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A B S T R A C T

Estimates of functional connectivity using resting state functional Magnetic Resonance Imaging (rs-fMRI) are
acutely sensitive to artifacts and large scale nuisance variation. As a result much effort is dedicated to pre-
processing rs-fMRI data and using diagnostic measures to identify bad scans. One such diagnostic measure is
DVARS, the spatial root mean square of the data after temporal differencing. A limitation of DVARS however is
the lack of concrete interpretation of the absolute values of DVARS, and finding a threshold to distinguish bad
scans from good. In this work we describe a sum of squares decomposition of the entire 4D dataset that shows
DVARS to be just one of three sources of variation we refer to as D-var (closely linked to DVARS), S-var and E-var.
D-var and S-var partition the sum of squares at adjacent time points, while E-var accounts for edge effects; each
can be used to make spatial and temporal summary diagnostic measures. Extending the partitioning to global (and
non-global) signal leads to a rs-fMRI DSE table, which decomposes the total and global variability into fast (D-
var), slow (S-var) and edge (E-var) components. We find expected values for each component under nominal
models, showing how D-var (and thus DVARS) scales with overall variability and is diminished by temporal
autocorrelation. Finally we propose a null sampling distribution for DVARS-squared and robust methods to es-
timate this null model, allowing computation of DVARS p-values. We propose that these diagnostic time series,
images, p-values and DSE table will provide a succinct summary of the quality of a rs-fMRI dataset that will
support comparisons of datasets over preprocessing steps and between subjects.
Introduction

Functional connectivity obtained with resting state functional mag-
netic resonance imaging (rs-fMRI) is typically computed by correlation
coefficients between different brain regions, or with a multivariate
decomposition like Independent Components Analysis (Cole et al.,
2010). Both approaches can be corrupted by artifacts due to head motion
or physiological effects, and much effort is dedicated to preprocessing
rs-fMRI data and using diagnostic measure to identify bad scans.

Smyser et al. (2011) proposed and Power et al. (2012) popularized a
measure to characterize the quality of fMRI data, an image-wide sum-
mary that produces a time series that can detect problem scans. They
called their measure DVARS, defined as the spatial standard deviation of
successive difference images. In fact, DVARS can be linked to old statis-
tical methods developed to estimate noise variance in the presence of
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drift (see Appendix A for DVARS history).
While DVARS appears to perform well at the task of detecting bad

scans — bad pairs of scans — it does not have any absolute units nor a
reference null distribution from which to obtain p-values. In particular,
the typical “good” values of DVARS varies over sites and protocols which
makes it difficult to create comparable summaries of data quality across
data sets. The emergence of the large scale data sets such as the Human
Connectome Project (HCP) (>1k subjects) and the UK Biobank (>10k
subjects) further motivates the need for automated, yet reliable, quan-
titative techniques to control and improve the data quality.

The purpose of this work is to provide a formal description of DVARS
as part of a sum of squares (SS) decomposition of the data, propose more
interpretable standardized versions of DVARS, and compute DVARS p-
values for a null hypothesis of homogeneity.

The remainder of this work is organized as follows. We first describe
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Fig. 1. Illustration of the DSE decomposition, where At (green) is the total
sum-of-squares at each scan, Dt (blue) is the sum-of-squares of the half dif-
ference of adjacent scans, St (yellow) is the sum-of-squares of the average of
adjacent scans, and Et is the edge sum-of-squares at times 1 and T;

ffiffiffiffiffi
Dt

p
is

proportional to DVARS. The D and S components for index t (Dt and St) sum to
A averaged between t and t þ 1 (ðAt þ Atþ1Þ=2). Note how the S and D time
series allow insight to the behavior of the total sum-of-squares: The excursion
of A around t ¼ 2;3 arise from fast DSE component while the rise for t � 6 is
due to the slow component. For perfectly clean, i.e. independent data, D and S
will converge and each explain approximately half of A.

Table 2
Expected values of the DSE table under different nominal models. First two rows show
expected mean squared (MS) values under the separable noise model, for whole and global
sum of squares. Third and fourth rows show expected MS normalized to the total variability
A-var for the separable model. Final two rows show the expected normalized MS under a
naive, default model of independent and identically distributed (IID) data in time and
space. σ2 is the average of the I voxel-wise variances, ρ is the common lag-1 autocorrelation,

and σ
2 is the average of the I2 elements of the voxels-by-voxels spatial covariance matrix.

This shows that D-var and S-var are equal under independence but, when normalized, differ
by about ρ; this is a general result that doesn't depend on the separable noise model used
here (see Appendix D.8).
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the sum of squares decomposition for the 4D data and how this relates to
traditional DVARS, and other new diagnostic measures it suggests. Then
we describe a sampling distribution for DVARS under the null hypothesis,
and mechanisms for estimating the parameters of this null distribution.
We establish the validity and sensitivity of the DVARS test with simula-
tions, and use two different fRMI cohorts to demonstrate how both the
DVARS test and our‘DSE’ decomposition are useful to identify problem
subjects and diagnose the source of artifacts within individual subjects.

Theory

Here we state our results concisely relegating full derivations to
Table 1
Expressions that make up the time series visualization of the DSE SS-decomposition. A-var is to
variability terms. Global and non-global variance components sum to the total components. All o
squared (RMS) units (see Appendix B for more on plotting global SS).

Name Notation Value

A-var At 1
I

PI
i¼1Y

2
it

D-var Dt 1
I

PI
i¼1ðYit � Yi;tþ1Þ2

S-var St 1
I

PI
i¼1ðYit þ Yi;tþ1Þ2

E-var Et 1
I

PI
i¼1Y

2
it =2

Global A-var AGt Y2
t

Global D-var DGt ðYt � Ytþ1Þ2=4
Global S-var SGt ðYt þ Ytþ1Þ2=4
Global E-var EGt Y2

t =2

Non-Global A-var ANt 1
I

P
i
ðYit � Yt Þ2

Non-Global D-var DNt 1
I

P
i
ðYit � Yi;tþ1 � ð

Non-Global S-var SNt 1
I

P
i
ðYit þ Yi;tþ1 � ð

Non-Global E-var ENt 1
I

P
i
ðYit � Yt Þ2=2
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Appendices.

Notation

For T time-points and I voxels, let the original raw rs-fMRI data at
voxel i and t be YR

it . Denote themean at voxel i asMR
i ¼ 1

T

P
tY

R
it , and bymR

some type of overall mean value (i.e. a summary of the mean image
fMR

i g, like median or mean). We take as our starting point for all cal-
culations the centered and scaled data:

Yit ¼ YR
it �MR

i

mR
100: (1)

The scaling ensures that typical brain values before centering are
around 100 and are comparable across datasets.

DSE decomposition

Denote the total (“all”) variability at scan t as

At ¼ 1
I

XI
i¼1

Y2
it : (2)
the total SS at time point t, D-var, S-var and E-var correspond to the fast, slow and edge
f these terms, given as mean squared quantities, are best reported and plotted in root mean

Range X-axis Loc.

t ¼ 1;…;T t

=4 t ¼ 1;…;T � 1 t þ 1
2

=4 t ¼ 1;…;T � 1 t þ 1
2

t ¼ 1;T t

t ¼ 1;…;T t

t ¼ 1;…;T � 1 t þ 1
2

t ¼ 1;…;T � 1 t þ 1
2

t ¼ 1;T t

t ¼ 1;…;T t

Yt � Ytþ1ÞÞ2=4 t ¼ 1;…;T � 1 t þ 1
2

Yt þ Ytþ1ÞÞ2=4 t ¼ 1;…;T � 1 t þ 1
2

t ¼ 1;T t



Fig. 2. Simulation results for estima-
tion of mean and variance of DVARS2

under the null of temporal homogenei-
ty. The mean μ0 (left) and variance σ20
(right) are shown for no, low and high
spatial heterogeneity of variance
(rows). All estimators improve with
time series length T and most degrade
with increased spatial heterogeneity.
For the mean, both the sample mean

(bμDVARS
0 ) and median (~μDVARS0 ) of

DVARS2t perform well, as does voxel-
wise median of difference data vari-

ance (bμD
0 ) for sufficient T, thoughbμDVARS

0 of course lacks robustness. For
T � 200, all variance estimators have
less than 1% bias.
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We interchangeably use the terms variability and sum of squares, not
to be confused with variance. Define two mean squared terms, one for
fast (“differenced”) variability

Dt ¼ 1
I

XI
i¼1

�
Yi;tþ1 � Yit

2

�2

; (3)

the half difference between time t and t þ 1 at each voxel, squared and
averaged over space, and one for slow variability

St ¼ 1
I

XI
i¼1

�
Yit þ Yi;tþ1

2

�2

; (4)

the average between t and t þ 1 at each voxel, squared and averaged over
space.

We then have the following decomposition of the average SS at time
points t and t þ 1, At;tþ1 ¼ ðAt þ Atþ1Þ=2.

