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ABSTRACT Bacterial choline degradation in the human gut has been associated
with cancer and heart disease. In addition, recent studies found that a bacterial mi-
crocompartment is involved in choline utilization by Proteus and Desulfovibrio spe-
cies. However, many aspects of this process have not been fully defined. Here, we
investigate choline degradation by the uropathogen Escherichia coli 536. Growth
studies indicated E. coli 536 degrades choline primarily by fermentation. Electron mi-
croscopy indicated that a bacterial microcompartment was used for this process.
Bioinformatic analyses suggested that the choline utilization (cut) gene cluster of E.
coli 536 includes two operons, one containing three genes and a main operon of 13
genes. Regulatory studies indicate that the cutX gene encodes a positive transcrip-
tional regulator required for induction of the main cut operon in response to choline
supplementation. Each of the 16 genes in the cut cluster was individually deleted,
and phenotypes were examined. The cutX, cutY, cutF, cutO, cutC, cutD, cutU, and cutV
genes were required for choline degradation, but the remaining genes of the cut
cluster were not essential under the conditions used. The reasons for these varied
phenotypes are discussed.

IMPORTANCE Here, we investigate choline degradation in E. coli 536. These studies
provide a basis for understanding a new type of bacterial microcompartment and
may provide deeper insight into the link between choline degradation in the human
gut and cancer and heart disease. These are also the first studies of choline degra-
dation in E. coli 536, an organism for which sophisticated genetic analysis methods
are available. In addition, the cut gene cluster of E. coli 536 is located in pathogenic-
ity island II (PAI-II536) and hence might contribute to pathogenesis.
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Hundreds of bacterial species produce complex proteinaceous organelles known as
bacterial microcompartments (MCPs) (1–9). MCPs are among the largest known

multiprotein complexes. They are typically 100 to 150 nm in diameter and are built
from thousands of protein subunits of 10 to 20 different types. The function of MCPs
is to optimize metabolic pathways by sequestering toxic or poorly retained metabolic
intermediates and by increasing enzymatic reaction rates (7–9). Overall, MCPs consist of
metabolic pathways encapsulated within a selectively permeable protein shell. This
architecture allows the selective confinement of toxic pathway intermediates that
would otherwise damage DNA and cytoplasmic components (10–14). It also prevents
the loss of intermediates that would normally diffuse out of the cell resulting in the loss
of valuable carbon (8, 11, 15). In addition, MCPs concentrate enzymes together with
their substrates, increasing reaction rates, with the most notable example being the
carboxysome MCP, which is used to enhance CO2 fixation by RubisCO via a carbon
dioxide-concentrating mechanism (8).

Bacterial MCPs are present in many ecologically diverse and important bacteria and
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have a number of potential biotechnology applications. Bioinformatics analyses indi-
cate that MCPs are produced by about 20% of bacteria distributed across 11 kingdom-
level taxa, and physiological studies have shown that MCPs are involved in 10 or more
metabolic processes ranging from carbon dioxide fixation to the catabolism of 1,2-
propanediol, ethanolamine, choline, glycerol, rhamnose, fucose, and fucoidan (15–22).
In addition, MCPs have been linked to pathogenesis in Salmonella and Listeria spp.
(23–26), as well as to heart disease and cancer in humans due to their metabolic roles
in the gut microbiome (27–30). Moreover, several labs have begun to develop MCPs as
a platform for protein-based containers for use in renewable chemical production, drug
delivery, and the expression of toxic proteins (31–42). However, as of yet, only three
MCP types have been studied in any detail: the 1,2-propanediol utilization (Pdu) MCP,
the ethanolamine utilization (Eut) MCP, and the carboxysome. Hence, a great deal still
remains to be learned about the physiology and ecology of diverse MCPs, as well as
their associations with human health and their potential biotechnology applications.

