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The ability to target DNA specifically at any given position within the

genome allows many intriguing possibilities and has inspired scientists

for decades. Early gene-targeting efforts exploited chemicals or DNA oligo-

nucleotides to interfere with the DNA at a given location in order to

inactivate a gene or to correct mutations. We here describe an example

towards correcting a genetic mutation underlying Pompe’s disease using a

nucleotide-fused nuclease (TFO-MunI). In addition to the promise of gene

correction, scientists soon realized that genes could be inactivated or

even re-activated without inducing potentially harmful DNA damage by

targeting transcriptional modulators to a particular gene. However, it

proved difficult to fuse protein effector domains to the first generation of

programmable DNA-binding agents. The engineering of gene-targeting pro-

teins (zinc finger proteins (ZFPs), transcription activator-like effectors

(TALEs)) circumvented this problem. The disadvantage of protein-based

gene targeting is that a fusion protein needs to be engineered for every

locus. The recent introduction of CRISPR/Cas offers a flexible approach to

target a (fusion) protein to the locus of interest using cheap designer RNA

molecules. Many research groups now exploit this platform and the first

human clinical trials have been initiated: CRISPR/Cas has kicked off a

new era of gene targeting and is revolutionizing biomedical sciences.

This article is part of a discussion meeting issue ‘Frontiers in epigenetic

chemical biology’.
1. Introduction
Most diseases are associated with genetic mutations or gene expression

abnormalities. The ability to introduce or correct mutations and/or to restore

gene expression of any given gene therefore would allow researchers to inves-

tigate the origins of diseases, and might even provide novel therapeutic options.

The concept of introducing or correcting genetic mutations relies on the fact that

double strand breaks in a living cell will induce mechanisms to repair the break.

Depending on e.g. the cell cycle and chromatin context [1,2], the cell will choose

to repair the damage by non homologous end joining, which can induce inser-

tions/deletions often resulting in inactivation of the gene. The alternative repair

pathway is via homologous recombination, in which the damaged allele is

exchanged with a homologous template. By introducing DNA damage at a

given location in the human genome, one can thus correct mutations or

introduce sequences of interest.

Introduction of DNA damage specifically at one genomic locus requires

programmable DNA-binding platforms, which can be used as gene-targeting
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devices to locate a nuclease to this genomic position. Next to

fusing nucleases, several attempts have been made to modu-

late gene expression by fusing expression activators or

repressors to these sites [3–6]. Both approaches generate

research tools to address the functional effects of the many

genetic and epigenetic differences that have been detected

by numerous large scale -omics screening efforts for a

broad spectrum of diseases. If specificity and effective deliv-

ery are established, these approaches open novel therapeutic

possibilities. In this review, we provide a historic overview of

the different gene-targeting platforms and describe an

example of early day’s gene correction for Pompe’s disease.

We will highlight in vivo successes of every platform and pro-

vide examples with respect to epigenetic editing. In epigenetic

editing, DNA-binding platforms are engineered to target an

epigenetic writer or erasers to a given location in the

genome [4]. Rewriting the epigenetic landscape modulates

gene expression [5,6] and some indications of sustained repro-

gramming has been achieved [7,8], although more research

needs to be performed to understand the influence of the

native chromatin context of the targeted gene [8,9]. Epigenetic

reprogramming is less invasive compared to genome

engineering, and it also allows re-expression of silenced

genes. Altogether, epigenetic editing provides a promising

exploitation of the gene targeting toolbox.
2. First generation: chemical ( polyamides) and
DNA (TFOs) gene-targeting platforms

Researchers have been engineering various platforms to

target a given sequence within the human genome for dec-

ades. In the early days, prokaryotic DNA-binding domains

were used in combination with their recognition sequences,

artificially introduced into the genome (e.g. the LacO–LacR

system) to obtain insights into e.g. gene expression regu-

lation. As polyamides and triplex forming oligonucleotides

(TFOs) allowed the binding of endogenous sequences [3],

the engineering of these chemical agents provided new

tools for biologists.

