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Abstract

The modification of synaptic strength produced by long-term potentiation (LTP) is widely thought 

to underlie memory storage. Indeed, given that hippocampal pyramidal neurons have > 10,000 

independently modifiable synapses, the potential for information storage by synaptic modification 

is enormous. However, recent work suggests that CREB-mediated global changes in neuronal 

excitability also play a critical role in memory formation. Because these global changes have a 

modest capacity for information storage compared with that of synaptic plasticity, their importance 

for memory function has been unclear. Here we review the newly emerging evidence for CREB-

dependent control of excitability and discuss two possible mechanisms. First, the CREB-

dependent transient change in neuronal excitability performs a memory-allocation function 

ensuring that memory is stored in ways that facilitate effective linking of events with temporal 

proximity (hours). Second, these changes may promote cell-assembly formation during the 

memory-consolidation phase. It has been unclear whether such global excitability changes and 

local synaptic mechanisms are complementary. Here we argue that the two mechanisms can work 

together to promote useful memory function.

The elucidation of the molecular, cellular, and network mechanisms that underlie learning 

and memory has been a major goal of modern neuroscience. In an important early 

contribution, Donald Hebb proposed that the associations that constitute a memory are 

stored by means of activity-dependent changes in the strength of synapses1. Much 

subsequent work has shown that synapses in fact undergo activity-dependent strengthening 

as envisioned by Hebb, and do so via LTP (and the complementary long-term depression 

(LTD) process)2. In the canonical form of LTP found at CA1 hippocampal synapses, LTP 

induction depends on a particular type of glutamate receptor, NMDAR, and on a 
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biochemical cascade initiated and sustained by the abundant synaptic protein calcium/

calmodulin-dependent protein kinase II (CaMKII)3. Importantly, genetic modifications that 

interfere with NMDAR or CaMKII function not only block LTP, but also produce profound 

deficits in learning and memory storage4–6. Conversely, nearly all mutations that enhance 

memory also enhance LTP7. Other work has shown that LTP, once induced during learning7, 

can be bidi-rectionally modified by LTD/LTP-like stimulation, thereby leading to both 

reduction and re-emergence of memory-guided behavior8. Hippocampal pyramidal neurons 

have more than 10,000 synapses, and because each synapse can be independently modified 

by LTP9 (i.e., LTP is synapse specific), even a single neuron has an impressive information-

storage capacity. Moreover, computational analysis shows that modification of synaptic 

strength by LTP is sufficient to produce distributed memory storage in neural networks10. 

Taken together, these findings have led to the widespread view that LTP mediates memory 

storage11.

There is, however, accumulating evidence that synapse-specific changes are not the only 

type of neuronal change necessary for memory functions. Notably, modification of global 

neuronal properties also has an important role in learning and memory. The evidence for 

such changes was initially obtained in invertebrate preparations used to study the 

presynaptic facilitation12 that underlies short-term behavioral sensitization. This facilitation 

involves an increase in presynaptic excitability caused by a reduction in K+ conductance13. 

Other work showed that conditioning of Hermissenda14 increased neuronal excitability by 

reducing K+ conductance. The investigation of learning-related changes in excitability was 

then extended to vertebrates15 and is now supported by multiple lines of evidence16–19. In 

this Perspective, we describe that evidence, as well as the critical role of the transcription 

factor CREB (cAMP-responsive element-binding protein) in this process. We then address 

the question of why vertebrate neurons that can store large amounts of information by 

modifying their numerous synapses also modify global cellular properties via transcriptional 

regulation. We describe two ideas about how synaptic and transcriptional modifications 

make different contributions necessary for the overall process of memory formation.