The genes for MCPs are typically found in large operons that encode both the shell
proteins and the enzymes for the encapsulated metabolic pathway (1–9). The pathway
enzymes vary according to the substrate metabolized which defines the MCP type. The
shells of MCPs are primarily built from bacterial microcompartment (BMC) domain
proteins and a bacterial microcompartment vertex (BMV) protein (43–47). MCP operons
typically encode a single BMV protein that is thought to help impart curvature to the
shell and multiple BMC domain proteins which fulfill various functional roles (44, 47).
Hexameric BMC domain proteins have central pores that mediate the selective trans-
port of small molecules across the MCP shell (43, 48, 49). The trimeric class of BMC
domain proteins includes members proposed to have allosterically gated pores for the
transport of larger molecules, as well as members with FeS clusters thought to mediate
electron transfer across the MCP shell (50–57). Moreover, BMC domains are found fused
to a variety of protein domains of unknown function, and MCP operons show extensive
variation in the number and types of BMC domain proteins they encode. Presumably,
this diversity is needed for the optimal function of varied MCP types operating in
diverse host organisms. However, the specific functions of many BMC domain proteins
are unknown.

Recently, a choline utilization (cut) gene cluster was identified in Desulfovibrio
desulfuricans (58). This cluster included a gene for a glycyl-radical choline TMA-lyase
(CutC), as well as multiple genes for bacterial MCP shell proteins. Physiological and
genetic studies demonstrated that choline TMA lyase and the cut gene cluster were
required for choline utilization by Desulfovibrio alaskensis and Proteus mirabilis (58–61).
Bioinformatic analyses showed that cut gene clusters are widely but unevenly distrib-
uted among bacteria (58, 61). Studies also indicated that the cutC gene is diagnostic for
choline-degrading bacteria and provides a useful marker for metagenomic analyses
(61). In addition, recent electron microscopy of P. mirabilis and fitness studies in D.
alaskensis G20 substantiated that a bacterial MCP was involved in choline degradation
(59, 60). However, many aspects of choline degradation, including its physiological role,
regulation, and mechanisms have not been investigated fully.

In this report, we characterize choline degradation by Escherichia coli 536. E. coli 536
is a uropathogen, and in this organism, the choline gene cluster is found in a
pathogenicity island (PAI-II536) (62).

RESULTS
Choline utilization by E. coli 536. Prior bioinformatic analyses identified a choline

utilization (cut) gene cluster in PAI-II536 (58, 61, 62). This cut cluster encodes a putative
choline TMA lyase (CutC) which is diagnostic for choline utilization, as well as multiple
homologs of MCP shell proteins, suggesting that a bacterial MCP is involved in choline
degradation in E. coli 536. Growth studies were conducted to determine whether E. coli
536 is indeed capable of choline degradation. Choline did not serve as a sole carbon
and energy source under aerobic or anaerobic conditions. However, under anaerobic
conditions, choline simulated the growth of E. coli 536 on minimal medium that also
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contained fumarate or small amounts of yeast extract (0.2%) (Fig. 1). Choline also
stimulated anaerobic growth of E. coli 536 on medium containing glucose and glycerol
(Fig. 1). In further tests, E. coli 536 was unable to use choline as a carbon source for
anaerobic respiration with nitrate, trimethylamine-N-oxide (TMAO), or dimethyl sulfox-
ide (DMSO) as terminal electron acceptors. As a positive control, E. coli 536 was grown
on glycerol in combination with nitrate, TMAO, or DMSO as terminal electron acceptors.
Growth was positive under these conditions. We also tested E. coli 536 for anaerobic
respiration of choline or glycerol with tetrathionate as a terminal electron acceptor but
with negative results. For these studies, Salmonella enterica serovar Typhimurium LT2
was used as a positive control and was found to grow well by anaerobic respiration of
glycerol with tetrathionate as terminal electron acceptor (63).

Choline utilization among the ECOR collection. The E. coli Reference (ECOR)
collection is a set of 72 natural isolates of E. coli intended to represent the genetic
diversity of this species (64). To test the ECOR collection for the ability to use choline,
MacConkey-choline indicator medium was used. On this medium, positive strains are
red due to acid production from choline. Among 72 ECOR strains tested, 5 (6.9%) strains
were positive for choline utilization in this test. They were ECOR 38-41 and 64 (see Fig.
S1 in the supplemental material).

The five choline-positive ECOR strains were tested for the presence of the choline
TMA lyase gene by PCR, as described previously (61). PCR amplification followed by
DNA sequencing indicated that each positive ECOR strain had a cutC TMA lyase gene.
Thus, it is likely that five ECOR strains use the choline TMA lyase pathway of choline
degradation. We also note that MacConkey-choline agar provides a simple test for
bacterial choline degradation that should prove helpful in various studies of choline
metabolism. Even though choline metabolism occurs only in the absence of oxygen,
the MacConkey-choline plates were incubated under aerobic conditions. This works
because as colonies expand, their centers become anaerobic.

