Skip to main content
. 2018 Mar 14;7(4):269–280. doi: 10.1002/psp4.12281

Table 1.

Network structure entropy by different modular analysis methods and a list of the top three core modules screened by MMCF in each group

Vehicle JA UA JU
AP 7.0619 6.97052 6.9835 6.99358
MCL 7.47127 7.33767 7.22118 7.37138
MCODE 5.5791 4.78964 5.19916 5.09114
Weighted degree Rank 1 2 (25.100) Rank 1 1 (11.500) Rank 1 2 (19.600) Rank 1 3 (16.000)
Rank 2 4 (15.900) Rank 2 5 (8.100) Rank 2 3 (17.200) Rank 2 2 (15.600)
Rank 3 5 (14.300) Rank 3 2 (4.500) Rank 3 6 (16.000) Rank 3 1 (9.000)
Betweenness centrality Rank 1 2 (254.946) Rank 1 1 (156.533) Rank 1 7 (114.538) Rank 1 4 (101.167)
Rank 2 3 (148.407) Rank 2 21 (114.000) Rank 2 6 (60.838) Rank 2 10 (95.667)
Rank 3 11 (105.800) Rank 3 2 (96.383) Rank 3 17 (60.000) Rank 3 12 (67.900)
PageRank Rank 1 2 (0.107) Rank 1 2 (0.099) Rank 1 6 (0.116) Rank 1 4 (0.097)
Rank 2 3 (0.800) Rank 2 9 (0.094) Rank 2 7 (0.110) Rank 2 12 (0.084)
Rank 3 5 (0.069) Rank 3 1 (0.088) Rank 3 2 (0.089) Rank 3 10 (0.078)

Notes: The second to the fourth rows of the table are the results of network structure entropy using different methods; and the fifth to the seventh rows present the top three values by the three methods to identify the core modules. The figures listed are the module number and the score calculated from each method (in parentheses). All data are rounded to the third decimal place.

AP, affinity propagation; JA, jasminoidin; JU, jasminoidin and ursodeoxycholic acid; MCL, Markov Cluster algorithm; MCODE, Molecular Complex Detection; MMCF, multiple modular characteristic fusing; UA, ursodeoxycholic acid.