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It is widely known that epigenetic modifications are important in regulating

transcription, but several have also been reported in alternative splicing. The

regulation of pre-mRNA splicing is important to explain proteomic diversity

and the misregulation of splicing has been implicated in many diseases.

Here, we give a brief overview of the role of epigenetics in alternative splicing

and disease. We then discuss the bioinformatics methods that can be used to

model interactions between epigenetic marks and regulators of splicing.

These models can be used to identify alternative splicing and epigenetic

changes across different phenotypes.

This article is part of a discussion meeting issue ‘Frontiers in epigenetic

chemical biology’.
1. Introduction
Epigenetic modifications change the regulation of the genome without changing

the DNA sequence. As such, our increased knowledge of epigenetics significantly

improves our understanding of gene regulation and biological pathways that are

regulated epigenetically. Epigenetic modifications can occur directly on DNA,

and on histones that bind to DNA. For example, chemical modifications such

as methylation, acetylation and phosphorylation are known to alter histone func-

tion. Each of these modifications is reversible, and this has increased the prospects

of epigenetic markers as therapeutic drug targets [1,2]. In the case of eukaryotic

DNA, mostly DNA methylation affecting cytosine residues (methylcytosine)

has been extensively studied. Along with methylcytosine, other modified cyto-

sine states have recently been identified, such as hydroxymethylcytosine,

carboxylcytosine and formylcytosine [1]. Moreover, adenosine methylation has

been found in the genome of various eukaryotes [3–7] and is not well understood.

Further experimental and bioinformatics analysis of these modifications is

required to understand their function. While DNA cytosine modifications are

known to influence transcription, there is now also growing evidence for its

role in the regulation of alternative splicing [8–10].

Alternative splicing of pre-mRNA from a single gene results in multiple iso-

forms that contribute greatly to the RNA and protein diversity in eukaryotes.

Alternative splicing can include intron retention, alternative splice site selection

and exon skipping. During splicing, the spliceosome, aided by splicing factors,

recognizes and binds to specific sequences in the pre-mRNA. These sequences

are at exon/intron boundaries and once the spliceosome binds to the sequence it

excises the introns, which results in the mature mRNA [11]. The recruitment of

the spliceosome is influenced by both cis-acting RNA elements and trans-acting

splicing factors. Cis-acting RNA elements include enhancer or repressor sequences

within the pre-mRNA that facilitate or inhibit the binding of the spliceosome.
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Figure 1. (a) Example of epigenetic markers influencing alternative splicing. Knockdown of the oxidase Tet2 has been shown to reduce levels of cytosine hydro-
xymethylation (5hmC) (orange circles). For some genomic regions with a reduction in 5hmC, a corresponding increase in cytosine methylation (5mC) was observed
(blue circles). 5hmC was shown to be prevalent in exons, particularly at the boundaries, and the loss of 5hmC resulted in differential inclusion of exons. (b) The
overexpression of splicing factor SRSF1 is known to cause differential splicing of BIN1. Overexpression of SRSF1 results in an alternative isoform BIN1þ12a. This
isoform is unable to bind the tumour repressor cMYC and therefore promotes tumorigenesis.
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Trans-acting splicing factors can bind to the spliceosome or to

bound or open cis-elements to direct binding of the spliceosome

to the pre-mRNA and consequently alternative splicing.

The role of epigenetic modifications in alternative splicing

has been extensively reviewed in detail [12–16]. Here, we

only give a brief overview of the role of epigenetic modifi-

cations in alternative splicing. In this review, we focus on

bioinformatics methods that have been developed to under-

stand splicing regulation. This includes the regulatory

relationships that govern splicing and differences in isoform

expression relating to disease. We highlight the potential to

integrate epigenetic markers in these analyses to elucidate

the interaction between epigenetics and splicing. We provide

some, though not exhaustive, examples on each topic while

also directing the reader to comprehensive reviews.
2. Epigenetics and alternative splicing
In the classic view of splicing, transcription and splicing are two

distinct processes, with transcription occurring first followed by

splicing. However, splicing can occur co-transcriptionally [17]:

introns can be spliced from pre-mRNA as the transcription of

DNA occurs [18]. As a result, epigenetic modifications, such

as histone and DNA modifications, are able to regulate splicing

and transcription [8,13].