E. coli 536 produces bacterial microcompartments during growth on choline.
The presence of MCP structural genes in the cut operon of E. coli 536 suggested that
a bacterial MCP might be involved in choline degradation in this organism. To test this
possibility, E. coli 536 was grown anaerobically on LB medium with and without choline,
and thin sections were prepared and examined by transmission electron microscopy.
Protein complexes similar in size and appearance to bacterial MCPs were observed in
cells grown in the presence of choline but not in its absence (Fig. 2).

Overall structure of the E. coli 536 cut operon. E. coli 536 has a type II choline
utilization gene cluster similar to that of P. mirabilis (59) (Fig. 3). This cluster is
composed of 16 genes all transcribed in the same direction. At the ends of the operon,
flanking the cutW and cutV genes, are intergenic regions (the distance to the nearest
ORF) of 302 and 295 bp, respectively. Each gene in the cut cluster is separated by �53
bp, with the exception of the cutY and cmcA genes, where there is an intergenic region

FIG 1 Effect of choline on anaerobic growth of E. coli 536. Cells were grown on NCE minimal medium supplemented with 1 mM MgSO4, 50 �M
ferric citrate, and the following: choline (1%), fumarate (50 mM), yeast extract (0.2%), glucose (10 mM), and/or glycerol (10 mM). Cultures were
incubated anaerobically in sealed tubes at 37°C with shaking. All growth curves were repeated three or more times with nearly identical results.
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of 519 bp (IGR1). The IGR1 region contains no predicted genes transcribed in the same
direction as the main cut operon and only one small putative gene encoding a protein
of 86 amino acids transcribed in the reverse direction of the main cut operon, based on
GeneMark.hmm analyses (65). We also note that the start site of the cutD gene was
likely misidentified during annotation of the genome available through the PATRIC
website. Analyses with both BLASTP and the GeneMark.hmm software indicate that the
start of the cutD gene is a GTG 159 bp upstream of the proposed ATG start site (65, 66).
Analysis with RegRNA 2.0 (67) predicts two intrinsic terminators: one that starts 147 bp
downstream of the cutY stop codon (TGAGCAAAAGCGCATTTTTT) and a second that
begins 80 bp downstream of the cutV gene (GCGGCTTCCACAACAGGGAGCCGTTTTCTT).
Overall, analyses of the cut gene cluster suggests the existence of two operons: one
consisting of three genes, cutW-cutX-cutY, and a second main operon consisting of 13
genes, cmcA-cmcB-cmcC-cutF-cmcD-cutO-cmcC-cutD-cmcE-cutH-cutT-cutU-cutV.

For this report, we named previously unnamed choline utilization genes. We used
both cut and cmc acronyms. This was done to prevent conflicts with the gene names
previously used for type I choline gene clusters (61). The acronym cmc is for choline
microcompartment. Each cmc gene has homology to MCP shell proteins.

Genes in the cut operon are required for choline degradation by E. coli 536.
Each gene of the cut cluster and IGR1 was deleted individually by linear recombination
of PCR products (68). In each case, the entire gene (except for the ribosome binding
region of the upstream gene [�20 bp]) was deleted (68). The target gene was initially
replaced with a chloramphenicol resistance marker, which was removed with the FLP
recombinase, leaving behind only an FLP recombination target (FRT) site (68). This
approach is designed to produce nonpolar deletions (68). In some cases, we attempted
to replace the target gene with a kanamycin resistance cassette. This worked poorly in
our study due to a large number of false positives.

For each mutant, anaerobic growth in liquid medium (0.2% yeast extract, 50 �M
ferric citrate, and 1% choline) and on MacConkey-choline plates was used to test for the

FIG 2 Electron microscopy images of E. coli 536 grown in the presence of choline. (A and B) E. coli 536
grown anaerobically on yeast extract (A) or yeast extract supplemented with choline (B). (C) S. enterica
grown under conditions where Pdu MCPs form. Arrowheads point to the microcompartments.

