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A series of hydroxamic acids linked by different lengths to a chiral imidazo-

ketopiperazine scaffold were synthesized. The compounds with linker lengths

of 6 and 7 carbon atoms were the most potent in histone deacetylase (HDAC)

inhibition, and were specific submicromolar inhibitors of the HDAC1, HDAC6

and HDAC8 isoforms. A docking model for the binding mode predicts

binding of the hydroxamic acid to the active site zinc cation and additional

interactions between the imidazo-ketopiperazine and the enzyme rim. The

compounds were micromolar inhibitors of the MV4-11, THP-1 and U937

cancer cell lines. Increased levels of histone H3 and tubulin acetylation

support a cellular mechanism of action through HDAC inhibition.

This article is part of a discussion meeting issue ‘Frontiers in epigenetic

chemical biology’.
1. Introduction
The zinc-dependent histone deacetylases (HDACs) are a major target for epi-

genetic drug discovery, with five HDAC inhibitors approved for the

treatment of haematological cancers [1,2]. These drugs (figure 1), as well as

others in clinical development, share a common pharmacophore composed of

a zinc-binding group and a cap connected by a linker [3]. The first approved

HDAC inhibitor vorinostat features a hydroxamic acid, and indeed this

bidentate chelating functionality remains the most popular choice for the

zinc-binding group [4]. Although alternatives such as sulfonamides and

carboxylic acids are successful zinc-binding groups against other enzyme tar-

gets, they have seldom yielded HDAC inhibitors with submicromolar levels

of activity [5]. A rare exception is the marine natural product azumamide E

[6,7]. Azumamide E, like the clinically approved drug romidepsin and other

macrocyclic peptide or depsipeptide natural product HDAC inhibitors, contain

relatively weak monodentate zinc-binding groups such as carboxylic acids,

thiols and ketones. Nevertheless, these compounds often bind to the HDAC

enzymes with higher affinity than synthetic hydroxamic acids due to the

additional binding interactions between the macrocyclic cap and the enzyme

rim [8–10]. Furthermore, the size of the macrocycle facilitates discrimination

between the 11 human HDAC isoforms. While vorinostat is a pan-HDAC
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Figure 1. Approved HDAC inhibitors, with the common pharmacophore indicated for vorinostat.

Figure 2. The Bischoff synthesis of an imidazo-ketopiperazine scaffold from a dipeptidyl thioamide.
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inhibitor, the larger peptides exhibit varying degrees of

isoform selectivity that may be important for the avoidance

of side effects in therapeutic applications.

Our previous studies on the total synthesis of the

romidepsin family of HDAC inhibitors and their structure–

activity (SAR) relationships demonstrate that considerable

structural variation of the scaffold is tolerated without com-

promising biological activity [11–17]. In this work, we ask

the question whether high HDAC affinity and selectivity

can be achieved within a smaller non-macrocyclic frame-

work. We had several basic requirements in our search for

a new scaffold: (i) reduction of molecular weight and

H-bond donors and acceptors compared to the macrocycles

to enhance cell permeability; (ii) retention of chirality to

ensure a non-flat topology that can form isoform-selective

interactions with the chiral enzyme rim; (iii) accessibility

from commercial building blocks available with high diver-

sity; and (iv) ability to introduce a hydroxamic acid to

favour active site interactions with the zinc cation.

The above factors led us to consider an imidazo-

ketopiperazine scaffold as a potential solution. This compact

bicyclic heterocycle complies with guidelines for oral bio-

availability while incorporating two chiral centres that

originate from readily available amino acid starting materials.

A further attractive feature was the resemblance to diketopi-

perazines, a privileged scaffold around which we have

constructed compound libraries by solution and solid-phase

synthesis [18–22]. The imidazo-ketopiperazine was first

reported by Bischoff and coworkers, as part of their study

on an imidazole cis-amide bond peptidomimetic [23]. The

dipeptides 1 (figure 2) containing N-glycinyl thioamide substi-

tuents underwent dehydrative cyclization to the imidazole 2

under conditions similar to those developed by Hopkins [24].

In one example with L-Ala-L-Ala (R1 ¼ R2 ¼Me), 2 was further
cyclized to the imidazo-ketopiperazine 3. We envisioned that

an adaptation of this route by elongation of the thioalkyl

group to incorporate a zinc-binding group would provide a

template for HDAC inhibition with the imidazo-ketopiperazine

core serving as the cap.
2. Methods
Detailed experimental procedures for compound synthesis

and characterization data, protocols for biochemical HDAC

enzyme assays and cell-based assays, and molecular docking

are provided in the electronic supplementary material.
3. Results and discussion
Our first compounds featured the L-Phe-L-Ala version of 2. In

a telescoped one-pot sequence of three reactions (scheme 1),

L-Ala methyl ester 4 was alkylated to give glycinyl amide 5

which was condensed with Cbz-L-Phe using propanephos-

phonic acid anhydride (T3P) as coupling agent to provide

dipeptide 6. In the same pot, the solvent was evaporated

off and the residue redissolved in 1,2-dimethoxyethane fol-

lowed by treatment with Lawesson’s reagent to effect

selective thionation. The product thioamide 7 was isolated

in 89% overall yield over the three operations. The dehydra-

tive cyclization of thioamide 7 with trimethylsilyl triflate

afforded thiol 8, which was conveniently stored as the

disulfide 9 obtained by refluxing in toluene.