Chromatin structure can control splicing through access to

and the recruitment of splicing factors. In yeast, the histone

acetyltransferase Gcn5 was shown to interact with two U2

snRNP-encoding genes facilitating its recruitment to splice

sites, which results in co-transcriptional splicing [19]. The com-

pactness of chromatin structure also influences splicing
through modifying the elongation rate of Polymerase II; a

slower transcription rate has been shown to lead to differential

splice site selection as weaker splice sites can be detected [20].

Weaker splice sites are cis-regulatory sequences at the

exon–intron boundaries that are not as easily detected by the

spliceosome. The subunit Brm of the chromatin remodeller,

SWI/SNF, has been shown to regulate splicing. Brm causes

an accumulation of RNA Polymerase II and pauses transcrip-

tion. This seems to promote inclusion of exons with weaker

splice sites, resulting in alternative splicing [21].

Histone modifications such as H3K36me3, which is

significantly enriched in exons, have been implicated in the

regulation of alternative splicing [22]. The H3K4me3 binding

protein CHD1 was shown to facilitate splicing through the

recruitment of the spliceosome component U2 snRNP. Knock-

down of CHD1 resulted in reduced efficiency of splicing, while

the combinatorial knockdown of CHD1 and H3K4me3 further

reduced U2 snRNP recruitment [23].

Finally, there is growing evidence of DNA modifications

regulating splicing [13]. Increased DNA cytosine methylation

in exons may regulate splicing by aiding the splicing machin-

ery in the detection of exon/intron boundaries [24]. DNA

cytosine methylation was significantly different between

exons and introns, even when taking into consideration nucleo-

some and CpG density [25]. Moreover, knockdown of Tet2

decreases the level of cytosine hydroxymethylation and results

in differential exon usage [26] (figure 1a). This further suggests

a role of DNA modifications in alternative splicing.

Although we have focused here on examples of epigenetic

modifications regulating splicing, splicing factors themselves

can influence chromatin structure and histone modifications.

This suggests a complex feedback model of regulation [11].
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This complexity in the splicing process gives rise to multiple

ways in which splicing can be misregulated and it is this

misregulation that can lead to disease.
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3. Alternative splicing and disease
It is known that certain mutations in splice sites, cis-regulatory

elements, splicing factors and the spliceosome machinery can

lead to disease. These diseases include chronic lymphocytic

leukaemia, myelodysplastic syndrome and spinomuscular

atrophy [12]. Furthermore, splicing factors have been shown

to act as oncoproteins and tumour suppressors [27]. For

example, the splicing factor SRSF1 is overexpressed in

many tumours and found to influence processes leading to

tumorigenesis [28]. Specific to alternative splicing, SRSF1

overexpression produces an alternative isoform of the protein

BIN1 that is then unable to bind and repress the activity of

the proto-oncogene cMYC [29] (figure 1b).

From an epigenetic perspective, the analysis of transcrip-

tional networks of late onset Alzheimer’s disease found that

differentially expressed genes also had differential DNA cyto-

sine methylation levels. This coincided with differential

expression at the exon level and reduced splicing [30]. Another

example that highlights the interplay between epigenetic mar-

kers, splicing and disease, is the protein MeCP2. Mutations of

MeCP2 are known to cause neurodevelopmental disorders.

MeCP2 can bind methylated cytosines and is involved in spli-

cing. Exons bound by MeCP2 are enriched with specific

epigenetic markers; histone modifications H3K4me3 and

H3K36me3 are enriched in transcriptionally inactive and

active exons, respectively. These regulated exons are involved

in mRNA splicing and synaptic function within the brain.

The model suggests that epigenetic markers facilitate splicing

and the loss of this regulation can influence disease [31].

Despite these examples, the role of epigenetic modifications

in alternative splicing is still not well understood. Therefore,

identifying and analysing epigenetic drivers of alternative

splicing may provide new insights into disease progression

and treatment.

