of Marburgvirus Musoke (MARV/Musoke) variant as input. Candidate miRNAs were assayed in 
NHP samples with known EBOV titer from the aerosol-exposed EBOV/Kikwit infection cohort.

miRNA target prediction and gene set analysis.  We used TargetScan Custom v5.2 to predict viral 
miRNA gene targets in human, rhesus macaque, and mouse using the miRNA seed sequence (2–8 nt from the 5′ 
end) as input47. We then used ToppFun21 with default parameters (hypergeometric distribution with Bonferroni 
correction, P-value < 0.05) on predicted human target genes for the three most abundant miRNAs (miR-1-5p, 
miR-1-3p, and miR-T3-3p) to perform gene set functional enrichment.
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