The role of the transcription factor CREB in memory

Early work in invertebrates pointed to the importance of transcriptional regulation in 

memory20. This led to interest in CREB because it undergoes phosphorylation-dependent 

activation that persists for hours in the vertebrate hippocampus after LTP induction21 and 

learning22. The importance of CREB for memory has now been demonstrated through 

bidirectional manipulation of CREB function23,24. Researchers have used a variety of 

methods to negatively modulate CREB, including the knockdown of CREB (specifically α/δ 
isoforms), antisense oligodeoxynucleotide-mediated CREB disruption, RNA interference, 

and targeted genetic mutation23,25–27. These manipulations invariably lead to memory 

deficits. Conversely, increases in levels of active CREB lead to memory enhancement28,29.

A second wave of progress in understanding CREB function arose from newly developed 

tools that allowed direct visualization and manipulation of the cells that mediate memory 

storage (‘memory trace’ cells). One of the resulting methods takes advantage of the fact that 

cells undergoing strong activity, as occurs during memory formation, synthesize elevated 
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levels of a class of regulatory proteins referred to as immediate early genes (IEGs; for 

example, cFos and arc). These proteins have long been known to be expressed in cells 

activated during learning, and their expression can be used to identify memory trace cells30. 

Experiments showed that increasing the levels of CREB in a subset of cells increased the 

probability that those cells would be incorporated into the memory trace, whereas decreasing 

the levels of CREB had the opposite effect31,32. In trained animals, CREB-overexpressing 

cells have higher IEG expression than neighboring cells. Importantly, CREB-dependent 

increases in IEG expression do not occur in untrained mice31. These results demonstrate that 

relative CREB levels can affect which neurons are incorporated into a memory trace, a 

phenomenon referred to as memory allocation. Subsequent studies showed that inhibition of 

CREB-overexpressing cells negatively affects memory recall31,33–35, and thus demonstrated 

the necessity of these cells for memory retrieval.

Evidence that CREB modulates cell excitability

By what mechanism could CREB control memory allocation? Because LTP depends on the 

level of depolarization in the post-synaptic neurons, CREB might work by enhancing 

neuronal excitability and thereby increasing the incorporation of neurons into the memory 

trace. This possibility has now been tested in several ways. In one set of experiments, 

intracellular recordings were obtained from cells that overexpressed CREB. As shown in 

Fig. 1, the same magnitude of current pulse produced more action potentials in the CREB-

overexpressing cells than in nearby neurons that did not overexpress CREB (also see refs.
32,34,36,37). CREB overexpression also resulted in a smaller after-hyperpolarization (AHP) 

after a train of action potentials. Because such AHPs are generated by K+ channels38, it 

seems likely that the enhanced excitability of CREB-expressing cells is at least partly due to 

decreased K+ conductance. There may also be excitability changes that depend on changes 

in translation39, but these are outside the scope of this review because they do not involve 

CREB.

Another type of experiment was used to test directly whether manipulation of cell 

excitability is sufficient to affect a cell’s incorporation into the memory trace. In these 

studies, viral vectors were used to enhance excitability through reduction of K+ channel 

function (i.e., through expression of dominant-negative forms of two K+ channels involved 

in AHP: KCNQ2 and KCNQ332). Cells expressing mutant channels were indeed 

preferentially allocated to the memory trace, as indicated by increased levels of the IEG 

protein arc relative to those in neighboring uninfected neurons. In related experiments, cell 

excitability was reduced by the expression of Kir2.1, an inwardly rectifying K+ channel. 

Among Kir2.1 cells, the probability that cells were active was reduced approximately 

fivefold compared with cells that did not express the protein, and this led to decreased 

incorporation into the memory trace. Further experiments demonstrated the importance of 

excitability changes at the behavioral level: when a step function opsin was used to increase 

the excitability of a subset of amygdala neurons right before tone conditioning, subsequent 

behavioral experiments showed that these neurons were allocated to store the tone-shock 

association40.
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Taken together, these results demonstrate that a major function of CREB is to enhance 

neuronal excitability41,42 and thereby modulate the allocation of neurons to the memory 

trace. This enhancement of excitability by strong neural activity stands in contrast to 

modifications of intrinsic and synaptic conductances that are homeostatic, that is, where 

strong neural activity leads to reduced excitability43. This raises the question of what 

function the enhancement of excitability by CREB might have. In neural network models, 

the enhancement of transmission by LTP is sufficient to produce memory function, so what 

does CREB-dependent enhancement of excitability add? One possibility is allocation, but 

what is the utility of allocation? These questions are addressed in the next section.