To elucidate the drivers of alternative splicing and disease

progression, bioinformatics techniques need to be developed to

model splicing regulation. To understand the effect of epige-

netic modifications on splicing, observing and measuring the

effects at the RNA transcript level are required [27]. To measure

alternative splicing on a genome-wide scale, splice-aware or

exon microarrays have previously been used [32]. RNA-seq

is now the method of choice, as it has greater dynamic

range and the ability to detect novel and known splice junc-

tions. The analysis of RNA-seq data for alternative splicing

requires computational models that are specifically designed

for the analysis of differential transcripts. We discuss some of

the methods that can be used with high-throughput data

to model the relationships between splicing regulation,

epigenetics and disease.
4. RNA-seq analysis of differential alternative
splicing

There are multiple computational analysis tools designed for

the analysis of alternative splicing using RNA-seq data. The

most recent software packages estimate both biological and
technical variation when testing for differential alternative spli-

cing across conditions [33]. In differential alternative splicing,

sequencing reads are first aligned to a reference genome.

Given the aligned reads, one approach is to model directly

observable exon counts (e.g. DEXSeq) and splice junction

counts (e.g. JunctionSeq). The number of reads assigned to

an exon or splice junction gives a measure of its expression.

While DEXSeq models the observed exon counts, JunctionSeq

uses both the observed exon counts and the counts at splice

junctions. Therefore, JunctionSeq can identify differential spli-

cing patterns of an exon even when the exon has consistent

expression over all conditions. Alternatively, methods such as

Cuffdiff 2, Tuxedo 2 and MISO assign reads to isoform tran-

scripts and therefore model isoform as opposed to exon

expression (figure 2). While this additional level of complexity

in the modelling can be more error prone, Cuffdiff 2 has been

shown to outperform differential exon usage analysis when

the annotation is largely incomplete [34]. In selecting the cor-

rect tool for analysing splicing, it is important to consider

whether replicates need to be modelled and the experimental

conditions to be analysed. Two group (with replicates) and

two sample (without replicates) comparisons can be done

using tools such as DiffSplice and MATS, respectively. Exper-

imental designs containing multiple groups or confounding

factors would require a tool that can model design matrices

such as JunctionSeq or Tuxedo 2. An overview of the available

tools for differential alternative splicing analysis is shown in

table 1. RNA-seq analysis can generate hypotheses of novel

and known splice variants and it is advisable that any impor-

tant alternative splicing results from RNA-seq analyses are

verified. This can be done by either RT-PCR or sequencing

capable of generating long full-length transcripts such as 454

Sequencing [44], SMRT sequencing [45] and Nanopore [35].

Results from differential alternative splicing analysis

are usually interpreted via enrichment of biological function

annotations provided by gene ontologies [36]. This enrichment

analysis provides a good starting point to understanding

results of differential alternative splicing. RNA-seq data give

information on the observed changes in splicing at a transcript

level. However, they provide little insight into the mechanisms

that caused the observed changes in splicing. To understand

interactions between elements, such as epigenetic marks, spli-

cing factors and binding motifs, bioinformatics modelling is

required. Bioinformatics models can integrate multiple data

sources to reverse engineer and identify the effect of epigenetic

landscapes on alternative splicing.
5. Bioinformatics modelling in epigenetics and
splicing

In bioinformatics data analysis and modelling, there is a trade-

off between the scale of the model and its complexity [37,38].

When only a few factors are being modelled, models can be

built with detail. For tens of proteins, it is feasible to perturb

them individually and in combination to resolve causal

relationships between them [39]. By contrast, bioinformatics

analysis of high-throughput data at an ‘omics’ scale is affected

by the curse of dimensionality [40]. This refers to the compara-

tively large number of measured entities, such as genes,

compared to the small number of replicates or experimental

conditions. Because of the small sample size constraints, simpli-

fying assumptions about the biological system are used to
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isoform is expressed. For DEXSeq, no change in the expression of exon 1 will be detected. By contrast, JunctionSeq can detect a change in splicing involving exon 1
as there is an observed change in the number of reads at the exon 1 and exon 2 splice junctions.
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enable the analysis of ‘omics’ scale data. For example, the differ-

ential expression of genes between two conditions may be

calculated independently for each gene, even though genes

are not independent of each other [41,42]. Despite these simpli-

fications, these analyses can be useful when little is known

about the function or the genes targeted by the splicing factors.

An alternative approach that has been used extensively is meta-

analysis. Meta-analysis is the combination of samples from

multiple experiments into one analysis to increase the sample

size. In all cases, useful bioinformatics methods applied to

high-throughput data will generate hypotheses at a smaller

scale, for example the interaction between a few proteins, that

can be experimentally validated [43,46].
We view the modelling of splicing regulation and epige-

netics from two, separate but related networks: splicing

regulatory networks [47,48] and functional isoform networks

[49]. Interactions between the elements responsible for the spli-

cing process are referred to as splicing regulation networks.