At;tþ1 ¼ Dt þ St ; (5)

for t ¼ 1;…;T � 1. This has a particularly intuitive graphical interpre-
tation: If we plot Dt and St at t þ 1=2, they sum to the midpoint between
293
At and Atþ1 found at t þ 1=2 (see Fig. 1).
Since

DVARSt ¼ 2
ffiffiffiffiffi
Dt

p
; (6)

we now have a concrete interpretation for DVARS, with DVARS2t =4 being
the “fast” DSE component in the average SS at t and t þ 1.

This also leads to a decomposition of the total sum of squares over all
scans: With averages A, D, S and E defined in Table S1 (row 1) we have
the following “DSE” decomposition

A ¼ Dþ Sþ E: (7)

That is, the total variability (“A-var”) in the 4D dataset is the sum of
terms attributable to fast (“D-var”), slow (“S-var”) and edge variability
(“E-var”). D is also 1=4 the average mean squared difference (MSSD; see
Appendix A). Each term in the “DSE” decomposition can be split into
global and non-global components, as shown in Table S1, rows 2–3 (as
also noted by Burgess et al. (2016) for Dt).

Elements of the DSE decomposition can be visualized as time series
(see Table 1) or as images. For example, just as a variability image with
voxels Ai ¼

P
t
Y2
it =T is useful, we find that a D-var image, Di ¼



Fig. 3. Simulation results for the validity of DVARS p-values for different estimators of μ0. and σ20. The left two panels (A & C) use ~μD0 , the two right panels (B & D)
use ~μDVARS0 ; the upper two panels (A & B) use variance based on hIQR with d ¼ 1, the lower two panels (C & D) use hIQR with d ¼ 3. P-P plots and histograms of Z
scores show that only use of ~μDVARS0 gives reliable inferences, and that the power transformation parameter d seems to have little effect.
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P
t
ðYi;tþ1 � YitÞ2=ð4TÞ and a S-var image, Si ¼

P
t
ðYit þ Yi;tþ1Þ2=ð4TÞ

offer more informative views of the noise structure.

DSE table & reference values

We see the arrangement of DSE values in Table S1 as a variant of an
Analysis of Variance (ANOVA) table that summarizes contributions from
fast, slow, end, global and non-global components to the total mean-
294
squares in a 4D dataset. Traditionally ANOVA tables use sum-of-
squares to partition variability, but we instead focus on root mean
squared (RMS) or mean squared (MS) values to leverage intuition on
typical noise standard deviation (or variance) of resting state fMRI data.
To avoid any confusion, we call this variant ‘DSE table’.

We calculate expected values for each of the DSE values for artifact-
free data using different null models. In Appendix D we detail the most
arbitrary version of this model, based only on time-constant spatial



Fig. 4. Power of the DVARS hypothesis test to detect artifactual spikes. Plots show sensitivity (% true spikes detected) versus number of true spikes as a per-
centage of time series length T, for varying degrees of temporal autocorrelations (line color). Different T (rows) and degree of spatial variance heterogeneity
(columns) are considered. These results show hat power increases with autocorrelation but falls with increasing prevalance of spikes; for up to 10% spikes we have
excellent power, and for 20% spikes we have satisfactory power (60–90% sensitivity).

S. Afyouni, T.E. Nichols NeuroImage 172 (2018) 291–312
covariance, ΣS. Another model is based on time-space-separable corre-
lation; this noise model assumes data with arbitrary spatial covariance ΣS

but a common temporal autocorrelation for all voxels with a constant lag-
1 autocorrelation ρ. While this is a less restrictive time series model than
AR(1), in practice temporal autocorrelation varies widely over space, and
295
we stress we only consider this as a working model to gain intuition on
the DSE table. (Our null model for DVARS p-values, below, does not
assume time-space separability). We also consider the idealized model of
“perfect” data with completely independent and identically distributed
(IID) 4D data.



Fig. 5. Comparison of different variants of DVARS-related measures on HCP 115320. The first six plots are variants of DVARS listed in Table 3; Δ%D-var is
marked with a practical significance threshold of 5%, and ZðDVARSÞ with the one-sided level 5% Bonferroni significance threshold for 1200 scans. Vertical grey
stripes mark scans that only attain statistical significance, while orange stripes mark those with both statistical and practical significance. The bottom two plots
show the 4 DSE components, total At (green), fast Dt (blue), St slow (yellow), and edge Et (purple), for minimally preprocessed (upper) and fully preprocessed
(lower) data. For minimally preprocessed data D-var is about 25% of A-var (see right axis), far below S-var. For fully preprocessed data D-var and S-var converge to
50%A-var.
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Table 2 shows three sets of reference values for the DSE table .1 The
first pair of rows shows the expected value of the MS for each component
for the separable model. This shows that all DSE components scale with
the average voxel-wise variance σ2, and as temporal autocorrelation ρ
increases D-var shrinks and S-var grows. The global components are seen
1 Going forward we drop the third row of the DSE table showing non-global variance,
since in practice the global explains so little variability that the first and third rows are
essentially the same; see e.g. Table 6 entries' for AG, and Fig. 10 right.

296
to depend on σ
2, the average of the I2 elements of ΣS . This indicates,

intuitively, that the greater the spatial structure in the data the more
variability that is explained by the global.

The next pair of rows in Table 2 show the expected MS values
normalized to the expected A-var term. The A-var-normalized D-var and
S-var diverge from 1/2 exactly depending on ρ, specifically
S� D ¼ ρðT � 1Þ=T. The global terms here depend on the ratio of

average spatial covariance and average variance, σ2=σ2.
The final pair of rows shows expected values under the most



Table 3
Form and interpretation of various DVARS variants, expressed as functions of original DVARSt . Here fYitg are the 4D data, A is the overall mean square variance, μ0 is the expected DVARS2t
under a null model, PðDVARSt Þ is the p-value for DVARS2, and Φ�1 is the inverse cumulative distribution function of a normal.

Name Expression Interpretation

DVARS DVARSt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðYit � Yi;tþ1Þ2=I

r
RMS of differenced image

√D� var DVARSt=2 Fast component of noise, as RMS

%D-var DVARS2t =ð4AÞ � 100 Fast noise, as % of average noise variance
Δ%D-var ðDVARS2t � μ0Þ=ð4AÞ � 100 Excess fast noise, as % of average noise variance
Rel. DVARS DVARSt=

ffiffiffiffiffi
μ0

p DVARS as a multiple of null mean
Z(D-var) Φ�1ð1� PðDVARSt ÞÞ DVARS p-value as Z-score

Table 4
Spatial effective degrees of freedom (EDF) for HCP subject 115320. As more spatial
structure is removed with preprocessing, spatial EDF rises, but never to more than 5% of the
actual number of voxels.

Voxels Spatial EDF Spatial EDF/Voxels

Raw 162,768 287 0.176%
MPP 224,998 1660 0.738%
FPP 224,998 11,086 4.928%
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restrictive case of IID noise. Here D-var and S-var are exactly equal, about
1=2, and we see that the global variability explained should be tiny, 1=I.
This suggests that normalized global variability relative to the nominal

IID value, i.e. ðAG=AÞ=ð1=IÞ, an estimate of σ
2
=σ2, can be used as a

unitless index of the strength of spatial structure in the data. (This
particular result doesn't depend on the separablemodel; see Appendix D).

The handy result on the S� D approximating ρ generalizes beyond
the time-space-separable model: For an arbitrary model, both S� D and
St � Dt normalized to A estimate a weighted average of the lag-1 tem-
poral autocorrelations (see Appendix D.8). Hence, the convergence of D-
var and S-var we observe as data is cleaned up has the specific inter-
pretation of reduction in the average lag-1 autocorrelation.

These reference models provide a means to provide DSE values in
three useful forms. For each A-var, D-var, S-var and E-var term we
present:
297
1. RMS, the square root of the mean squared quantity,
2. %A-var, a variability as a percentage of total mean-square A, and
3. Relative IID, A-var-normalized values in ratio to nominal IID values.