When desired, the thiol was regenerated from disulfide 9

by reduction and we then elaborated the compound to the

imidazo-ketopiperazine by two sequences that differ in the

order of the steps (scheme 2). In the first route, thiol 9 was

alkylated with two v-halo-esters, leading to the thioethers



Scheme 1. Synthesis of the imidazolyl thiol 8 and the corresponding disulfide 9.

Scheme 2. Synthesis of hydroxamic acids 12a – e from disulfide 9.
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Figure 3. HDAC1 and HDAC6 inhibitory profile for the four diastereomers 12d, 15, 16 and 17.

Table 1. Influence of linker length on inhibition of selected HDAC isoforms,
data obtained from n ¼ 1 experiments.

compound,
linker length n

HDAC1
IC50 (mM)

HDAC6
IC50 (mM)

HDAC8
IC50 (mM)

12a, n 5 3 24 4.6 3.4

12b, n 5 4 3.6 0.9

12c, n 5 5 4.5 2.0

12d, n 5 6 0.9 0.1 0.1

12e, n 5 7 0.8 0.3 2.8
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10a and 10b, varying in the length of the linker. Removal of

the N-terminal Cbz protecting group gave the protonated

amines, which were liberated to the free base by neutraliz-

ation with a polystyrene-supported formate ion exchange

resin. The free amine spontaneously cyclized to the imi-

dazo-ketopiperazine and the sidechain ester was then

hydrolyzed to afford the carboxylic acids 11a and 11b.

A number of methods were investigated for the conversion

of the carboxylic acid to the corresponding hydroxamic

acid. The most reliable proved to be coupling with the pro-

tected tert-butyldimethylsilyl ether of hydroxylamine.

Afterwards, the silyl ether was conveniently removed by stir-

ring the crude reaction mixture with silica, thus avoiding the

need for a separate deprotection step. By this method, we

obtained hydroxamic acids 12a and 12b with linker lengths

n ¼ 3 and n ¼ 4.

While the above route was also applicable to compounds

with longer linker lengths, an alternative provided higher

overall yields. In this sequence, the disulfide 9 was first

cyclized to the imidazo-ketopiperazine 13. The disulfide

was reduced and directly alkylated with v-halo-hydroxamic

acids to give 12c and 12e with linker lenghts n ¼ 5 and n ¼
7. For the hydroxamic acid 12d with a linker length n ¼ 6,

alkylation with an ester afforded the intermediate 14, which
was converted to the hydroxamic acid by cyanide catalyzed

nucleophilic displacement with hydroxylamine.

With the hydroxamic acids 12a–e in hand, we were ready

to evaluate whether the imidazo-ketopiperazine cap was

compatible with HDAC inhibition. The initial profiling

involved biochemical assays against two HDAC isoforms,

the class I nuclear isoform HDAC1 and the class II cyto-

plasmic isoform HDAC6. We were pleased to find that all

five compounds have micromolar or submicromolar IC50

values against these two isoforms (table 1). As expected

from the SAR of other HDAC inhibitors, the activity is pro-

foundly influenced by the linker and the optimum was

reached with the longer six and seven carbon linkers present

in 12d and 12e. These were additionally tested, together

with 12a, against HDAC8 and 12d in particular exhibi-

ted submicromolar activity. Gratifyingly, the preliminary

data suggested that selective inhibition of HDAC isoforms

can be achieved with our chiral imidazo-ketopiperazine

heterocyclic cap.

Since the imidazo-ketopiperazine scaffold contains two

chiral centres, we were interested in the influence of stereo-

chemistry on target affinity. Through a reaction sequence

analogous to scheme 2, we carried out a stereochemical

scan and prepared the three diastereomers 15–17 of hydrox-

amic acid 12d. While all four compounds show similar levels

of activity and isoform selectivity between HDAC1 and

HDAC6 (figure 3), it is possible that replacement of the Phe

and Ala sidechains by other residues may result in significant

differences in bioactivity between diastereomers.

In order to have a more detailed picture of the isoform

selectivity, we submitted hydroxamic acid 12d for testing

against all 11 human HDACs by the French CRO Cerep. At

a test concentration of 10 mM, 12d had a remarkable degree

of isoform selectivity and significantly inhibited only three

isoforms, viz. HDAC1, HDAC6 and HDAC8 (table 2).

Between these three isoforms, the determination of IC50

values revealed 12d to be most potent at HDAC6 inhibition,

with a 13-fold degree of selectivity compared to HDAC8, the

next highest inhibited isoform.