This includes the trans-acting splicing factors and the cis-

acting binding motifs (figure 3a). Epigenetic marks may be

viewed in these networks as cis-acting motifs that influence

the activity of splicing factors [50]. The second type of network

is a functional isoform network. In these networks, interactions

between different isoforms across genes are modelled. This is

used to infer functional units according to the co-expression

or shared regulation of isoforms (figure 3b). These functional



Table 1. Comparison of tools available for differential alternative splicing analysis. The tools calculate alternative splicing at different levels; isoform, exon or
using splice junction counts. The tools differ in their ability to use biological replicates and the complexity of the experimental design. Tools that can only
compare between two conditions are either two samples (where replicates are not used) or two groups (where replicates are used). Methods that use design
matrices can incorporate more complex designs including multiple group comparison and confounding factors.

biological replicates model experimental design reference

JunctionSeq yes exon & junction design matrix [35]

Tuxedo 2 yes isoform, exon & junction design matrix [36]

DEXSeq yes exon design matrix [37]

MATS no exon & junction two sample [38]

MISO no isoform two sample [39]

Cuffdiff 2 yes isoform & exon two groups [40]

DSGseq yes exon two groups [41]

DiffSplice yes exon & junction two groups [42]

ARH-seq yes exon & junction two sample [43]
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isoform networks are usually specific to either disease status,

cell or tissue type [51]. Given the role of epigenetic marks in

splicing and disease, epigenetic information can be used to

aid the analysis or inference of these networks. Below we dis-

cuss examples of resources and models that can be used to

perform the analysis of epigenetic and splicing data both at a

small scale and using high-throughput data.
6. Splicing regulation networks
Splicing regulation networks (SRNs) are used to represent the

interactions within and between trans-acting RNA-binding

proteins (RBPs) or splicing factors and cis-regulatory targets

or epigenetic marks. In network analysis, the splicing factors

and their targets are represented as nodes, while edges

between nodes represent that an interaction exists between

them. To infer networks, computational methods select the

set of nodes and interactions between them that best explain

the observed data [52,53]. SRNs can be built for specific disease

or tissue types to identify splicing factors that contribute to

phenotype. Differential splicing networks can be inferred,

reflecting changes in splicing networks under different con-

ditions. Below we provide examples of SRNs that have been

inferred and discuss some, though not exhaustive, models

from regulatory and signalling network inference that, we

believe, can be adapted to model splicing and epigenetics.

A splicing regulatory network for the tissue-specific spli-

cing factor FOX-1 and its paralogue FOX-2 (Fox-1/2) was

identified using genome-wide searching for their cis-binding

motif. The motif for FOX-1/2 was found in exons and intronic

flanking regions across the genome. False discovery rates were

controlled by using the conservation of motif location in 28

additional vertebrate genomes to categorize FOX-binding tar-

gets. RT-PCR was used to validate exon splicing patterns

[48]. The work highlighted the combinatorial nature of splicing

motifs; differential splicing patterns could not be entirely

explained by the FOX-1/2 binding motifs, suggesting a combi-

natorial regulation in conjunction with additional splicing

factors. This opens interesting avenues for future research.

Logic models can be used for modelling combinatorial relation-

ship such as OR, AND and NOT between regulators of splicing

[37]. For example, if the separate overexpression of two
splicing factors led to alternative splicing of the same gene,

this would indicate an OR relationship of these two splicing

factors and the gene, where either splicing factor can regulate

the genes spliced.

To model splicing regulatory networks between trans-

acting factors using logical relations, the most direct method

would be to knock down individual or combinations of

splicing factors and measure the expression level of each spli-

cing factor [54,55]. Complete perturbation of the SRN allows

for the topology of the network to be inferred. By contrast,

any unobserved combinations of splicing factors can lead to

uncertainties in resolving the relationships between them.

Therefore, this type of analysis requires a known splicing

factor or factors to have their expression altered to elucidate

targets and function.