For example, for A-var we have (1) RMS is
ffiffiffiffi
A

p
, (2) %A-var is 100%

and (3) relative IID is 1.0. For D-var, (1) RMS is
ffiffiffiffi
D

p
, (2) %A-var is D=A�

100 and (3) relative IID is

D
A

�
1
2
T � 1
T

: (8)

For DG-var, (2) RMS is
ffiffiffiffiffiffi
DG

p
, (2) %A-var is DG=A� 100 and (3) rela-

tive IID is

DG

A

�
1
2
1
I
T � 1
T

; (9)

noting that we normalize to A and not AG.
We note that the fast and slow components can be defined as re-

sponses of linear time-invariant filters. The slow component corresponds

to an integrator filter with power transfer function
���HSðωÞj2 ¼ 2ð1þ

cosðωΔTÞÞ and the fast component corresponds to a differentiator filter

with power transfer function
���HDðωÞj2 ¼ 2ð1� cosðωΔTÞÞ, where ω is

angular frequency and ΔT is the repetition time (TR). In other words, in
time domain, St can be interpreted as average of convolved BOLD signals
Fig. 6. Impact of scrubbing on functional
connectivity of 100 HCP subjects' MPP data,
comparing the DVARS test to four other
existing methods. Panel A shows the QC-FC
analysis for five different thresholding
methods (see body text for details); shown
are DVARS test, FD thresholding (FD-
Lenient & FD-Conservative), arbitrary
DVARS threshold, and DVARS boxplot
outlier threshold (DVARS IQR). Panel B
shows the loss of temporal degree of
freedom for each method (i.e. number of
scans scrubbed), one dot per subject and dot
color following line colors in Panel A. These
result show that, in terms of FC, all the
methods are largely equivalent, but the
DVARS test is best at preserving degrees of
freedom.



Fig. 7. DSE and DVARS inference for HCP 115320 minimally pre-processed data. The upper panel shows four plots, framewise displacement (FD), the DSE plot,
the global variability signal GAt , and an image of all brainordinate elements. FD plots show the conventional 0.2 mm and 0.5mm, strict and lenient thresholds,
respectively. All time series plots have DVARS test significant scans marked, gray if only statistically significant (5% Bonferroni), in orange if also practically
significant (Δ%D-var>5%). The bottom panel summaries the DSE table, showing pie chart of the 4 SS components and a bar chart relative to IID data, for whole
(left) and global (right) components. Many scans are marked as significant, reflecting disturbances in the latter half of the acquisition.
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with a rectangular window of [1 1] and Dt with a [1 -1] window.

Inference for DVARS

We seek a significance test for the null hypothesis

H0 : E
�
DVARS2

t

� ¼ μ0; (10)

where μ0 is the mean under artifact-free conditions. Note this is equiv-
alent to a null of homogeneity for DVARSt or Dt . If we further assume that
the null data are normally distributed, we can create a χ2 test statistic
298
XðDVARStÞ ¼ 2bμ0bσ2 DVARS
2
t ; (11)
0

approximately following a χ2ν distribution with ν ¼ 2bμ2
0=bσ2

0 degrees of
freedom, where σ20 is the null variance (see Appendix E).

What remains is finding estimates of μ0 and σ20. The null mean of
DVARSt is the average differenced data variance,

μ0 ¼
1
I

X
i

σ2Di; (12)

where σ2Di is the variance of the differenced time series at voxel i. To avoid



Fig. 8. DSE and DVARS inference for HCP 115320 fully pre-processed. Layout as in Fig. 7. Cleaning has brought St slow variability into line with Dt fast vari-
ability, each explaining about 50% of total sum-of-squares. While some scans are still flagged as significant, %D-var (D as a % of A-var, right y axis) never rises
above about 55%, indicating Δ%D-vars of 5% or less lack of practical significance.
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sensitivity to outliers, we robustly estimate each σ2Di via the interquartile
range (IQR) of the differenced data,

bσ2
Di ¼

IQR
	


Yi;tþ1 � Yit

�
t¼1;…;T�1

�
IQR0

; (13)

where IQR0 ¼ ðΦ�1ð0:75Þ �Φ�1ð0:25ÞÞ � 1:349 is the IQR of a standard
normal, and Φ�1ð⋅Þ is the inverse cumulative distribution function of the
standard normal. Below we evaluate alternate estimates of μ0, including
the median of fbσ2

Dig and directly as the median of fDVARS2t g.
The variance of DVARS2t unfortunately depends on the full spatial

covariance, and thus we're left to robustly estimating sample variance of
fDVARS2t g directly. We consider several estimates based on IQR and
evaluate each with simulations below. Since the IQR-to-standard devia-
tion ratio depends on a normality assumption, and we consider various
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power transformations before IQR-based variance estimation (see Ap-
pendix F). We also consider a “half IQR” estimate of variance

hIQR
�


DVARS2
t

�
t

�

hIQR0; (14)

where hIQR is the difference between the median and first quartile, and
hIQR0 ¼ IQR0=2. This provides additional robustness against contami-
nation of the variance estimate from upward spikes.

Finally, the XðDVARStÞ values can be converted to p-values
PðDVARStÞ with reference to a χ2ν distribution, and subsequently con-
verted into equivalent Z scores,

ZðDVARStÞ ¼ Φ�1ð1� PðDVARStÞÞ: (15)

Note that for extremely large values of DVARSt numerical underflow
will result in p-values of zero; in such cases an approximate Z score can be
obtained directly as ZðDVARStÞ ¼ ðDVARS2t � μ0Þ=σ0.



Table 5
List of all statistically significant Dt fast SS components in the fully pre-processed HCP 115320. Spikes which represent the highest (index 1177) and lowest (index 1035) are marked in bold.

Scan Index DVARS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� var

p
%D-var Δ%D-var RDVARS Z(D-var) FD

256 & 257 256 4.982 2.4910 52.519 3.362 1.038 5.093 0.136
257 & 258 257 5.077 2.538 54.553 5.397 1.058 8.175 0.172
774 & 775 774 5.095 2.547 54.935 5.779 1.062 8.753 0.290
777 & 778 777 4.955 2.477 51.950 2.794 1.033 4.232 0.247
873 & 874 873 5.089 2.544 54.805 5.649 1.061 8.556 0.255
1035 & 1036 1035 4.948 2.474 51.815 2.659 1.031 4.027 0.280
1175 & 1176 1175 4.960 2.480 52.062 2.905 1.034 4.401 0.109
1176 & 1177 1176 4.953 2.476 51.926 2.769 1.032 4.195 0.104
1177 & 1178 1177 5.096 2.548 54.964 5.807 1.062 8.796 0.301
1178 & 1179 1178 5.049 2.524 53.952 4.795 1.052 7.263 0.132

Table 6
DSE Tables for HCP 115320. Minimally preprocessed data (top), fully preprocessed (bot-
tom) are readily compared: Overall standard deviation drops from 5.015 to 3.437, while
fast noise only reduces modestly from 2.598 to 2.406, indicating preprocessing mostly
affects the slow variability. The IID-relative values for D, S and E for the fully preprocessed
data are close to 1.0, suggesting successful clean-up in the temporal domain; the global
signal, however, still explains about 275� more variability than expected under IID set-
tings, indicating the (inevitable) spatial structure in the cleaned data.

Minimally Preprocessed Data

Source RMS % of A-var Relative to IID

A - All 5.015 100.000 1.000
D - Fast 2.598 26.837 0.537
S - Slow 4.287 73.039 1.462
E - Edge 0.176 0.124 1.486
AG - All Global 0.415 0.684 1539.383
DG - Fast Global 0.063 0.016 71.126
SG - Slow Global 0.408 0.662 2980.787
EG - Edge Global 0.040 0.006 17,636.960

Fully Preprocessed Data

RMS % of A-var Relative to IID

A - All 3.437 100.000 1.000
D - Fast 2.406 48.980 0.980
S - Slow 2.454 50.948 1.020
E - Edge 0.092 0.072 0.860
AG - All Global 0.120 0.122 274.058
DG - Fast Global 0.037 0.012 52.830
SG - Slow Global 0.114 0.109 493.227
EG - Edge Global 0.008 <0.001 1508.473
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Under complete spatial independence the degrees of freedom will
equal the number of voxels I, and so ν can be thought of an effective
number of spatial elements; large scale structure will decrease ν while
larger ν should be found with cleaner data. Though we caution that es-
timates of ν will be very sensitive to the particular estimators used for μ0
and σ20.

Standardized DVARS

For intra-cohort investigation of corruptions, we propose that our D-
var time series, Dt ¼ DVARS2t =4, is a more interpretable variant of
DVARS, as it represents a particular “fast” portion of noise variance, and
when added to “slow”mean-square, St , gives the total mean-square of the
4D data At;tþ1. However, these components are not suitable for inter-
cohort comparisons, as the variance characteristics may vary with
acquisition or scanner differences. In this section we propose a set of
transformations which makes the inter-cohort comparison of the DSE
components (including DVARS) possible.

First consider the percent D-var explained at a single time point.
Eqn. (5) could be used to find, in sums-of-squares units, the percent
variability attributable to D-var at t, t þ 1:

I � Dt

I � At;tþ1
100: (16)
300
However, problem scans can inflate At and could mask spikes. Hence we
instead propose to replace At;tþ1 with its average A and compute percent
D-var at time t as

%D� var  :
Dt

A
100: (17)

This has the merit of being interpretable across datasets, regardless of
total sum of squares. This is just percent normalization to A as discussed
above.