Functions of the cell-wide increase in excitability

Below, we first describe one hypothesis about the role of learning-dependent changes in 

global excitability that has substantial experimental support. We then put forward a second 

and more speculative possibility. These hypotheses are not mutually exclusive.

The allocate-to-link hypothesis

As described above, an increase in the amount of activated CREB enhances excitability and 

thereby biases neuron allocation into the memory trace. According to the ‘allocate-to-link’ 

hypothesis44, these changes form a linkage between memories of events that occur within 

hours of each other, and that linkage has an important function. As described above, an 

initial bout of learning leads to an increase in the amount of CREB in the memory-encoding 

neurons that lasts for hours. The resulting increase in excitability leads to the recruitment of 

many of these neurons to encode a new memory formed during the period of increased 

excitability. The net result is that two memories encoded close together in time are encoded 

by overlapping ensembles of neurons; thus, the two memories are linked, and that linkage 

may underlie the recall of separate events that occur during a several-hour period (Fig. 2a).

A recent study demonstrated that overlapping hippocampal neuronal ensembles do indeed 

capture memories of contexts explored close in time45. To directly determine whether 

overlapping cells encode the two contexts, the authors used a head-mounted miniature 

fluorescent microscope to monitor calcium transients within mouse hippocampal CA1 

neurons as the mice explored different contexts. There was greater overlap between the 

neuronal ensembles activated by these contexts when the two contexts were explored within 

the same day (5 h apart) as opposed to on different days (7 d apart) (Fig. 2b). This provides 

direct support for the idea that overlapping neuronal ensembles encode memories formed 

close in time. A consequence of this neuronal overlap is that these memories become 

behaviorally linked; it was found that when one of the contexts induced a fear response, 

mice also became fearful of the linked context, even though they had never experienced 

anything aversive in that context (Fig. 2c).

Further support for the allocate-to-link hypothesis was obtained through manipulation of the 

specific fraction of shared neurons for two memories. These studies first demonstrated that a 

shared amygdala ensemble encodes two auditory fear memories that are acquired close in 

time (within 6 h) and that these memories are linked46. Researchers demonstrated the 

specific role of such shared neuronal ensembles by silencing them, which affected the 
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behavioral interaction of two amygdala-dependent tasks but did not interfere with the 

retrieval of individual tasks47.

The allocate-to-link hypothesis assumes that the CREB-dependent increase in excitability 

increases the probability that a cell will become excited during temporally close encoding of 

other memories, thereby linking the memories by enhancing their synaptic connectivity. As 

noted, CREB-dependent increases in excitability are nonhomeostatic. Thus, there is the 

concern that this increase in excitability may enhance LTP and that the potentiated responses 

may make subsequent LTP more likely, potentially leading to runaway potentiation. 

However, synaptic strength is saturable48,49, and the resulting limit on LTP may obviate 

concerns of runaway excitation.

Assembly consolidation hypothesis

Many cells may represent similar information (for example, a place in the environment). 

During learning, these cells will fire together, and connections among them will be 

strengthened, thereby forming a stable memory ensemble. We now know that this 

strengthening will fade unless synapses undergo additional changes after learning, in a 

process termed consolidation. These consolidation processes, which include stabilization of 

synapses that were potentiated during learning (synaptic consolidation) and transfer of 

information from hippocampus to cortex (systems consolidation), occur during periods of 

rest and sleep that follow the learning events. During these periods, 100-ms-long events 

termed sharp-wave ripples (SWRs) take place in the hippocampus. Analysis of neural firing 

patterns during SWRs shows that they replay recent memory50–52. This replay is crucial for 

the formation of stable memory, as specific disruption of the SWR leads to strong memory 

deficits53–55. It would seem likely that a neuron’s involvement in SWRs would be enhanced 

by an increase in excitability (also see ref. 56). This leads us to suggest that another function 

of the CREB-dependent increase in excitability is to enhance the consolidation necessary for 

stable memory formation.