To overcome the lack of targeted perturbation data,

methods, including Cell Net Optimizer (CellNOptR), have

been developed that use prior knowledge networks to facilitate

the inference of the logic-based signalling networks. In signal-

ling networks, prior knowledge networks have been used to

build initial models of signalling regulation. These initial

models are refined using phosphoproteomic data that measure

activity in the network following stimulation of the signalling

pathway [56,57]. These models can be used to infer SRNs pro-

vided the proteins to be included in the model have either been

perturbed or their abundance measured across perturbations.

In practice, it has been shown that alternative splicing is regu-

lated by signalling pathways, such as MAPK and AKT,

through phosphorylation of splicing factors [17]. Therefore,

activation of these pathways may be used to provide exper-

imental data for inference. Alternatively, altering histone

modifications may provide an indirect perturbation of splicing

due to the recognition of histone marks by splicing factors that

can be used for modelling. The difficulty with methods such as

CellNOptR is having sufficient data to select between different

models. Consequently, these methods are often used to resolve

interactions between splicing factors but not to identify novel

factors contributing to splicing regulation.

RNA-seq data have been used to infer splicing modules

and the splicing factors that regulate them. RNA-seq data

from multiple experiments in humans were combined to

build co-expression networks at an exon level [58]. In this

work, a splicing module was defined as a set of co-expressed
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exons that were assumed to be co-regulated. The analysis of

known splicing factor motifs was used to assign splicing fac-

tor(s) that regulated each splicing module [58]. These results

also showed a combinatorial pattern of splicing factors; mul-

tiple splicing modules were enriched for two splicing factor

motifs Tra2a and SRp30c. Bioinformatics analysis combined

multiple experiments that together provided enough data

to infer splicing modules. Moreover, ENCODE datasets of

transcription factor binding and epigenetic markers were

analysed for enrichment within the network, the results of

which supported a model of co-transcriptional splicing [59].

While this method identified splicing factors that regulate a

set of exons, it did not infer a corresponding network

between splicing factors. To do this, methods that have

been developed for signalling networks can be adapted to

model interactions between splicing factors.
Nested effects models (NEMs) are an alternative method for

inferring signalling networks that can be applied to the analysis

of SRNs [60–62]. In contrast to CellNOptR, NEMs use indirect

observations of gene expression to infer the signalling network.

Using indirect gene expression has the advantage that the data

are easier to analyse and a wider repository of publicly available

transcriptomic data exists in comparison to proteomic data. The

model assumes that the hierarchy of the signalling network can

be inferred by using the subset of expression observed at the

gene level, following knockdown of the signalling proteins

(figure 4a). For example, an NEM framework was used to

model five genes involved in the invasion pathway in human

colon cancer, identifying novel genes involved in invasiveness

that were validated experimentally [63].

As with the logic models, the knockdown of splicing factors

can be used to infer the hierarchy of effects between a known
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set of splicing factors using NEMs. However, if the set of spli-

cing factors to be modelled is unknown, an interesting

approach would be to use indirect perturbations such as acti-

vation of signalling pathways. The effect on splicing of

perturbing signalling networks and target splicing factors

can be measured by differential exon or isoform expression

using RNA-seq data. In the NEM, each node in the network

will have a set of differentially spliced genes or differentially

expressed exons associated with it. These sets of genes or
exons can be searched for common regulatory elements, such

as splicing factor motifs and epigenetic marks. Common

motifs can also be used to generate hypotheses of elements reg-

ulating each of the gene sets [64]. As well as regulatory motifs,

epigenetic marks, such as histone modifications, can be inte-

grated with RNA-seq data to elucidate the interactions

between epigenetics and splicing.

In humans, integration of multiple datasets has been used to

study the relationship between splicing, histone modifications
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[65] and cytosine methylation [66]. Tissue-independent patterns

of DNA cytosine methylation were identified that are related

to alternative splicing [66]. By contrast, cell-specific changes in

histone modifications were associated with alternative splicing

through comparison of RNA-seq, exon arrays and ChIP-seq

profiles. Exons displaying cell-specific splicing were found to

have less of the H3K36me3 and H3K79me1 histone marks

[65]. Thus, bioinformatics analysis of integrated datasets has

been successful in identifying relationships between alternative

splicing and epigenetic modifications. Master regulators of

transcription have also been identified using multiple datasets

or metaanalysis [67].