While %D-var can be more interpretable than unnormalized D-var, its
overall mean is still influenced by the temporal autocorrelation. For
example, if %D-var is overall around 30% and at one point there is a spike
up to 50%, what is interesting is the 20 percentage point change, not 30%
or 50% individually. Hence another useful alternative is change in
percent D-var from baseline

Δ%D� var  :
Dt � μ0=4

A
100; (18)

interpretable as the excess fast variability as a percentage of average sum
of squares. Later in Section 4.2.1, we show how Δ%D-var is used as
measure of “practical significance” to complement DVARS p-values.

We previously have proposed scaling DVARS relative to its null mean
(Nichols, 2013),

RDVARS ¼ DVARSt


 ffiffiffiffiffi
μ0

p
: (19)

(While we had called this “Standardized DVARS”, a better label is
“Relative DVARS.”) This gives a positive quantity that is near 1 for good
scans and substantially larger than one for bad ones. However, there is no

special interpretation “how large” as the units (multiples of μ�1=2
0 ) are

arbitrary; as noted above, DVARS falls with increased temporal correla-
tion, making the comparison of these values between datasets difficult.

Finally the Z-score ZðDVARStÞ or �log10 PðDVARStÞ may be useful
summaries of evidence for anomalies.

Methods

Simulations

To validate our null distribution and p-values for DVARS we simulate
4D data as completely independent 4D normally distributed noise

Yit � N
�
0; σ2

i

�
; i ¼ 1;…; I; t ¼ 1;…; T ; (20)

for σi drawn uniformly between σmin and σmax for each i, I ¼ 90;000.
We manipulate two aspects in our simulations, time series length and

heterogeneity of variance over voxels. We consider T of 100, 200, 600
and 1200 data-points, reflecting typical lengths as well as those in the
Human Connectome Project. We use three variance scenarios, homoge-
neous with σmin ¼ σmax ¼ 200, low heterogeneity σmin ¼ 200 and
σmax ¼ 250, and high heterogeneity σmin ¼ 200 and σmax ¼ 500.

We consider four estimates of μ0. First is the very non-robust sample



Fig. 9. Distribution of temporal lag-1 autocorrelation across three pre-processing levels. First three rows show maps of autocorrelation for raw, minimally
preprocessed and fully preprocessed, respectively, for one subject (only positive values); bottom row shows dot plots of autocorrelation for that same subject and
two other subjects (random selection of 1% voxels plotted for better visualization). Fully preprocessed data has median correlation near zero, consistent with
converging S-var and D-var.
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mean of fDVARS2t g, denoted bμDVARS
0 , considered only for comparative

purposes. Next we compute the mean bμD
0 and median ~μD0 of bσ2

Di (Eqn.
(13)), the robust IQR-based estimates of differenced data variance at each
voxel. Finally we also consider the empirical median of fDVARS2t g,
~μDVARS0 . For σ20, all estimates were based directly on fDVARS2t g; for
comparative purposes we considered the (non-robust) sample variance of
fDVARS2t g, bσ2

0, and IQR-based and hIQR-based estimates of variance with
power transformations d of 1, 1/2, 1/3 and 1/4, denoted generically ~σ20;
note d ¼ 3 is theoretically optimal for χ2 (see Appendix F).

For p-value evaluations, we only evaluate the most promising null
moment estimators, ~μD0 and ~μDVARS0 for μ0, and ~σ20 with hIQR, d ¼ 1 and
301
hIQR, d ¼ 3. We measure the bias our estimators in percentage terms, as
ðbμ0 � μ0Þ=μ0 � 100 and ðbσ2

0 � σ20Þ=σ20 � 100, where the true value are
μ0 ¼ 2

P
i
σ2i =I and σ20 ¼ 8

P
i
σ4i =I

2 (as per Appendix E when ΣS ¼ I). For

each method we obtain P-values and create log P-P plots (probability-
probability plots) and histograms of equivalent Z-scores.

Similar simulation settings are used to evaluate the power of the
DVARS hypothesis test, except we consider 4 different autocorrelation
levels ρ ¼ f0;0:2;0:4;0:6g. This range is chosen to reflect observed es-
timates of lag-1 autocorrelation coefficients in the HCP cohort. Inferences
are assessed in terms of sensitivity and specificity.

All simulations use 1000 realisations.



Fig. 10. Normalized DSE decomposition for 100 HCP subjects across Raw, MPP and FPP data. The left panels show each DSE component for whole variability and
the right panels illustrate the global variability of each component. Four marker types were used to follow the changes in slow and fast variability of four subjects
across the pre-processing steps (see body text).

Fig. 11. Cumulative distribution of the voxel-wise lag-1 autocorrelation coefficients for four subjects. Solid black (raw), blue (MPP) and red (FPP) lines indicates
the empirical CDF and the dashed vertical lines indicate the median of autocorrelation of corresponding colors.
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Analysis of functional connectivity

We evaluate the impact of the DVARS test as a tool for “scrubbing”
(scan deletion) on functional connectivity (FC) measued with Pearson's
correlation coefficient. We consider FC between all possible pairs of
Region of Interests (ROI) in each subject for a given ROI atlas. The mean
time series of each ROI is obtained by averaging all the time series within
a ROI. To parcellate the brain, we use two data-driven atlases; Power
Atlas (Power et al., 2011) which is constructed of 264 non-neighboring
cortical and sub-cortical ROIs and each ROIs has 81 voxels (is case of
2mm isotropic volumes) and Gordon Atlas (Gordon et al., 2014) which is
constructed of 333 cortical regions of interests with different sizes.
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We use two popular methods to evaluate the effect of the DVARS
inference on functional connectivity. First, we use the QC-FC analysis
which begins by creating per-edge, intersubject scores, the correlation of
the number of removed volumes and FC; these scores are plotted against
the inter-ROI distance (in mm). We then use LOESS smoothing method
(with span window of %1) to summarize the association for eachmethod.
For further details about QC-FC method, see Power et al. (2014a); Ciric
et al. (2016); Burgess et al. (2016). We use QC-FC to compare our DVARS
hypothesis test to four other scan scrubbing methods. From Power et al.
(2012) we use two FD thresholds, lenient (0.2mm) and conservative
(0.5mm), and a DVARS threshold of 5. From FSL's fsl_motion_outliers
tool (Jenkinson et al., 2012), we use a DVARS threshold corresponding to



Fig. 12. Square root D-var (fast) and S-var (slow) variability images of four subjects, for minimally (left sub-panels) and fully preprocessed data (right sub-panels).
Subject 151627 appears to have been successfully cleaned, others less so; see text for detailed interpretation with respect to Figs. 10 and 11.
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box-plot right-outliers, 1.5 IQRs above the 75%ile. Note that the first
three approaches used a fixed threshold, while the FSL approach gives a
run-specific threshold.

The objective of this FC analysis is to investigate whether DVARS
inference test performs as well as the available thresholding methods
(such as arbitrary thresholding of FD (Power et al., 2012) and DVARS
(Burgess et al., 2016)) and if so, whether it delivers the optimal results
while sacrificing the fewest temporal degree of freedom as possible.
Therefore, we only present the results for the Minimally pre-processed
data sets.
Real data

We use two publicly available data-sets to demonstrate the results of
methods proposed in this paper on real-data. First, we use 100 subjects
from ”100 Unrelated” package in the Human Connectome Project (HCP,
S1200 release). We chose this dataset due to the high quality and long
sessions of the data (Smith et al., 2013; Glasser et al., 2013). Second, we
used first 25 healthy subjects from the New York University (NYU) cohort
of the Autism Brain Imaging Data Exchange (ABIDE) consortium via
Preprocessed Connectome Project (PCP) (Craddock et al., 2013). We
selected this cohort for its high signal-to-noise ratio and the more typical
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(shorter) time series length (Di Martino et al., 2014).

Human Connectome Project (HCP)
For full details see (Van Essen et al., 2013; Glasser et al., 2013); in

brief, 15min eyes-open resting acquisitions were taken on a Siemens
customized Connectome 3T scanner with a gradient-echo EPI sequence,
TR¼ 720ms, TE¼ 33.1 ms, flip angle¼ 52� and 2mm3 isotropic voxels.
For each subject, we used the first session, left to right phase encoding
direction (See Table S2 for full details of subjects). We considered each
subject's data in three states of pre-processing: unprocessed, minimally
pre-processed and ICA-FIXed processed. Unprocessed refers to the raw
data as acquired from the machine without any pre-processing step
performed, useful as a reference to see how the DSE components change
with preprocessing steps. Minimally pre-processed (MPP) data have un-
dergone a range of conventional pre-processing steps such as correction
of gradient-nonlinearity-induced distortion, realignment aiming to cor-
rect the headmovements, registration of the scans to the structural (T1w)
images, modest (2000s) high pass filtering and finally transformation of
the images to the MNI standard space.