FIG 3 The cut gene cluster of E. coli 536. Bioinformatic analyses indicated that the choline utilization (cut)
gene cluster of E. coli 536 is composed of two operons: a three-gene operon consisting of cutW-cutX-cutY
and a main choline operon consisting of cmcA-cmcB-cmcC-cutF-cmcD-cutO-cmcC-cutD-cmcE-cutH-cutT-
cutU-cutV. General gene functions are indicated by color. Underlined gene names indicate gene deletions
that did not impair growth stimulation by choline (Table 1). The genes (proposed function) shown are
cutW (transcriptional regulator), cutX (transcriptional regulator), cutY (regulation), cmcA, cmcB, cmcC,
cmcD, and cmcE (MCP shell proteins), cutF (aldehyde dehydrogenase), cutO (alcohol dehydrogenase),
cutC (choline TMA lyase), cutD (choline TMA lyase-activating enzyme), cutH (phosphotransacylase), cutT
(unknown), cutU (efflux pump), and cutV (efflux pump).
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ability to utilize choline. The results of these tests are summarized in Table 1. Growth
curves and MacConkey tests are shown in Fig. S2 and S3. Deletions of cutX, cutY, IGR1,
cutF, cutO, cutC, cutD, cutU, and cutV eliminated choline utilization in anaerobic liquid
cultures. All of these deletions also prevented the production of a red color on
MacConkey-choline indicator plates, except cutO::frt and IGR1::frt, which reduced but
did not eliminate color formation. Individual deletions of seven choline utilization
genes (cutW, cutT, cmcA, cmcB, cmcC, cmcD, and cmcE) did not noticeably impair choline
degradation in liquid medium or on MacConkey-choline indicator plates. The reasons
for these various phenotypes are addressed in the Discussion.

The cut operon of E. coli 536 is induced by choline supplementation. To
examine the regulation of the choline operon of E. coli 536, we used the cutF gene as
a reporter for induction of the main cut operon (Fig. 3). The cutF gene encodes a close
homolog of aldehyde dehydrogenases (ALD) whose production can be measured by a
relatively easy enzyme assay (69). To test for induction of the cutF gene by choline,
wild-type E. coli 536 was grown anaerobically without or with 1% choline, and ALD
assays were performed (Table 2). Extracts from cells grown anaerobically without or
with choline had activities of 100 � 19 and 810 � 121 nm · min�1 · mg�1, respectively.
In contrast, controls showed that the ALD activities in a ΔcutF mutant were 70 � 7 and
100 � 20 nm · min�1 · mg�1 without and with choline, respectively. Together, these

TABLE 1 Phenotypes of cut and cmc mutants

Genotypea

Function of closest
homolog of deleted gene

MacConkey-
choline plateb

Choline
utilizationc

Protein product
(accession no.)

Wild type � �
ΔcutW::frt Transcriptional regulator � � WP_000926369.1
ΔcutX::frt Transcriptional regulator � � WP_001270145.1
ΔcutY::frt Unknown � � WP_001217008.1
ΔIGR1::frt Intergenic region (519 bp) �/� �
ΔcmcA::frt BMC protein � � WP_000502008.1
ΔcmcB::frt BMC protein � � WP_000502010.1
ΔcmcC::frt BMC protein � � WP_001206281.1
ΔcutF::frt Aldehyde dehydrogenase � � WP_000570989.1
ΔcmcD::frt BMV protein � � WP_000599365.1
ΔcutO::frt Alcohol dehydrogenase �/� � WP_001288714.1
ΔcutC::frt Choline TMA lyase � � WP_000035052.1
ΔcutD::frt Choline TMA lyase-activating

enzyme
� � WP_001275637.1

ΔcmcE::frt BMC protein � � WP_001086628.1
ΔcutH::frt Phosphotransacetylase � � WP_000564322.1
ΔcutT::frt Unknown � � WP_000139438.1
ΔcutU::frt Efflux pump � � WP_000095890.1
ΔcutV::frt Efflux pump � � WP_000481835.1
aThe wild-type strain was E. coli 536.
bMacConkey-choline is MacConkey agar base supplemented with 0.8% choline chloride (pH 7.0).
cCholine utilization was measured as growth stimulation by choline in liquid medium containing 0.2% yeast
extract, 50 �M Fe citrate, and 1% choline chloride (Fig. S2).