Master regulator analysis (MRA) is designed to dis-

criminate between all regulatory factors to identify a master

regulator of a phenotype. The term ‘master regulator’ has

been used to describe both transcription factors and splicing

factors. Master regulators are defined by their initiation of tran-

scription or splicing networks [68]. In splicing, it is known that

RBPs can self-regulate and regulate each other, resulting in

single or multiple stable states of the cell [69]. A potential

master regulator in splicing, RbFOX2, was identified using

iCLIP. The RBP RbFOX2 regulates the autoregulation of several

RBPs in mouse embryonic stem cells through alternative spli-

cing-coupled nonsense-mediated decay of the target RBPs

[70]. To identify master regulators of transcription, combined

multiple experiments (meta-analysis) have been widely used

[67].

Meta-analysis relies on the availability of multiple exper-

iments perturbing in different ways a cell line or tissue.

Using these combined datasets from multiple experiments, net-

works of gene regulation patterns were inferred that allowed

master regulators of transcription to be identified in prostate

cancer [71], breast cancer [72], Parkinson’s disease [73] and

human B-cells [74]. The networks are inferred by calculating

measures of pairwise co-regulation between gene expression;

genes involved in the same biological process will show similar

patterns of expression over different experimental conditions

[74]. Within this gene regulatory network (GRN), transcription

factor activity is determined by a two-stage process. First, a

transcription factor is assigned a set of active and repressed

regulated targets (regulons), based on the genes it is connected

to in the GRN. Second, the activity of these targets is used to

determine the influence of the transcription factor in the pheno-

type. Genome-wide differential expression between two

conditions is calculated and each gene is ranked according to

its differential expression. Each regulon is tested for the enrich-

ment of genes at the top of this ranked list, thus relating the

activity of a transcription factor to the contribution of a pheno-

type via the differential expression of its targets (figure 4b) [67].

MRA requires large datasets that perturb the system to gener-

ate a large dynamic range of effects in the targets, to

successfully identify regulons.

From a splicing perspective, it is possible to perturb the

splicing networks and generate high-throughput data that

can be used in MRA. Under- and overexpression of RBPs

have been used to perturb the splicing system to infer targets

and function of alternative splicing [15]. Similarly, drug com-

pounds have been used to reduce methylation to elucidate

the impact of epigenetic markers on splicing regulation and

disease [75]. This gives mechanisms that can be used to perturb

the system that can impact splicing regulation. Previous analy-

sis of GRNs has identified transcription factors rather than

splicing factors as central to the network; this is most likely
because the underlying network is based on expression at the

gene level. Therefore, exon regulatory networks could be

used analogously to the GRN to identify master regulators of

splicing. Regulatory networks at the exon level have been

inferred using RNA-seq datasets, for example for schizo-

phrenia and bipolar disease. This analysis inferred regulatory

‘hubs’ centred around several genes that had specific allelic

differential expression between disease and control patients,

including CpG islands and splicing enhancers. This analysis

required the additional level of information contained within

exon expression as the gene-level analysis identified random

networks without any gene hubs [76]. Alternatively, splicing

motifs can be used to identify splicing factor regulons within

the GRN. The differential gene expression profile used for tran-

scription factor MRA can easily be adapted to a differential

alternative splicing signature for splicing factor MRA. Further-

more, since epigenetic markers can be assigned to either genes

or exons in these networks, this will enable the identification of

regulons with shared epigenetic and splicing regulation.

Successful meta-analysis relies on the co-ordination of

experiments and outcomes from multiple sources. As a

result, databases of experimental data and prior knowledge

are required to maximize the data that can be analysed, such

as ArrayExpress [77]. The Expression Atlas provides a map

of gene expression over different tissues and cell types based

on data in ArrayExpress [78,79]. Recently, the ISOexpresso

database has been released that gives analogous information

but at an isoform level [80]. This includes isoform coverage

for different tissue types or disease status. MiasDB contains

interactions between splicing factors, epigenetic marks and

cis-regulatory elements as well as the interaction between

trans-acting proteins. This resource is currently available only

for human interactions and coverage is still incomplete [81].