Finally, after regressing out the 24-motion parameters, an ICA-based
clean up algorithm called ICA-FIX (Salimi-Khorshidi et al., 2014) is
applied, where artifactual ICA components, such as movement,



Fig. 13. Investigation of S-var, slow variability artifacts. When St and Dt coincide, like at t ¼ 871 (Panel A), the S-var image shows no particular structure. In
contrast, we find multiple S-var excursions correspond to a common pattern of vascular variability across the acquisition, with time points t ¼ 591, 202 and 1030
shown in panels B, C and D, respectively.
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physiological noises of the heart beat and respiration, are regressed out
non-aggressively. Due to extent of the FIX denoising and an ongoing
debate regarding the nature of the global signal, we did not consider
global signal regression with the HCP data. From now on, we call this
stage ’fully pre-processed (FPP)’ to be consistent with the ABIDE-NYU
cohort we describe in the following.

Autism Brain Imaging Data Exchange (ABIDE)
We use use 20 healthy subjects of New York University (NYU) data-

set. For full details visit Pre-processed Connectome Project website
http://preprocessed-connectomes-project.org/; in brief, 6min eyes-
closed resting acquisitions were taken on an Allegra 3T scanner with a
gradient echo EPI sequence, TR¼ 2000ms, TE¼ 15ms, flip angle¼ 90�,
and 3mm isotropic voxels (See Table S2 for full details of subjects). In
this study, each subject was analyzed using Configurable Pipeline for the
Analysis of Connectomes (C-PAC) pipeline, in three stages; unprocessed,
minimally pre-processed and fully pre-processed. The unprocessed data
are raw except for brain extraction with FSL's BET. Minimally pre-
processed data were only corrected for slice timing, motion by realign-
ment and then the data were transformed into a template with 3mm3
304
isotropic voxels. Fully pre-processed data additionally had residualisa-
tion with respect to 24-motion-parameters, signals from white matter
(WM) and cerebrospinal fluid (CSF), and linear and quadratic low-
frequency drifts. Conventionally this pipeline deletes the first three vol-
umes to account for T1 equilibration effects, but we examine the impact
of omitting this step for the raw data.

Further, we also use all healthy subject of ABIDE (530 subjects) to
show how DSE decomposition can be used to compare the data-sets,
cohorts and pipelines.

Results

Simulations

Fig. 2 shows the percentage bias for the null expected value μ0 (left
panel) and variance σ20 (right panel) for different levels of variance het-
erogeneity and time series length.

The direct estimates of the μ0 based on the DVARS2t time series
perform best on this clean, artifact-free data, while μ0 estimated on

http://preprocessed-connectomes-project.org/
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variance of the differenced data (bμD
0 and ~μD0 ) degrades with increasing

heterogeneity. The estimates of variance have relatively less bias but it is
difficult to identify one particular best method, save for IQR often (but
not always) having less bias than hIQR, and lower d generally associated
with less bias.

On balance, given the generally equivocal results and concerns about
robustness, for further consideration we focus on ~μDVARS0 (median of

fDVARS2t g) and ~μD0 (median of bσ2
Di) as promising candidates for μ0, and

hIQR with d ¼ 1 and hIQR with d ¼ 3 for σ20.
Fig. 3 shows log P-P plots for χ2 p-values and histograms of approx-

imate Z scores, ðDVARS2t � μ0Þ=σ0; values above the identity in the P-P
plot correspond to valid behavior. While all methods have good perfor-
mance under homogeneous data, ~μD0 (panels A & C) is not robust to
variance heterogeneity and results in inflated significance. In contrast,
~μDVARS0 (panels B & D) has good performance over all, for variance esti-
mated with either d ¼ 1 or d ¼ 3 (top and bottom panels, respectively),
and also yields good approximate Z-scores. On the basis of these results,
we elected to use ~μDVARS0 as the only reliable option for the mean, and
hIQR, d ¼ 3 as a variance estimate, and use these settings going forward.

Fig. 4 shows the results of the power simulation. For all sample sizes
and autocorrelation parameters, and for the 1% and 10% artifact rates,
power was always above 80% and often �100%. Increased autocorre-
lation resulted in improvements in power, while higher artifact rates
reduced power. For the 20% artifact rate power was adequate (� 80%),
but falls to zero for the 30% artifact rate. These results suggest that, at the
highest spike rate, the artifacts start to be become indistinguishable from
the overall noise (see Fig. S2 for one realization). However, the distri-
bution of DVARS values (Fig. S1) suggest that the constituent null and
artifact components are distinguishable even at the highest spike rate,
but would require yet more robust methods for estimating the null
component than we have employed.
Real data

We first focus on selected results of two HCP subjects, then later
summarize results for all HCP and ABIDE subjects.

Temporal diagnostics: DVARS inference and standardized measures
Fig. 5 shows different standardized DVARS measures, as introduced

in section 2.5, as well as the other DSE components for subject 118730 of
the HCP cohort (See Figs. S4, S5 and S6 for more results.). The first six
plots corresponds to the variants listed in Table 3; the bottom two plots
show “DSE plots,” plots of At , Dt , St and Et components, upper plot with
minimal pre-processing, lower with full pre-processing. The gray and
magenta stripes indicate 19 data points identified as having significant
DVARS after Bonferroni correction, with magenta indicating time-points
that are additionally practically significant by the criterion
Δ%D� var > 5%. In Fig. 5, the largest Dt occurs at index 7 (i.e. 7th and
8th data points) and has

ffiffiffiffiffi
Dt

p ¼ 4.07, large in terms of being
%D-var¼ 70.16% of average variability, Z¼ 36.33 indicating extreme
evidence for a spike, and having Δ%D-var¼ 41.20% more sum-of-
squares variability than expected. The least significant Dt occurs at
index 726, with

ffiffiffiffiffi
Dt

p ¼ 2.83; while its Z¼ 4.36 is not a small Z-score,
with just Δ%D-var¼ 4.95% excess variation, it is a relatively modest
disturbance. In contrast, we find that the values of original DVARS or
relative DVARS do not offer a meaningful interpretation. Table S4 shows
values for all significant scans.

The bottom panel of Fig. 5 shows the DSE plot for fully pre-processed
data. This data now exhibits the idealized behavior of IID data, with D-
var and S-var components converging at 50% of average variability (see
right-hand y-axis). However, interestingly, the change is not similar for
all DSE components. Note how

ffiffiffiffiffi
Dt

p
is around 2.6 before clean up, and 2.5

after clean up, while
ffiffiffiffi
St

p
falls dramatically with cleaning, indicating that

nuisance variance removed was largely of a “slow” variability
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component. Also observe that cleaned up results drops in total variability
componentAt , where artifacts were found, indicating variance is
removed by FIX.

Finally, Table 4 explores the use of the estimated χ2 degrees of
freedom ν as an index of spatial effective degrees of freedom. Raw data,
exhibiting substantial spatial structure, has ν ¼ 287, which increases to
ν ¼ 11;086 for fully preprocessed data, still only about 5% of the actual
number of voxels.

Effect of DVARS inference testing on functional connectivity
FC evaluations based on 55,278 unique edges from the Gordon atlas

are shown in Fig. 6 (see Fig. S9 for Power Atlas results). Panel A shows
the QC-FC analysis of five thresholding methods, compared to unscrub-
bed QC-FC. The results from the DVARS test appear comparable to the
other methods, but Panel B of Fig. 6 show that the DVARS test removes
many fewer scans on average, preserving temporal degrees of freedom. A
related evaluation, comparing DVARS hypothesis test scrubbing to
random scrubbing, finds that FC is significant impacted by the DVARS
scrubbing (Figs. S10 and S11).

We note that the sole purpose of preceeding QC-FC analysis is to
ensure that the DVARS inference test outperforms other arbitrary
thresholds available in literature, and therefore we do not show the
similar results for FPP data.

Temporal diagnostics: before and after clean-up
Figs. 7 and 8 shows the minimally and fully pre-processed DSE de-

compositions, respectively, of HCP subject 115320.
Fig. 7, upper panel, shows that if the strict FD threshold, 0.2mm

(Power et al., 2014b), were used 47% of scans would be flagged, while
the lenient threshold, 0.5 mm (Power et al., 2014b), appears to miss
several important events. For example, around scans 775 and 875 there
are two surges in

ffiffiffiffiffi
Dt

p
, rising to about 60% and 40% average

sum-of-squares (excesses of 30% and 10%, respectively, from a baseline
of about 30%) while FD remains low. The lower panel's pie chart shows
that S-var explains just under 75% of total, and almost all of global
sum-of-squares. The Edge component is also 1.5 above its expectation.

In Fig. 8, the fully preprocessed data-set shows roughly equal fast and
slow components, as reflected in the overlapping Dt and St sum-of-
squares time series (blue and yellow, respectively) and the pie and bar
charts for total sum-of-squares. Edge component E-var has also dropped
to fall in line with IID expectations. However, this convergence is not
homogeneous over scans and excursions of S-var are still found after scan
650. However, these are much reduced relative to MPP data (no more
than 75% of average sum-of-squares, compared to over 150% in Fig. 7).