TABLE 2 Effect of selected mutations on induction of the main cut operon using the CutF
aldehyde dehydrogenase as a reporter

Strain

Aldehyde dehydrogenase (CutF) activity (nm · min�1 · mg�1)a

Anaerobic Aerobic

None Choline None Choline

Wild type 100 � 19 810 � 121 10 � 10 50 � 21
ΔcutF mutant 70 � 7 100 � 20 10 � 10 10 � 5
ΔcutW mutant 70 � 3 730 � 118 10 � 6 20 � 5
ΔcutX mutant 70 � 19 100 � 10 10 � 1 20 � 15
ΔcutY mutant 60 � 7 60 � 2 4 � 3 6 � 4
aEach strain was grown anaerobically or aerobically on LB, 1 mM MgSO4, and 50 �M ferric citrate without or
with choline. Cell extracts were prepared, and ALD activity was measured as described in Materials and
Methods.
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results indicated that choline induced expression of the cutF gene and that CutF activity
would be a useful reporter for induction of the main cut operon.

CutX is a positive regulator of the main cut operon. We also looked at expression
of the CutF ALD in strains carrying a ΔcutW, ΔcutX, or cutY mutation (Table 2). The CutX
protein has sequence similarity to transcriptional regulators. A cutX deletion mutant
was grown anaerobically on medium without or with choline. Cells extracts were
prepared, and the ALD activities were measured to be 70 � 19 and 100 � 10 nm ·
min�1 · mg�1, respectively. Hence, in contrast to the wild-type strain, choline did not
significantly induce expression of the CutF ALD in a cutX deletion strain (Table 2). These
results (in conjunction with the finding the CutX has a predicted DNA-binding domain)
indicate that cutX encodes a transcriptional activator that induces the main cut operon
in response to choline supplementation.

We also looked at the effects of a cutW deletion on expression of the cut operon.
Like CutX, the CutW protein has sequence similarity to transcriptional regulatory
proteins. However, in contrast to the results obtained with the cutX deletion, a cutW
deletion did not significantly affect induction of the cut operon by choline supplemen-
tation. Extracts prepared from ΔcutW cells grown without and with choline produced
70 � 3 and 730 � 118 nm · min�1 · mg�1 of ALD activity compared to the wild type,
which produced 100 � 19 and 810 � 121 nm · min�1 · mg�1 of ALD activity,
respectively.

CutY is also needed for induction of the main cut operon. Bioinformatic analyses
indicate that cutW, cutX, and cutY are in the same operon (Fig. 3). Unlike CutW and CutX,
the CutY protein lacks sequence similarity to known transcription factors. Hence, it was
somewhat unexpected that a cutY deletion prevented induction of the cut operon by
choline under anaerobic conditions (Table 2). Cell extracts prepared from ΔcutY cells
grown without or with choline produced 60 � 7 and 60 � 2 nm · min�1 · mg�1 of ALD
activity compared to the wild type, which produced 100 � 19 and 810 � 121 nm ·
min�1 · mg�1 of ALD activity. Presumably, cutY has a role in the regulation of the cut
operon, and some possibilities are considered in Discussion.

The cut operon is not induced under aerobic conditions. The effects of oxygen
on induction of the cut operon were investigated (Table 2). Strains carrying ΔcutW,
ΔcutX, cutY, and ΔcutF mutations as well as the wild type were grown aerobically
without or with choline, cell extracts were prepared, and CutF ALD activities were
measured. The activities, without and with choline, respectively, were as follows: wild
type, 10 � 10 and 50 � 21 nm · min�1 · mg�1; ΔcutF mutant, 10 � 10 and 10 � 5 nm ·
min�1 · mg�1; ΔcutX mutant, 10 � 1 and 20 � 15 nm · min�1 · mg�1; ΔcutW mutant,
10 � 6 and 20 � 5 nm · min�1 · mg�1, and ΔcutY mutant, 4 � 3 and 6 � 4 nm · min�1 ·
mg�1. Controls showed that the CutF ALD was stable in the presence of oxygen (within
experimental error, it retained �95% activity after �24 h in air). Hence, we infer that the
cut operon is not induced substantially in the presence of oxygen and that cutW, cutX,
and cutY deletions do not substantially affect aerobic expression.

Complementation studies. Complementation studies were performed for four key
cut mutants, ΔcutC, ΔcutF, ΔcutX, and ΔcutY. For these studies, we tested whether
expression of the corresponding gene from plasmid pLac22 would restore growth
simulation by choline to wild-type levels. For all four mutants, full complementation
was observed (Fig. 4). These results established that the phenotypes observed for the
cutC (choline TMA lyase), cutF (aldehyde dehydrogenase), cutX (transcriptional regula-
tor), and cutY deletions were a consequence of that mutation and not an unexpected
mutation inadvertently introduced during strain construction. For these tests, growth
curves were performed using a microplate reader inside an anaerobic chamber, as
described in Materials and Methods.