Polyamides (pAs) are small synthetic molecules that bind

in the minor groove of DNA. The minor groove then widens

and the major groove bends. This blocks transcription factor

binding and thereby pAs can inhibit gene transcription by

themselves. Stretches of polyamides (hydroxypyrrole (Hp),

imidazole (Im) and pyrrole (Py)) can be engineered to

target specific sequences by recognizing Watson–Crick base

pairs: Py/Im to bind C–G; Py/Hp for A–T, Hp/Py for

T–A and Im/Py pairs to bind G–C base pairs [10]. Hp

degrades quickly in the presence of free radicals and acids,

which limits the amount of Hp-containing pAs that are

being investigated. Instead, a Py/Py pair can be used to

bind both A–T and T–A pairs but it cannot distinguish the

two base pairs, which further limits the applicability of pAs

[11,12]. High molecular weight and a high concentration of

Im decreased nuclear localization as shown by treating cells

with fluorescently labelled pAs, which limits the targeting

of C–G-rich promoter sequences in vivo [13,14]. Modifi-

cations, such as aryl-turns, can improve nuclear localization

[13], and other improvements are being explored. If efficient

delivery is assured, pAs can for example be fused to inhibi-

tors of epigenetic enzymes, and as such successfully

modulate gene expression [15]. Fusing protein effector
domains to these agents, although technically challenging,

is also possible [16], but to our knowledge no catalytic

epigenetic modulators were fused to pAs.

The potency of pAs to modulate gene expression by them-

selves has been demonstrated in various animal studies. In

one of such in vivo studies, a Py–Im polyamide targeting

eight base pairs in the promoter of transforming growth

factor (TGF)-b1 could reduce scar formation in a marmoset

model [17]. Microarray analysis showed that treatment with

a similar polyamide targeting seven base pairs in the promo-

ter of TGF-b1 in rats changed the expression of only 3% of

the 30 000 tested transcripts more than twofold, mostly

associated with the injury model [18]. Other Py–Im poly-

amides tested in vivo were described to inhibit for example,

ABCA1, TGF-b1, androgen response element driven and

HIF-1 gene expression [19–22]. Despite such successes,

engineering of polyamides requires specialized laboratories

and difficulties of fusing effector domains limit their general

applicability [23].

Triplex-forming oligonucleotides (TFOs) are relatively

easy to design and effector domains can be fused, although

this can also be challenging [24]. TFOs bind the oligopurine-

rich strand in oligopurine–oligopyrimidine stretches of

DNA via Hoogsteen hydrogen bonds in the major groove

and as such can induce site-specific mutagenesis or influence

gene expression [24]. The need to bind to oligopurine-rich

sequences limits the choice of targets for TFOs [3,25]. How-

ever, there is a overrepresentation of TFO target sites in

promoter regions of the human genome, which mitigates

this limitation [26]. Rules to design oligonucleotides (TFO)

forming triple helices have been well established. The corre-

sponding nucleotide sequence is straightforward, while the

choice of the chemical modifications of the nucleotide that

best increase the stability of the triple helix needs to be further

validated experimentally [25]. To exploit TFO for epigenetic

editing, we fused a M.SssI variant to a TFO and demonstrated

CpG-specific methylation [27]. Although fusion of peptide

effectors to TFOs is technically challenging, few other

examples have been reported, e.g. the transcriptional activator

VP16 [28] and restriction enzymes, of which the activity was

controlled by photocaging [29]. TFOs are thought to be very

specific, as a single mismatch can abrogate the formation of

a triple helix [30–32]. To our knowledge, large scale studies

into the specificity of TFOs however have yet to be performed.

Interestingly, naked TFOs designed to bind oestrogen receptor

binding sites did not seem to be hampered by the chromatin

status for triplex formation [33]. To overcome stability issues

of TFOs, peptide nucleic acids (PNAs) have been developed

as a variant to TFOs. PNAs have normal DNA bases, but

these are coupled to an uncharged peptide backbone [34].

One of the first successful in vivo applications of TFOs for

gene modification was shown by Vasquez et al. [35]. A TFO

targeting the mouse supFG1 gene demonstrated a high speci-

ficity and affinity to the target and introduced site-specific

mutations, while the control scrambled TFO did not.

Although the efficiency of mutagenesis was quite low, these

results do prove that TFOs can modify DNA in living organ-

isms [35]. This TFO has also been proven to localize in the

nucleus and induced mutations in supFG1 in multiple cell

types upon intradermal administration [36]. In other studies,

TFOs were successfully targeted to inhibit oncogene

expression in mouse models of human cancer (targeting

P53 to inhibit colon carcinoma [37], c-MYC in fusion with
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Figure 1. Co-transfection of reporter plasmids with mTFO-MunI allowed
MunI digestion of the murine GAA (mGAA) gene and induced HR. A2780
cells were co-transfected with reporter plasmids and 0.25 mM TFO-conjugate
in the absence or presence of a HR fragment. Total amount of DNA was
300 ng in each well. After 48 h, luciferase activity was determined. The luci-
ferase expression of pGL2-CMV-mGAA was set at 100% for each independent
experiment. Transfections were performed in triplicate for two independent
experiments. One experiment is shown as representative (mean þ s.d.).
*, p , 0.05, **, p , 0.01. (Online version in colour.)
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gemcitabine to inhibit colon cancer cells [38]). TFOs have also

been used with success to inactivate gene expression by tar-

geting DNA cleaving agents such as topoisomerase I and II

inhibitors, to inactivate either oncogenes such as IGF1 and

its receptor in prostate cancer cells models [39], or the MDR
gene to impair drug resistance [40].