In future work, there are plans to integrate MiasDB with estab-

lished signalling pathway database KEGG [82]. It is hoped that

this will be extended to allow for ontologies based on splicing

regulation. The creation of isoform-specific ontologies will also

aid the interpretation of isoform-specific networks discussed in

the next section.
7. Functional isoform networks
As well as SRNs, networks have also been inferred for the inter-

action between isoform transcripts [83]. Epigenetic data can be

integrated into isoform networks to identify the role of epi-

genetics in splicing. Understanding the function of changes

to transcript expression is fundamental to understanding

how different phenotypes materialize. The assumptions under-

lying these models are that isoforms showing similar patterns

of expression share regulators and biological function [84]. The

assumption of shared expression equating to shared function

has been used extensively in modelling gene regulatory net-

works. Network views of isoforms provide a more accurate

representation than lists of differentially spliced transcripts,

where each transcript is treated independently.

SpliceNet built a disease-specific isoform network for lung

adenocarcinoma using RNA-seq data. This method identified

differences in isoform interactions between Siva1, Cflar and

Bcl-x in normal and disease samples not identifiable at a gene

level [85]. The gene-level network showed the same dependen-

cies between these three genes in normal and cancer tissues.

By contrast, the isoform network showed a cancer-specific
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relationship between the Bcl-xL isoform and a Siva1 isoform.

Literature evidence supports the hypothesis that the binding

of SIVA1 to BCL-XL inhibits its anti-apoptotic function [85].

The isoform network, therefore, generated hypotheses of inter-

actions that differ between normal and cancer cells that can be

experimentally tested where the gene level analysis could not.

More recently, integration of multiple genomic and proteo-

mic data sources was used to infer a network of functional

interactions at the isoform level in mouse [84]. These results

found different isoform connections for the two isoforms of

Anxa6 that predicted different functional roles. The connec-

tions of one isoform predicted a role in vesicle and organelle

fusion, while the second one was connected to isoforms

enriched for genes related to the regulation of cell shape.

These predictions were supported by experimental evidence

in the literature. As the authors note, this is a first step towards

building isoform-level networks and future work will focus on

building phenotype-, cell- or tissue-specific networks. More-

over, this method integrates heterogeneous data sources

including RNA-seq and isoform-docking data, therefore open-

ing the possibility of including epigenetic information in the

data used to infer the networks. In this way, interactions

between isoforms and epigenetic marks can be identified that

are predicted to share a common functional role.

From an epigenetic perspective, the functional isoform net-

works outlined above can be used as a prior knowledge

network and mined using epigenetic data. This is analogous

to the work of West et al. [86], where age-related gene methyl-

ation data were mapped onto a protein–protein interaction

network. Modules of age-enriched methylation activity were

identified that were associated with stem cell differentiation

pathways. In future work, epigenetic markers that are differen-

tial with respect to a disease can analogously be mapped to the

isoform-specific networks. This would enable identification of

isoform-specific functions, not observed at the gene level, that

are altered in disease due to differential epigenetic profiles. As

well as mining existing signalling or regulatory networks for

enriched epigenetic marks, epigenetic marks may also be

used to infer the networks.

Epigenetic markers can be used for resolving targets of spli-

cing factors assuming they recognize, or work in combination

with, epigenetic marks. As an example, knockdown of PARP1

in Drosophila revealed PARP1 to be a ‘splicing hub’ [87].

Nuc-ChIP high-throughput assay was used to find nucleosome

targets of PARP1 and alternative splicing was measured

through RNA-seq. Experimental validation using ChIP-qPCR

showed a reduction of occupancy of PARP1 following knock-

down at PARP1-targeted exons, while overall nucleosome

density remained constant. A concordant reduction of

H3K4me3 was seen at these locations but not after histone H1

knockdown, indicating a specific association between PARP1

and H3K4me3. PAR-CLIP [88] showed that PARP1 facilitates

the RNA binding to chromatin, while ChIP pulldown revealed

that PARP1 also recruits the splicing factor SF3B1. The multiple

mechanisms by which PARP1 influences splicing conferred its

role as a splicing hub. The specific interaction between PARP1

and H3K4me3 supports the idea of using epigenetic marks to

predict splicing factor binding and regulation. From a modelling

perspective, epigenetic marks can be treated as cis-regulatory

elements to facilitate their integration into isoform networks.