Note that while significant DVARS are found in the FPP data, they are
small in magnitude: Table 5 lists the 10 significant tests, none with Δ%D-
var greater than 6%. If we used aΔ%D-var of 5%we would still mark 4 of
these 10 significant; while we might hope for better performance from
the FIXmethod, note the severe problems detected towards the end of the
scan (Fig. 7).

The smallest significant Δ%D-var is 2.66%, which is smaller than the
least significant scan detected in the minimally preprocessed data,
3.78%. This indicates the increased sensitivity in our procedure as the
background noise in the data is reduced. Note that the majority of the
spikes detected in Fig. 7 has been removed by ICA-FIX (Fig. 8), however
the algorithm has left down-spikes which could be detected via a two-
sided version of the test explained in section 2.4.

Temporal diagnostics of before and after clean-up for three other
subjects (HCP subject 118730, NYU-ABIDE subjects 51050 and 51050)
also reported in Supplementary Materials. See Figs. S12 and S13 for HCP
subject 118730, Figs. S14 and S15 for NYU-ABIDE subject 51050 and
Figs. S16 and S17 for NYU-ABIDE 51055.

The DSE tables for minimally and fully preprocessed (Table 6) gives
concise summaries of the data quality. The RMS values provide concrete
values that can be used to build intuition for data from a given scanner or
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protocol. The total noise standard deviation falls from 5.015 to 3.437
with clean-up, but it is notable that the fast component, D-var, falls only
slightly from 2.598 to 2.406 (in RMS units), while slow variability falls
dramatically from about 4.287 to 2.454. This indicates that much of the
variance reduction in “cleaning” comes from removal of low frequency
drifts and other slowly-varying effects. The magnitude of temporally
structured noise is reflected by S-var explaining 73% of total sum-of-
squares, and after clean-up S-var and D-var fall into line around 50%.
A measure of the spatially structured noise is the global AG-var that,
while small as a percentage, is seen to be about 1500 that expected with
IID before preprocessing, and falling to about 275 relative to IID after
preprocessing. That the majority of AG-var is due to SG-var indicates that
the global signal is generally low frequency in nature.

We also show the DSE tables for three other subjects; HCP subject
118730 in Table S5, NYU-ABIDE subject 51050 and 51055 in Tables S6
and S7, respectively.

We observe that the cleaned data has Dt � St , which implies that the
average lag-1 autocorrelation is close to zero (Sec. Appendix D.8).
However, temporal autocorrelation is a ubiquitous feature of fMRI data,
suggesting a contradiction. To address this, Fig. 9 showsmaps of the lag-1
temporal autocorrelation across the pre-processing steps. For raw data,
the autocorrelation coefficient is between 0.4 and 0.6, but with succes-
sive pre-processing steps, the autocorrelation coefficient decreases until
the FFP level where the median of voxel-wise autocorrelation coefficients
is approximately zero. (See Fig. S18 for similar results on 20 HCP
subjects).

Thus, while temporal autocorrelation is present in the data, we find
that the lag-1 autocorrelation coefficients do get close to zero with
cleaned data, indicating that the Dt � St heuristic is correctly indicating
negligible average autocorrelation.

Fig. 10 illustrates the use of the DSE decomposition to summarize the
DSE components of 100 unrelated subjects in the HCP cohort, normalized
as a percentage of total variability, A-var, to be maximally comparable
across subjects. (See Fig. S22 for same results for ABIDE-NYU cohort). A
non-normalized version of this plot (Fig. S23) is useful for viewing ab-
solute changes, showing that S-var dramatically drops with preprocess-
ing while DS-var is relatively stable.

For the raw data, %D-var ranges from just over 5%–40%, and S-var
varies between 60% and 96%; the E�var only ever explains a negligible
portion of the sum-of-squares, 0.027 to 0:50% across all three pre-
processing levels. For all but two subjects the %D-var and %S-var com-
ponents successively converge to 50% �5% for FPP data.

Considering only the global variability, the slow %SG-var is small,
usually falling well below 1%, and fast %DG-var is negligible, never
exceeding 0.1%. This reflects the low frequency nature of the global
signal. Similarly, the global edge component, %EG-var only explains a
small proportion of the global variabilities.

To demonstrate the utility of the DSE decomposition in data quality
control, we isolate four subjects and observe how their DSE values
change with successive preprocessing.

Subject 151627, marked with a square, is one of the most extreme
subjects for S-var and D-var in raw and MPP data, but has one of the
smallest %S-var � %D-var differences for FPP data. This dramatic
reduction in autocorrelation is confirmed in Fig. 11-A, showing the cu-
mulative distribution of lag-1 autocorrelation, and is likely linked to
physiological noise around brain stem and other inferior regions (Fig. 12-
A1) successfully removed by ICA-FIX (Fig. 12-A2).

Subject 122620, marked with an triangle, has small %S-var�%D-var
differences for all versions of the data, also reflected in its distribution of
autocorrelation (Fig. 11-B). However, there is still some notable spatial
structure in the S-var and D-var images even after clean up (Fig. 12-B2).
This illustrates that if a small portion of the image possess problems, it
may not be detected in any simple summary.

Subject 135932, marked with circle, has absolutely typical S-var and
D-var among the 100 subjects in the raw and MPP data, but in the FPP
data it has one of worst %S-var �%D-var differences. The distribution of
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autocorrelation coefficients reflects this (Fig. 11-C), with FPP (red line)
having more large values of ρ than the other subjects. Inspection of the
raw data S-var map (Fig. reffig:VarImg-C1) shows evidence of substantial
structured noise that is, by in large, mostly removed by ICA-FIX correc-
tion (Fig. 12-C2). However the FPP S-var map shows vascular structure,
likely a branch of the posterior cerebral artery near the lingual gryus; this
is likely an element of physiological noise that ICA-FIX would have
ideally removed but missed. Note also that this subject has low move-
ment as measured by median FD (Fig. S21), eliminating motion as the
likely source of the problem.

Finally, subject 101107, marked as a diamond, has the worst quality
as measured by divergent %S-var and%D-var across preprocessing levels,
with FPP level having S-var¼ 77% and D-var¼ 23%, and reflected in the
largest autocorrelation values among the four subjects (Fig. 11-D). Im-
ages of S-var show substantial structured variability that remains even in
the FPP data (Fig. 12-D), while the D-var image is improves notably with
ICA-FIX. (This was a high-motion subject; note loss of ventromedial
prefrontal cortex).

DSE time series plots of these four subjects confirm these findings,
with 122620 and 151627 having flat and converged S-var and D-var time
series, while 135932 and especially 101107 have structured and
diverged S-var time series (Figs. S19 and S20).

To demonstrate the value of the S-var time series, Fig. 13 explores
time points where St is particularly large and small for subject 135932.
Four “St images” are shown, ðYit þ Yi;tþ1Þ2=4 for voxel i, the constituents
of St (Eqn. (4)). Panel A of Fig. 13 shows a ’clean’ time point, with a
minimum of structured noise apparent, while panels B–D all show a
similar vascular pattern. Examination of the ICA components fed into FIX
finds 3 components that reflect this vascular structure that were classified
as ’good’ (Fig. S24). This demonstrates the value of the DSE decompo-
sition to identify subtle structured noise in the data.

Finally, in addition to using DSE plots to investigate the quality of
scans across pre-processing levels, they can also be used as a universal
measure to compare the quality of scans across cohorts, data-sets and
pipelines. We computed the DSE decomposition of 530 healthy subjects
across 20 acquisition sites in the ABIDE dataset (Fig. S25), identifying
particular sites (e.g. NYU & OHSU) and the CPAC preprocessing pipeline
generally to have minimal temporal autocorrelation as reflected in S-var/
D-var divergence.

Discussion

We have provided a formal context for the diagnostic measure
DVARS, showing DVARS2t to be part of a decomposition of sum-of-
squares at each successive scan pair and over the whole 4D data. We
have proposed a significance test for the DVARS measure which, when
detected scans are removed based on p-values, we found to address
corruptions of FC while preserving temporal degrees of freedom better
than other arbitrary approaches. We have also proposed the DSE
decomposition which is particularly useful for summarizing data quality
via DSE plots and DSE tables. These tools concisely summarize the
interplay of the fast, slow, total and global sum-of-squares, and our
derived nominal expected values for each table entry facilitates the
identification spatial and temporal artifacts.

Our analysis shows that D-var (and DVARS) scales with overall noise
variance, and is deflated by temporal autocorrelation. We observe that as
data becomes cleaner, and the background noise falls, we have greater
power to identify DVARS2t spikes. Therefore, to avoid ’over-cleaning’ the
data we complement the statistical significance of DVARS p-values with
the practical significance of Δ%D-var, a standardized measure of the
excess variance explained by a spike as a percentage of average variance.
Consequently, the final candidate time-points to be scrubbed is a
conjunction of statistical and practical significance; we choose a 5%
familywise error rate significance level via Bonferroni and a 5%Δ%D-var
cut-off; this practical significance threshold worked adequately in the
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HCP data we examined but may need to be recalibrated for other data
sources.