Apart from for gene inactivation, targeting DNA-

damaging agents to DNA would allow the correction of

genetic mutations, which for many genetic diseases would be

a promising approach to a cure. A genetic disease gaining

massive attention these days because of the costs of its

treatment is Pompe disease. Pompe disease is a rare, though

severe autosomal lysosomal storage disorder, caused by a

mutation in the gene encoding the lysosomal enzyme acid-a-

glucosidase (GAA). This autosomal recessive disorder shows

a broad spectrum in clinical presentation as a result of glycogen

storage in the lysosome, which can eventually cause early death

of the patient. The only available therapy is enzyme replace-

ment therapy (ERT), which is based on compensating the lack

of GAA by administering recombinant produced enzyme

intravenously to the patient leading to prolongation of life.

This ERT costs between 400 000 and 700 000 Euros annually

per patient. Although ERT ensures greater patient longevity,

it does not cure the underlying genetic defect.

As GAA is a secreted enzyme, we reasoned that correc-

tion of the GAA mutation in secreting cells using the gene

correction strategy (by introducing double strand breaks)

would be a very promising strategy to actually cure the dis-

ease. For this purpose, we designed several experiments to

explore the potential of TFOs coupled to DNA-damaging

agents to induce homologous recombination (HR) for gene

correction [41]. In short, TFOs were engineered to target the

mouse GAA gene or the human GAA gene. The TFOs were

coupled to a restriction endonuclease or to camptothecin.

Co-transfection of a TFO-MunI fusion with a promoter-less

luciferase reporter plasmid and a promoter-containing HR

correction fragment revealed that we could introduce HR as

luciferase activity was induced (figure 1). Binding affinity

testing demonstrated that the TFO targeting the human

GAA gene could bind its target with high affinity, but the

TFO targeting the mouse GAA gene showed weak triplex

binding (figure 2). Assessment of DNA damage (figures 3

and 4), indeed, could detect damage on nuclear DNA for

the TFO coupled to camptothecin, which targeted the

human GAA gene. Subsequent delivery of the human TFO-

camptothecin construct in healthy human fibroblasts,

however, failed to convincingly indicate successful targeting

of the GAA gene since no lowering of GAA activity could

be detected. Although GAA has a relatively long half-life,

these observations prevented us from testing the constructs

in patient material.

Correcting the genetic defect in Pompe disease at an early

stage in development could actually provide a cure for

Pompe disease, while correcting the gene in secreting cells

at later stage would contribute to a decrease in the current

ERT costs. Alternative to gene correction might be to upregu-

late the expression of GAA. Especially in patients with an

adult onset phenotype who still have residual GAA enzyme

activity this might be an alternative approach to explore. In

this respect, Raben et al. [44] showed a dramatic increase in

the levels of correctly spliced GAA mRNA after removal of

approximately 90% of intron 1 (2.6 kb) sequence, indicating

that the intron may contain a powerful transcriptional
repressor. DNA targeting platforms, when optimized for

delivery and specificity, thus provide two new avenues to

be explored for Pompe’s disease: correction of the genetic

mutation or, for patients with residual activity, upregulation

of GAA gene expression.
3. Second generation: protein-based gene-
targeting platforms (ZFPs, TALEs)

As the chemical gene-targeting approaches also face difficul-

ties, in fusing protein effector domains, these platforms are

not developing rapidly and the majority of in vivo data

have been obtained for the agents alone. However, to fully

exploit the promise of gene targeting, fusion of either a nucle-

ase or a transcriptional modulator would improve flexibility

and effectivity. Protein-based gene-targeting approaches

allow for straightforward fusion of any protein effector

domain and have been explored both for introducing DNA

damage as well as for gene expression modulation. The

first platform in this respect is based on the most abundant

family of mammalian transcription factors: zinc fingers pro-

teins (ZFPs). ZFPs are relatively small proteins that facilitate
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effective delivery and heterochromatin access, and they can

be based on human proteins, which further benefits in vivo
applications as they would likely face low immunogenicity

[45]. By the end of the past century, codes were developed to

engineer ZFPs for almost every gene of interest [46]. As

fusion of an effector is straightforward, this platform received

attention from the biotechnological research community and

several clinical trials have been initiated [47,48].