DISCUSSION

A study by Craciun and Balskus identified a glycyl-radical choline TMA lyase and a
cut gene cluster used for bacterial choline degradation (58). Further studies determined
that cut clusters are widely but unevenly distributed across Proteobacteria, Firmicutes,
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Actinobacteria, and Fusobacteria (61). Two types of cut clusters were identified: one that
has �20 genes (type I), and a second that has �16 genes (type II) (61). The two types
include a similar complement of choline degradative enzymes, suggesting a common
pathway of choline catabolism. Both also include genes for the formation of bacterial
MCPs, although these genes vary substantially (58–61). Based on the gene content of
the cut cluster, as well as biochemical studies, a pathway for choline degradation has
been proposed (Fig. 5) (58, 59, 61). Degradation begins with choline entering the lumen
of the Cut MCP, where it is converted to TMA and acetaldehyde by choline TMA lyase
(CutC), supported by its activating enzyme (CutD) (58). TMA is likely excreted and not
used as a nitrogen source (59). Acetaldehyde is converted to acetate and ethanol. This
pathway generates 1 ATP, an electron sink (acetaldehyde), and a source of acetyl
coenzyme A (acetyl-CoA). Based on analogy with the 1,2-propanediol, ethanolamine,
and carboxysome MCPs, the likely function of the choline MCP is to increase pathway
flux and to sequester acetaldehyde to prevent toxicity and carbon loss (11, 12, 15).

In this study, we investigated choline degradation in E. coli 536. This organism has
a type II cut gene cluster. Studies showed that choline stimulated the growth of E. coli
536 on glucose, glycerol, fumarate, or small amounts of yeast extract, similar to the
results obtained with P. mirabilis (59). Here, we also tested for anaerobic respiration of
choline with nitrate, DMSO, and TMAO, three compounds E. coli is known to use as
terminal electron acceptors (70); however, the results were negative. The results were

FIG 4 Complementation of key choline mutants used in this study (cutX, cutC, cutF. and cutY mutants).
These growth tests were performed using a microplate reader. The growth medium used for comple-
mentation studies was NCE supplemented with 0.75% yeast extract, 175 mM NaCl, 50 �M ferric citrate,
and 10 mM MgCl2, with or without 1% choline chloride (pH 7.0). Media also contained 50 �M IPTG to
induce gene expression from pLac22.
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also negative for aerobic growth on choline as a sole carbon source and for anaerobic
respiration of choline with tetrathionate as terminal electron acceptor. Tetrathionate
was of interest because it can serve as a terminal electron acceptor for the anaerobic
respiration of ethanolamine and 1,2-propanediol, and both of these processes involve
a bacterial MCP (15). Overall, the growth studies conducted here show that E. coli 536
degrades choline by fermentation and possibly by anaerobic respiration with fumarate
as a terminal electron acceptor, although the latter possibility will need to be substan-
tiated by further studies to demonstrate electron transport phosphorylation.

For this report, the organization of the cut gene cluster of E. coli 536 was examined
(Fig. 3). The cut cluster then begins with two genes that encode proteins with
homology to transcriptional regulators, cutW and cutX, and a third gene (cutY) that
encodes a hypothetical protein. Given that cutW, cutX, and cutY coding regions are
separated by 22 bp or overlap by 1 bp, respectively, we propose that the cutW, cutX,
and cutY genes form an operon (Fig. 3). Downstream of cutY is a 519-bp intergenic
region, followed by the cmcA-cmcB-cmcC-cutF-cmcD-cutO-cmcC-cutD-cmcE-cutH-cutT-
cutU-cutV genes, which likely form the main cut operon, since the largest intergenic
region here is only 52 bp (Fig. 3).