Yet one more advantage of using χ2 tests, proposed in this work, is
that we can estimate the effective spatial degrees of freedom which may
prove to be a useful index of spatial structure in the data, but we stress
this particular χ2 degrees-of-freedom ν is specific to this setting and is
unlikely to be useful in other contexts (e.g. as a Bonferroni correction
over space).

Besides Δ%D-var, we have introduced two standardised measures
which facilitate the inter-cohort comparison of the fast (or DVARS)
component regardless of intensity normalisation used in the pre-
processing pipelines. For example, standardised measure %D-var shows
the proportion of variability which can be explained via fast component
while %S-var shows the similar proportion for the slow variability in
data.

The DSE plots allow D-var to be judged relative to S-var, checking for
convergence to approximately 50% of A-var as data approaches temporal
independence, and consequently the level of autocorrelation as measure
of corruption can be tightly monitored across pre-processing steps.

Using DSE plots we found two HCP subjects (101107 & 136932)
where the motion-parameter regression and further ICA-FIX algorithm
failed to clean the data and clearly stand out from others in the 100
unrelated subject cohort. We have used the DSE variability images to
temporally and spatially locate the corruptions. It is important to note
that the DSE decomposition technique should only be used before any
form of resting-state bandpass filtering (such as 0.01Hz-0.1Hz) and
autocorrelation modelling (such as FILM pre-whitening techniques).

Finally, we stress that we don not believe there is any one strategy can
address all fMRI artifacts. Each method used in this work has it is merits
and pitfalls. For example, while scrubbing was shown to be useful to
remove the head motion induced spikes, it fails to remove the nuisance
due to physiological signals on it is own and requires alternatives like
ICA-based methods. Regardless of method, we still see value of using DSE
plots and images throughout the analysis to choose a right combination
of methods; see Ciric et al. (2016) for a recent comparison of various
combinations of artifact methods.

Limitations and future work

Our DVARS p-values depend critically on accurate estimates of μ0 and
σ20. Despite finding exact expressions for the null mean and variance, we
found the most practical and reliable estimates to be based on the sample
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DVARS2t time series itself, using median for μ0 and hIQR to find σ0.Of
course this indicates that our inference procedure can only infer relative
to the background noise level of the data, picking out extreme values that
are inconsistent with our approximating χ2 approximation.

There are two essentials avenues as continuation of this work. First is
to study the effect of global signal regression via DSE decompositions. As
regressing out the global mean deflates the global segment of each
variability component, the DSE decomposition can be used to investigate
whether global signal regression is helpful to suppress the spatial arti-
facts. Second, both cleaning algorithms used in this work, scrubbing and
ICA-FIX, leave down-spikes (or dips) after regressing out the nuisance.
These down-spikes may also affect the FC and could be detected with a
two-sided variant of our hypothesis test.

Software and reproducibility

In this work majority of the analysis have been done on MATLAB
versions 2015b and 2016b, supported by FSL 5.0.9 for neuroimaging
analysis.

Inference on DVARS as well as DSE decomposition techniques pro-
posed in this paper are available via MATLAB scripts, found at http://
www.github.com/asoroosh/DVARS. Also, a dedicated web page,
http://www.nisox.org/Software/DSE/, present the DSE decompositions
of HCP and ABIDE cohort and is regularly updated with new publicly
available resting-state data sets.

Results and figure scripts presented in this work are publicly available
for reproducibility purposes (Diggle, 2015) on http://www.github.com/
asoroosh/DVARS_Paper17.
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Appendix A. DVARS History

As far as we are aware, DVARS was first used to compute frame censoring by Smyser et al. (2011). Power et al., 2012 reported the first systematic
analysis of DVARS in relation to FD in resting state fMRI. However, at least as early as 2006, a web page at the Cambridge Cognitive Brain Unit
maintained by Matthew Brett's titled “Data Diagnostics” offered tsdiffana.m, a Matlab script that produces the same measure (see http://imaging.mrc-
cbu.cam.ac.uk/imaging/DataDiagnostics; when viewed on 28 October, 2012, the page listed the “last edited” data as 31 July 2006) and there are likely
earlier uses in fMRI.

The idea of working with differences dates to at least 1941 in the statistics literature in work John von Neumann and colleagues (von Neumann et al.,
1941). That work focused on estimation of “standard deviation from differences” when the mean slowly varied from observation to observation. They
point out that the idea can traced back further, as early as 1870. In signal processing this estimator can be known as the Allan variance, developed as a
robust variance estimator in the presence of 1/f noise (Allan, 1966). In cardiology the “root mean square successive difference” is a standard measure of
heart period variability (Berntson et al., 2005), and as “mean successive squared difference” (MSSD) it has recently been used in neuroimaging as an
index neuronal variability (Samanez-Larkin et al., 2010; Garrett et al., 2013). For yet more background see Kotz et al. (1988).

Despite successive work on finding the exact distribution of this variance estimate (Harper, 1967), or using it in a test for the presence of auto-
correlation (Cochrane and Orcutt, 1949), we are unaware of any study of the distribution of the individual differences averaged over a multivariate
observation, as is the case in this fMRI application.

Appendix B. Plotting the global SS-decomposition

The global variability components, at each time point, are just a single scalar value squared. Thus they may be more intuitively plotted in a signed
RMS form. For example, instead of plotting AGt , DGt and SGt , the signed quantities

http://www.github.com/asoroosh/DVARS
http://www.github.com/asoroosh/DVARS
http://www.nisox.org/Software/DSE/
http://www.github.com/asoroosh/DVARS_Paper17
http://www.github.com/asoroosh/DVARS_Paper17
http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics
http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics
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GAt ¼ Yt

GDt ¼ �Ytþ1 � Yt

�

2 (B.1)
GSt ¼ �Yt þ Ytþ1

�

2

can be plotted. These set of three time series may seem arbitrary, but have the feature of the sum of squares of GDt and GSt sum to the mean-square of GAt

and GAt;tþ1.

Appendix C. Derivation of DSE SS-decomposition

The decomposition of the average sum of squares at time t and t þ 1, Eqn. (5), is based on a simple algebraic identity; for variables a and b,

a2 þ b2 ¼ 1
2
ða� bÞ2 þ 1

2
ðaþ bÞ2: (C.1)

This justifies a decomposition of the average SS at each voxel i, for each time t ¼ 1;…;T � 1,

Y2
it þ Y2

i;tþ1

2
¼
�
Yi;tþ1 � Yit

2

�2

þ
�
Yit þ Yi;tþ1

2

�2

: (C.2)

Averaging this expression over voxels i ¼ 1;…; I gives the decomposition for scan pair variability At;tþ1 in Eqn. (5). Summing image variability At;tþ1

over t, however,

XT�1

t¼1

At;tþ1 ¼ PT�1

t¼1
ðAt þ Atþ1Þ=2

¼ 1
2
A1 þ

XT�1

t¼2

At þ 1
2
AT

(C.3)

misses 1/2 of edge terms, which are added to produce the fundamental DSE decomposition in Eqn. (7).

Appendix D. Derivation of DSE table Mean Squares

Here we set out the least restrictive model possible to justify our expected values for the DSE table (Table S1). While the DSE table and de-
compositionsA ¼ Dþ Sþ E and AG ¼ DG þ SG þ EG are in mean-square (MS) units, belowwe develop the results in terms of sum-of-squares (SS) that, in
each case, can be divided by I � T to obtain the MS.

All of the results follow from application of rules for expectations and variances of quadratic forms of mean zero vectors. For reference, if w is a mean
zero random vector with covariance Σ, and B is a square matrix, then Eðw>BwÞ ¼ trðBΣÞ and Vðw>BwÞ ¼ 2trðBΣBΣÞ.

Appendix D.1Model

In defining the joint distribution of all I � T elements of the 4D data fYitg, we will always assume is that Yit is mean zero and has constant variance
over time, VðYitÞ ¼ VðYit 'Þ for t 6¼ t ', but allow variance to vary over space. For data organized as time series, length-T vectors Yi, let

VðYiÞ ¼ �ΣS
�
iiΣ

T
ii ;

ℂðYi; Yi'Þ ¼ �ΣS
�
ii'Σ

T
ii';

(D.1)

where ΣS is the I � I spatial covariance matrix, common to all time points, and ðΣSÞii is the variance at the ith voxel, ΣT
ii is the T � T temporal auto-

correlation matrix for voxel i, ℂð⋅Þ denotes covariance, and ΣT
ii' is the T � T temporal cross correlation matrix for voxels i and i'. This implies that, for data

organized as images, length-I vectors Yt ,

VðYtÞ ¼ ΣS: (D.2)

When a time-space separable covariance structure is assumed then ΣT
ii' ¼ ΣT for all i; i'.