Although aspecific binding patterns were described for

engineered ZFPs in ChIP-seq studies [49,50], some indi-

cations of single gene specificity have been reported for

engineered zinc-finger proteins [51,52]. Interestingly, one of

the first clinical ZFP trials explored the possibility of targeting

a transcriptional activator to induce VEGF-A gene expression

to promote revascularization [53]. This was tested in patients

with peripheral diabetic neuropathy in two clinical trials.

Phase II studies were halted as there was little difference

between the treated and placebo group [53–55]. Although

several animal models indicate effectivity of ZF-induced

expression modulation [51,56,57], no other clinical ZF trial

has been initiated to modulate gene expression. Many clinical

trials, however, have been designed based on ZFP genome

editing and involve for example HIV treatment. Here, a ZF-

nuclease is designed to inactivate the human gene CCR5:

HIV initially enters cells via this receptor, and infection is pre-

vented if the gene is mutated [58]. Indeed, gene-modified

cells were shown to have a survival advantage during treat-

ment interruption [58]. As an effector, FokI is an often used

nuclease that can induce double strand breaks upon dimeri-

zation: using FokI as a DNA damage inducer thus requires

two DNA-binding domains to target neighbouring sites,

which has the added advantage of increasing specificity of

the approach [59].
Although the ZF community focused on targeting

nucleases to specific genomic sites, the very first epigenetic

editing study exploited this platform for targeting epigenetic

enzymes (histone K9 methyltransferases Suvar and G9A) to a

genomic locus (VEGF-A) [60]. It took ten years before this

proof of concept study was followed up by us [50] and by

others who even demonstrated efficacy in vivo [61]. In paral-

lel, the first ZF-targeted DNA methylation studies also

demonstrated feasibility and effective gene repression

[62,63], although the sustainability of the effect is not clear

[7,9].

Despite the genetic recognition code, ZFPs suffered from

context dependency (the modular fingers do not bind inde-

pendently of one another), which might explain gene

aspecificity [49] and affects ease-of-design. The introduction

of transcription activator-like effectors (TALEs) circumvented

this complication as a TALE moiety is known for each of the

four possible base pairs [64]. Indeed, TALEs seemed to

surpass the use of ZFPs because of their straightforward

one-to-one binding approach. However, TALEs are quite

big and the high number of repeats can cause assembly

problems and aggregation [65], although the latter can be

prevented by the fusion of thioredoxin [66].

In vivo TALE studies are mainly based on viral delivery of

the FokI-fusion constructs and have resulted in some thera-

peutic effects for animal models of e.g. cervical cancer,

hepatitis and X-linked hyper-immunoglobulin M syndrome

[67–69]. Interestingly, transcription activator-like effector

nucleases (TALENs) were used to edit T cells from a HLA-

mismatched healthy human donor ex vivo, to produce

universal T cells. These cells were then used to successfully

treat two infants with leukaemia until they could undergo

allogeneic stem cell transplantation [70]. Also in vivo
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epigenetic editing using TALEs was recently shown in a

mouse prostate cancer model. Here the methylation or

demethylation of metastasis suppressor gene CRMP4 in the

tumour cells respectively induced and repressed metastasis

in mice [71]. Furthermore, in Drosophila, expression of the

eve gene was repressed and activated by TALEs fused to

different effector domains [72]. Interestingly, a clinical study

is planned to start in 2018 on cervical cancer [73], and its

outcome is of great interest to the field.
4. Third generation: RNA-based (CRISPR/Cas)
gene-targeting platforms

In 2012, the CRISPR-Cas system was introduced as a highly

efficient, easy, cheap and flexible method for genome editing,

transcriptional perturbation, epigenetic modulation and

genome imaging. CRISPR-Cas, first discovered in prokar-

yotes as an adaptive immunity system, is based on RNA-

guides that target the CRISPR-associated nuclease (Cas9

protein) to specific DNA sequences. The Cas9 protein,

serving as a cleavage mediator, forms a complex with the

CRISPR RNA and a transactivating RNA, both fused to

form a chimeric single guide RNA (sgRNA) that acts as the

sequence recognizer [74,75]. Within the sgRNA, 20 nucleo-

tides can be re-engineered in order to achieve efficient

binding of any given stretch in eukaryotic genomes, allowing

versatile targeted modifications [76]. CRISPR/Cas is often

presented as a revolution in biomedical research and receives

a lot of attention due to its promise regarding therapeutic

potential [77–79].
Nowadays, many research groups have adapted CRISPR-

Cas technology and demonstrated the potential of this

RNA-guided platform in numerous in vivo studies: On one

hand, CRISPR-induced gene disruptions allow relatively

easy construction of (inducible) animal disease models [70].