(b)(a)

(c) (d )

Figure 4. Molecular docking of compounds (a) 12d and (b) 12e in the HDAC6 active site (PDB ID 5EDU). For comparison, the docking (c) of 12e in the HDAC1
active site (PDB 5ICN) and (d ) of 12d in the HDAC8 active site (PDB ID 2V5X) is shown. Hydrogen bonds are shown as orange coloured dashed lines, coordination
between the hydroxamic acid and the zinc ion (coloured brown) is shown as green coloured dashed lines. Conserved water molecules in the active site are shown
as red spheres.

Table 2. Percentage inhibition of individual HDAC isoforms by 12d, values are the mean of two measurements. IC50 values were determined for HDAC1, HDAC6
and HDAC8. Owing to differences in assay conditions, absolute values are not directly comparable with table 1.

class I isoforms class IIa isoforms class IIb and IV isoforms

HDAC1 57%, IC50 7.3 mM HDAC4 4% HDAC6 99%, IC50 160 nM

HDAC2 32% HDAC5 23% HDAC10 44%

HDAC3 38% HDAC7 9% HDAC11 10%

HDAC8 90%, IC50 2.1 mM HDAC9 1%
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The observed selectivity for the three HDAC isoforms

was modelled by docking the inhibitors into the enzyme

active site. Bidentate chelation of the hydroxamic acid was

observed for HDAC6 as well as HDAC8, as illustrated for

compounds 12d and 12e (figure 4a,b). In addition, a hydro-

gen bond is predicted between the imidazo-ketopiperazine

and the acidic D497 residue for the compounds with linker

lengths of n ¼ 6 and n ¼ 7. Interestingly, the orientation of
binding is ‘flipped’ between 12d and 12e with respect to

the positioning of the phenyl and methyl groups. The avail-

ability of two binding modes may explain the relatively low

differences in activity between the four diastereomers

(figure 3). In the case of 12d, the terminal benzyl group

attached to the imidazo-ketopiperazine is accommodated in

the hydrophobic pocket formed between P501 and L749

(figure 4a). On the other hand, a weaker binding was
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Figure 5. Western blot analysis of (a) acetylated histone H3K9 and (b) acetylated tubulin and their relative loading controls (H3 total and ERK2), after treatment of
U937 cells with HDAC inhibitor 12e. Western blot signals were quantified by densitometry using IMAGE LAB 6.0 (BIORAD) and signal intensities plotted against the
loading controls (b,d).

Table 3. Cell growth inhibition by compounds 12c – e in MV4-11, THP-1
and U937 cell lines.

compound cell line
IC50 (mM,
n 5 3), 72 h

IC50 (mM,
n 5 3) 96 h

12c MV4-11 .25 .25

THP-1 .25 .25

U937 .25 .25

12d MV4-11 4.5+ 0.3 6.8+ 0.4

THP-1 10.4+ 0.3 9.0+ 0.3

U937 0.9+ 0.2 0.5+ 0.7

12e MV4-11 1.7+ 0.2 2.6+ 0.7

THP-1 1.7+ 0.2 1.7+ 0.6

U937 0.1+ 0.02 0.3+ 0.2
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predicted for HDAC1, with monodentate coordination of the

hydroxamic acid (figure 4c), and is consistent with the exper-

imentally observed reduced activity against this isoform. In

the case of HDAC8, 12d is more solvent exposed and sticking

out of the enzyme pocket, with the benzyl side-chain of the

scaffold in interaction with F208 (figure 4d ).

We profiled compounds 12c–e with the longer linkers in

cellular assays for the growth inhibition of cancer cell lines.

While compound 12c with the linker length n ¼ 5 was rela-

tively inactive (table 3), both 12d and 12e with linker

lengths of n ¼ 6 and n ¼ 7 were micromolar inhibitors and

the U937 lymphoma cell line was particularly sensitive to

these compounds. Compound 12e was more active than

12d, and we believe this might be due to an increased lipophi-

licity affecting cellular uptake and efflux rather than intrinsic

target affinity. Western blotting of U937 cell extracts treated

with 12e demonstrated a dose-dependent increase in histone

H3 and tubulin acetylation levels (figure 5), suggesting target
engagement with both class I and class II HDAC isoforms.

Given the activity profile (table 1), we believe the cellular

effects are primarily due to the inhibition of the nuclear

HDAC1 and HDAC8 as well as the cytoplasmic HDAC6.
4. Conclusion
We report the imidazo-ketopiperazine scaffold as a new ‘cap’

for the assembly of potent and isoform-selective HDAC

inhibitors. The scaffold contains two chiral centres and is

readily accessible from amino acid precursors. Evaluation of

the compounds revealed 12d and 12e to be submicromolar

inhibitors of HDAC6, and a docking model is proposed for

the binding interactions between these compounds and

HDAC6, HDAC8 and HDAC1. In the case of 12d, screening

against the full panel of HDACs revealed HDAC6 selectivity

of at least 10-fold over all other isoforms. In cell-based assays,

the compounds were micromolar inhibitors of cancer cell

lines and 12e displayed a dose-dependent increase in histone

and tubulin acetylation levels. Further analogues in this series

are currently under investigation.
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de la Santé et de la Recherche Médicale (INSERM) and the Université
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