Appendix D.2A-var Expected SS

Total SS
P
it
Y2
it has expected value

E

 XI
i¼1

Y>
i Yi

!
¼P

i

�
ΣS
�
iitr
�
ΣT
ii

�
¼ trðΣSÞT :

(D.3)
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Appendix D.3D-var and S-var Expected SS

The total D-var SS is
PI

i¼1
PT�1

t¼1 ðYi;tþ1 � YitÞ2=4 ¼PI
i¼1ðDYiÞ>DYi=4 where

D ¼

2664
�1 1

�1 1
⋱ ⋱

�1 1

3775 (D.4)

is the ðT � 1Þ � T finite difference matrix. We have

E
�
Y>
i D

>DYi

� ¼ tr
�
D>D

�
ΣS
�
ii
ΣT

ii

�
¼ �ΣS

�
ii

 XT�1

t¼2

2ðT � 1Þ � �ΣT
ii

�
1;2 � 2

XT�1

t¼2

�
ΣT

ii

�
t;tþ1 �

�
ΣT

ii

�
T ;T�1

!
; (D.5)

where notably the last expression only depends on the lag-1 temporal autocorrelations. To obtain more interpretable results we further assume that
there is a constant lag-1 autocorrelation at each voxel, ρi ¼ ðΣT

ii Þt;tþ1; for t ¼ 1;…;T � 1, which reduces (D.5) to 2ðT � 1ÞðΣSÞiið1� ρiÞ. This gives the
expected total D-var SS as

E

 X
i

Y>
i D

>DYi=4

!
¼ ðT � 1Þ

X
i

�
ΣS
�
ii
ð1� ρiÞ=2: (D.6)

If we yet further assume constant temporal autocorrelation ρ, corresponding to our separable model, this SS simplifies to trðΣSÞðT � 1Þð1� ρÞ=2.
The expected SS for S-var is follows the same arguments with differencing matrix replaced with a running sum matrix absðDÞ, negating the three

negative terms in Eqn. (D.5), and reducing to trðΣSÞðT � 1Þð1þ ρÞ=2 under spatially and temporally homogeneous lag-1 temporal autocorrelation.

Appendix D.4E-var Expected SS

The total SS E-var is
PI

i¼1
P

t¼1;T
Y2
it =2 ¼ P

t¼1;T
Yt 'Yt=2, with expected value

E

 X
t¼1;T

Yt 'Yt=2

!
¼ tr

�
ΣS
�
: (D.7)

D.5. AG-var Expected SS

The global time series is Yt and total SS due to global is

XI
i¼1

XT
t¼1

Y
2
t ¼ I

P
t

�
1>Yt=I

�2
¼P

t

�
1>Yt

�2

I;

(D.8)

where 1 is a vector of ones. The expectation of the squared term is Vð1>YtÞ ¼ 1>ΣS1, and thus the expected SS is

T
I
1>ΣS1: (D.9)

Appendix D.6DG-var and SG-var Expected SS

Write the global differenced time series as YD
t ¼ 1YD

t =I where YD
t ¼ ðYtþ1 � YtÞ for t ¼ 1;…;T � 1. The total SS due to half differenced global DGt is

then

XI
i¼1

XT�1

t¼1

	
Y
D
t

�2.
4 ¼

XT�1

t¼1

�
1>YD

t

�2
ð4IÞ: (D.10)

To find the expectation of the squared term, note that

V
�
YD
t

� ¼ 2
	
ΣS � ΣS∘ΣST

t;tþ1

�
; (D.11)
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where ∘ is the Hadamard product and ΣST
t;tþ1 is the spatiotemporal covariance matrix, elements extracted from the temporal cross correlation matrix as

per ðΣST
tt ' Þii' ¼ ðΣT

ii'Þt;t ' , and that

V
�
1>YD

t

� ¼ 2
�
10ΣS1�

X
ii'

ΣS
ii'

�
ΣT
ii'

�
t;tþ1

!
: (D.12)

The final expression for the expected SS is then, with successive assumptions

XT�1

t¼1

V
�
1>YD

t

�
ð4IÞ ¼ PT�1

t¼1
1'ΣS1

	
1� ΣT

t;tþ1

�.
ð2IÞ

¼ ðT � 1Þ1'ΣS1ð1� ρÞ=ð2IÞ;
(D.13)

where first equality comes from assuming a separable covariance structure and the second from a common lag-1 autocorrelation.
The result for SG-var follows similarly.

Appendix D.7EG-var Expected SS

The total SS EG-var is
PI

i¼1
P

t¼1;T
Y2

t =2, and following same arguments as for AG-var has expected value

1
I
1>ΣS1: (D.14)

Results for the non-global terms in the decomposition AN ¼ DN þ SN þ EN follow as difference of respective total and global terms.

Appendix D.8. Expected value of the difference of percent S-var & D-var

The convergence of S-var and D-var is a visual diagnostic indicating cleaned data. Here we find the expression for the difference of the average
normalized S-var and D-var measures. The most general case is found using Equation (D.5):

EðS=A� D=AÞ ¼ E
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(D.15)

where we've assumed A has negligible variability. This result can be seen to be a variance-weighted average of lag-1 temporal autocorrelations over time
and space. It can also be shown that a similar result holds for each time t ¼ 1;…;T � 1,

EðSt=A� Dt=AÞ ¼ 1
I

X
i

�
ΣS
�
ii

A

�
ΣT
ii

�
t;tþ1; (D.16)

If we assume ρi ¼ ðΣT
ii Þt;tþ1, i.e. time-constant lag-1 autocorrelations at each voxel, D.15 reduces to

1
I
T � 1
T

X
i

�
ΣS
�
ii

A
ρi; (D.17)

as does D.40 but without the ðT � 1Þ=T term.
These results show that the difference between normalized S-var and D-var is a weighted average of lag-1 autocorrelations.

Appendix E. Derivation of DVARS Null Distribution

As results are more naturally defined for squared quantities, we seek a null distribution for

DVARS2
t ¼ YD>

t YD
t



I; (E.1)

where YD
t ¼ Ytþ1 � Yt as above. While an expression of the mean of DVARS can be obtained from Eqn. (D.11), note also

E
�
DVARS2
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� ¼ tr
�
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�
YD
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��

I: (E.2)
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That is, the expected value of DVARS2t is simply the variance of each voxel in the differenced data, averaged over voxels. The natural estimator of this
is the sample mean (or robust equivalent) of the sample variance image (or robust equivalent) of the differenced 4D data.

The variance is more involved

V
�
DVARS2

t

� ¼ 2tr
�
V
�
YD
t

�
V
�
YD
t

��

I2; (E.3)

in particular depending on the entirety of the I � I difference image variance matrix. For the most restrictive assumptions considered above VðYD
t Þ ¼

2ð1� ρÞΣS and thus

V
�
DVARS2

t

� ¼ 8ð1� ρÞ2trðΣ
SΣSÞ
I2

: (E.4)

This dependence on the full spatial covariance demands the empirical approaches to variance estimations taken in the body of the paper.
Only at this point do we invoke a normality assumption, and make use of the classic chi-square approximation for sums-of-squared normal variates

(Satterthwaite, 1946). In this approach we equate the mean and variance of c� DVARS2t (cμ0 & c2σ20) and χ2ν (ν & 2ν) and solve for c and ν, giving the
multiplier c ¼ 2μ0=σ20 and degrees-of-freedom ν ¼ 2μ20=σ

2
0 as found in Section 2.4.

Appendix F. Power Transformations to Improve DVARS Variance Estimation

The robust IQR-based variance estimate reflects a normality assumption, equating the sample IQR with that of a standard normal. DVARS2t , as a sum-
of-squares and as reflected by its χ2 approximation, may exhibit positive skew. Hence we consider power transformations of DVARS2t that may improve
symmetry and the accuracy of the IQR variance estimate. While the asymptotically optimal power transformation to normality for χ2 is known to be the
d ¼ 3 cube-root transformation (Hernandez and Johnson, 1980), our test statistic is only approximately χ2 and, in particular, variance heterogeneity can
worsen the approximation.

To obtain a quantity that should be more symmetric consider the power transformation

Wt ¼
�
DVARS2

t

�d
: (F.1)

IQR-based estimates of the variance of W, σ2W , will hopefully be more accurate than such estimates on DVARS2. However, ultimately we seek es-
timates of the variance of DVARS2, and so for a given d we compute

V
�
DVARS2

t

� ¼ V
�
W1=d

t

�
¼ 1

d
μ2ð1=d�1Þ
W σ2

W ;
(F.2)

where the last expression is the delta method variance of W1=d
t , and μW is the mean of Wt (which we robustly estimate with the median of Wt).

Appendix G. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.neuroimage.2017.12.098.
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