On the other hand, successes in preclinical models, including

metabolic disorders and muscular dystrophies, indicate

therapeutic relevance [79]. Also for severe neurodegenerative

conditions such as Huntington’s disease, expression levels

of the mutant allele could be reduced with therapeutically

relevant efficiency [72]. The vast majority of the therapeutic

attempts exploit adeno-associated viruses (AAV) for delivery.

Nevertheless, to circumvent problems associated with this

delivery technique (such as the packaging limit of 4.5 kb for

transgenes), other delivery methods are exploited including

direct delivery of CRISPR components to the liver via

hydrodynamic transfection [80].

The CRISPR-Cas platform is the only DNA targeting plat-

form that has intrinsic nuclease activity. For other

applications such as epigenetic editing, this nuclease activity

can be easily abolished while the resulting dead Cas (dCas)

still functions as gene-targeting platform. Upon direct

fusion of effector domains to dCas, imaging of genetic loci

or gene expression modulation and reprogramming by epige-

netic editing is feasible. The flexibility of the CRISPR-dCas

systems also allows us to interrogate the effects of the
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microchromatin on sustained reprogramming and such

insights are essential to obtain e.g. stable re-expression of epi-

genetically silenced genes [8]. Indirect recruiting of effector

domains, through for example MS2 aptamers as extension

to sgRNA molecules [69], is even further improving the

flexibility of this platform. Within this third generation

RNA-based platform, epigenetic editing has received wide-

spread acceptance and many further improvements are to

be expected, including (but not limited to) guide RNAs as

scaffolds, Cas variants and delivery methods.

In this respect, strategies aiming at controlling gene

expression in a spatial and temporal way by dCas9 constructs

are of great interest. Some groups have recently exploited

optogenetics by using light-induced peptide heterodimeriza-

tion in order to create light-activated dCas9-effectors [81]

that are able to recruit VP64 or p65AD to dCas9 by means

of a cryptochrome-based blue light-sensing system. Other

approaches exploit rapamycin-dependent dimerization of a

split dCas9-VP64 as a chemically inducible system capable

of activating endogenous loci [82]. These optogenetically

and chemically inducible techniques expand dCas9-based

regulation and can achieve accurate spatial and temporal

gene expression programmes in in vivo models [74].

Although there is not yet extensive knowledge of

manipulation of the epigenome in vivo [83,84], encouraging

results using CRISPR-based systems have been obtained.

Morita et al., for example, demonstrated targeted demethyla-

tion in in vivo mouse fetuses [85], while Liu et al. successfully

induced DNA methylation in mice by zygote microinjection.

Also upon lentiviral transduction of dCas9-TET tools in

mouse brain, successful demethylation of an integrated

reporter was obtained [86].

CRISPR-based systems still need to be improved in order

to overcome some hurdles, e.g. off-target effects [87] and effi-

cient and specific delivery. However, reported successes

obtained for preclinical models induced by CRISPR-Cas
and dCas [84] seem to outweigh these downsides that will

hopefully be resolved soon. The ongoing progress in gene tar-

geting allows the scientific community to look forward to a

very bright future in respect of (epi)genome engineering.
5. Conclusion and perspectives
Gene targeting has been attempted for several decades using

for example pAs or TFOs, but widespread application of

these platforms was hampered by technical difficulties.

Protein engineering facilitated the addition of effector

domains, and zinc finger fusion proteins even made it into

clinical trials. The TALE platform further facilitated DNA-

binding codes, but seems outcompeted by the ease and low

costs of sgRNA design, at least for research purposes. With

the introduction of the CRISPR platform, the broad spectrum

of possibilities of gene targeting can now be fully explored by

any molecular biology laboratory. Although the translation to

the clinic greatly depends on the outcome of clinical trials [73]

and optimization of suitable delivery systems, gene-targeting

efforts including epigenetic editing [88] are expected to open

up avenues for various currently incurable diseases [79].
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