Mechanisms and selectivity of CREB activation

If CREB has an important role in memory allocation and consolidation, its activation should 

be largely restricted to cells that have been involved in learning and need to be incorporated 

into a memory ensemble. Action potentials are not a reliable indication of learning-related 

events because they can result from the activity of previously potentiated synapses. 

Similarly, LTP events at the synapse are not a reliable indicator that a cell should be part of a 

new ensemble because LTP can occur in a dendritic branch without somatic sodium 

spikes57,58. Making a cell fire, and thus able to be incorporated into an ensemble, may 

require that multiple branches undergo synaptic plasticity. Thus it may be desirable for 

CREB to be preferentially activated when there are both learning events in the dendrite and 

strong enough depolarization to cause firing. It is thus noteworthy that there is considerable 

complexity in the pathways that lead to CREB-dependent activation (Fig. 3): a calmodulin 

kinase cascade couples somatic action potentials to CREB activation59,60, whereas ERK 

diffusion from dendrite to soma couples synaptic plasticity to CREB activation61. One 
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intriguing possibility is that these pathways perform the biochemical computation necessary 

to mark those cells that need to be incorporated into an ensemble.

Discussion

The field of learning and memory has lacked a coherent view of why and how memory 

depends on both on synapse-specific changes in synaptic strength and global changes in 

neuronal function. Recent technological advances have allowed unprecedented visualization 

and control of circuit processes underlying memory, and the resulting findings support the 

view that global changes in excitability occur and make a critical contribution to the 

memory. These observations challenge standard models that attribute memory function 

solely to synaptic modification. We present two hypotheses of the specific role of the CREB-

dependent changes in global excitability in memory that go beyond the traditional views; 

one (allocate-to-link) now has direct support, whereas the other (ensemble consolidation 

model) is built on experimental observations but has not yet been directly tested. Despite the 

conceptual differences between these models, they share a wide view of the overall process 

of memory—a view that includes events during encoding and consolidation, and thus goes 

beyond the processes that are directly responsible for ultimate memory storage. In the 

allocate-to-link model, CREB-dependent changes in excitability add an entirely new 

functionality to the memory system: the ability of one memory within a time frame to 

selectively associate with other memories within the same time frame. In the assembly 

consolidation model, the added functionality is the enhancement of consolidation—an 

enhancement that is specific to the memory trace cells and is ultimately necessary for the 

formation of a stable ensemble.

Neither of the proposed models posits that transcriptional changes actually underlie memory 

storage itself, and thus these models are consistent with the transient nature of CREB 

changes and learning and LTP. This is an important point because it is often suggested that 

transcriptional switching might allow for more stable long-term memory storage than 

synaptic switches that are dependent on only post-translational processes. We emphasize that 

the data on CREB do not support this suggestion; although CREB-dependent transcription 

appears to be necessary for the formation of stable memories (notably in the ensemble 

consolidation model), it is not itself a stable information-storage mechanism and thus cannot 

mediate long-term memory. That important function may rely on stable changes at the 

synapse (but see refs. 62,63) or on learning-related transcriptional changes other than those 

mediated by CREB64,65 (for the potential utility of hypothesized long-term changes in 

excitability, see ref. 66).