Cis-regulatory motif analysis has been used in regulatory

networks to identify direct targets of a transcription factor

and to distinguish them from downstream effects [55].
Similarly, in co-splicing networks based on the correlation of

inclusion of exons, cis-regulatory motifs of splicing factors

were used to identify splicing factors regulating sets of strongly

co-expressed exons [64]. In addition to splicing motifs, integrat-

ing epigenetic marks, such as histone modifications and

methylation data, can be used to understand the interaction

between epigenetic factors and splicing. In the example

above, knowledge of the H3K4me3 mark can be used to

separate direct targets of PARP1 from indirect effects.
8. Current limitations and challenges
The bioinformatics analysis of epigenetics and splicing has

so far relied heavily on the meta-analysis of multiple data

sources [65,66]. This meta-analysis requires sufficient

numbers of experiments from either the same cell type or dis-

ease condition that can be combined [85,86]. This restricts the

experimental conditions under which epigenetics and spli-

cing can be analysed [76,85]. Furthermore, the annotation of

results requires prior knowledge [59,79] but databases on

prior knowledge are not complete and exist only for specific

organisms [80,81].

Meta-analysis has been successful in identifying both spli-

cing factors and their targets and a combinatorial pattern of

splicing factors [64]. However, resolving the interactions

between splicing factors has so far been limited. Methods that

have been used to infer signalling networks could be used to

infer splicing networks [56,60,67]. To understand combinatorial

patterns or networks between splicing and trans-acting factors,

specific experiments will need to be designed [37]. This would

involve single and combinatorial knockdowns to investigate

the interplay between splicing factors. Similarly, as the tools

for differential alternative splicing analysis can now model repli-

cates and complicated experimental designs, targeted splicing

factors can be investigated to unravel splicing regulation

[89–91]. These experiments should also consider the combi-

ned analysis of RNA-seq and ChIP-seq datasets designed to

investigate splicing and epigenetic markers.

Although splicing can occur co-transcriptionally, results

from gene expression networks indicate that correlation or

information-based networks are dominated by transcription

as opposed to splicing [67,76]. Correlation of splicing factors

and alternative splicing will not be identified by these net-

works unless splicing results in a concordant decrease in

gene expression. Therefore, the analysis of exon co-expression

networks [76,85] is expected to increase our understanding of

co-transcriptional splicing and give a more complete view

of regulatory networks.

Integrating epigenetic data into these exon co-expression

networks is a current challenge for bioinformatics. For example,

when integrating DNA methylation with gene expression it is

common to use the cytosine methylation at promoter regions

assuming a negative relationship between DNA cytosine

methylation and gene expression [92,93]. However, the relation-

ship between DNA cytosine methylation and splicing is less

clear [85,94,95]. The analysis of epigenetic profiles has found

a positive association between methylation density and the

inclusion of intragenic exons [93]. Therefore, representing

epigenetic marks for splicing factor targets that can be used in

modelling is a current challenge in bioinformatics [66].

We anticipate future work will model DNA modifications

for a gene as several quantities split across different genomic
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features, such as promoter, exon and intron. The analysis of

nonlinear patterns of methylation levels across a gene may pro-

vide insight into predictive signatures of phenotypes based on

methylation levels.
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9. Conclusion
Here, we have reviewed recent progress in models that can be

used for understanding epigenetic and splicing regulation.

Multiple data sources, including gene and protein expression,

histone modifications and DNA methylation, can be integrated

to give an overall picture of epigenetics, splicing and disease.

However, there remain several challenges to fully understand-

ing epigenetics and splicing regulation. This includes selection

of appropriate datasets and methods to model epigenetics and

splicing. There are multiple methods from modelling signal-

ling or regulatory networks that can be adapted to study and

model the effect of epigenetics on splicing. We anticipate that

future work will establish how to use genome-wide DNA

methylation profiles to create a ‘splicing signature’ that can

relate DNA methylation levels or histone modifications to

alternative splicing outcomes. While many analyses of single
splicing factors have been successful in identifying splicing

targets and modes of regulation, we expect future models of

splicing to allow for combinatorial mechanisms between

splicing factors. Furthermore, we anticipate that recently dis-

covered epigenetic marks, such as adenosine methylation,

will be investigated for a potential role in splicing. Identifying

the mechanisms by which isoform expression is regulated and

its differential expression in diseases will aid understanding of

isoform function and provide potential therapeutic targets.
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