In summary, we argue that any overall model of the memory system must now include both 

persistent changes at synapses and transient changes in global excitability. Such dual 

mechanisms should not be viewed as contradictory. Rather, the CREB-dependent 

transcriptional changes function to promote stable synaptic modifications in a way that 

produces useful temporal linkages.
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Fig. 1. CREB increases neuronal excitability
a, Cultured hippocampal neurons were injected with a depolarizing current pulse. Cells 

transfected with CREB showed increased action potential firing compared with that in 

nontransfected cells. b–d, Acute lateral slices of rat amygdala were divided into three groups 

(HSV-CREB-transfected, HSV-LacZ-transfected, and nontransfected) and underwent whole-

cell recordings 3 d after treatment. b, CREB-overexpressing neurons (transfected with HSV-

CREB) fired more action potentials (right) than control neurons (CON; nontransfected and 

HSV-LacZ-transfected). c, Spike frequency adaptation was analyzed with a 400-pA, 600-ms 

current injection. Cells were classified as rapidly adapting (RA) if they fired between one 

and five spikes and then remained silent, or as slowly adapting (SA) if they fired six or more 

spikes. A greater fraction of HSV-CREB-transfected cells (compared with control cells) 

fired more than six times in response to current injection, which indicates that CREB 

reduces spike frequency adaptation and thus alters firing properties. d, Amplitude of post-

burst AHP at the negative peak and 300 ms after current injection. There was no difference 

in amplitude at the negative peak, whereas at 300 ms, HSV-CREB cells showed a significant 

reduction in AHP amplitude (right; significant difference indicated by asterisk). All data are 

presented as mean ± s.e.m. *P < 0.05, unpaired t-test. Panel a reproduced with permission 

from ref. 32. Panels b and c reproduced with permission from ref. 34.
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Fig. 2. Allocate-to-link hypothesis
a, Memories that are encoded close in time are represented by overlapping neural 

populations as a result of learning-related increases in excitability45. This temporal window 

has been experimentally shown to last at least 5 h, but it is presumed that it can last as long 

as 1 d. This model provides a novel mechanism for temporal association and memory 

linking over time. b,c, Transfer of contextual fear provides support for temporal association 

via overlapping neural populations. b, Animals explored context A 7 d before context B, 

which was explored 5 h before context C. Calcium imaging data demonstrated greater 

overlap between neuronal ensembles activated during exploration of contexts B and C (5 h) 

than between those activated during exploration of contexts A and C (7 d). c, Transfer-of-

fear experimental design. The context in which the mice were tested is outlined by a yellow 

rectangle and corresponds with the provided freezing assay data. There was little difference 

in freezing between contexts C and B, whereas there was significantly less freezing in D 

than in both C and B (data not shown). Imm, immediate; Cxt, context. Results are shown as 

mean ± s.e.m. **P < 0.01. Panel a reproduced with permission from ref. 33. Panels b and c 
reproduced with permission from ref. 45.
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Fig. 3. CREB-dependent enhancement of excitability is controlled both by dendritic LTP events 
and by somatic spiking, an enhancement that facilitates ensemble formation
Induction of LTP at feedforward synapses results in CaMKII activation67, which then leads 

to extracellular signal-regulated protein kinase (ERK) activation at the synapse via synaptic 

Ras-GTPase-activating protein (synGAP) and Ras68 (see also refs. 69–71). Activated ERK 

(together with Jacob64) then moves to the soma61, leading to phosphorylation of CREB. 

CREB activation may occur by a second pathway: action potentials in the soma activate 

voltage-dependent Ca2+ channels. The resulting increase in Ca2+ levels initiates a complex 

cascade that leads to the entry of calmodulin (CaM) into the nucleus and the 

phosphorylation of CREB by calcium/calmodulin-dependent protein kinase IV 

(CaMKIV)59. Top right: two memory trace cells and their interconnections. The CREB-

dependent increase in excitability in these cells enhances their participation in memory 
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replay during SWR, leading to consolidation of the synaptic connections that link memory 

trace cells and thus the formation of a stable ensemble. Asterisks denote phosphorylation.
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