Regulation of the cut cluster was investigated using the cutF gene as a transcrip-
tional reporter for the main cut operon. The results indicated that the main cut operon
was induced by choline supplementation (Table 2). A similar result was obtained for P.
mirabilis by transcriptomics, which showed that each gene in the main cut operon was
induced by choline supplementation (59). Here, we expanded on prior work by looking
at possible regulatory roles for CutW, CutX, and CutY (CutW and CutX both have
homology to transcriptional regulators). The results showed that choline did not induce
the cut operon in a ΔcutX mutant. In contrast, a ΔcutW mutant had no effect on choline
induction under similar conditions. Based on these studies, we hypothesize that CutX
is a positive transcriptional regulator that binds choline (or a downstream metabolite)
and induces transcription of the main cut operon by binding to the intergenic region
between cutY and cmcA (although no binding studies were performed here). We also
found that a cutY deletion prevented induction of the main cut operon. This result was
somewhat unexpected, since CutY lacks recognizable homology to transcriptional
regulators. However, since both CutY and CutX are required for induction of the cut
operon, these proteins might work together to mediate operon induction. The results
also showed that choline does not induce the cut operon under aerobic conditions;
however, the regulatory systems involved were not identified. CutW, CutX, or CutY

FIG 5 Model for the bacterial MCP used for choline degradation by E. coli 536. Choline diffuses through
the protein shell and enters the lumen of the Cut MCP, where it is converted to acetaldehyde and TMA.
The acetaldehyde is further metabolized to ethanol and acetate, generating 1 ATP to support growth.
Based on analogy with other MCPs, its proposed function is to sequester acetaldehyde to prevent toxicity
and/or diffusive loss through the cell envelope. CutCD, choline TMA lyase and its activating enzyme;
CutF, acetaldehyde dehydrogenase; CutO, alcohol dehydrogenase; CutH, phosphotransacetylase; TMA,
trimethylamine.
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might respond to or be inactivated by oxygen. Alternatively, oxygen control might be
mediated by global regulators, such as Arc or Fnr (71, 72).

Each gene in the cut cluster of E. coli 536 was deleted individually by lambda Red
recombineering (68). For each mutant, choline degradation was tested by growth on
liquid medium and color formation on MacConkey-choline indicator plates (Table 1; see
Fig. S2 and S3 in the supplemental material). Deletions of cutX, cutY, IGR1, cutF, cutO,
cutC, cutD, cutU, and cutV eliminated growth stimulation by choline in liquid culture,
indicating that these genes are required for choline degradation. The cutF, cutO, cutC,
and cutD genes all encode metabolic enzymes (or homologs thereof) used to degrade
choline. CutX and CutY are required for induction of the main cut operon, as described
above. IGR1 likely includes cis-acting elements needed for operon induction. CutU and
CutV are homologs of efflux pumps that extrude amines (73). Presumably, CutU and
CutV are needed to pump TMA out of the cell to prevent inhibition, although the
reasons behind TMA inhibition are currently unknown to us. A deletion of the cutH
gene did not significantly reduce choline degradation. CutH has homology to phos-
photransacetylase enzymes. E. coli is known to express the Pta phosphotransacetylase
constitutively (74). This enzyme might be able to replace the CutH enzyme for choline
degradation. However, this finding was somewhat surprising, since MCP-associated Pta
enzymes are required for internal cofactor recycling in the eut and pdu MCPs, and the
deletion of their encoding genes results in reduced growth on MCP substrates (75).

Deletion of each of the five MCP shell genes of the cut operon individually (cmcA,
cmcB, cmcC, cmcD, and cmcE) did not noticeably impair choline degradation under the
conditions used here. Based on analogy with other MCPs, the cut MCP is presumed to
sequester acetaldehyde to prevent toxicity or diffusive loss (11, 12). For this study,
choline degradation was measured under anaerobic conditions in sealed tubes, which
would prevent diffusive loss of acetaldehyde. Furthermore, aldehyde toxicity has
primarily been observed as DNA damage (12, 14), which was not measured here. Thus,
it was not particularly surprising to us that the deletion of cut MCP shell genes lacked
a phenotype in the studies performed here. Further work will be needed to verify the
specific physiological function of the cut MCP.

Electron microscopy was used to test whether E. coli 536 forms MCPs during growth
on choline. The results indicated that this organism forms MCPs in the presence of
choline but not in its absence (Fig. 2). The Cut MCPs formed by E. coli 536 were similar
in size and shape to the Pdu MCPs formed by S. enterica during growth on 1,2-
propanediol (Fig. 2). Prior studies showed that P. mirabilis (which also has a type I gene
cut gene cluster) forms MCPs during growth on choline (59). Hence, two studies have
indicated that a bacterial MCP is produced for choline degradation.

To better evaluate the distribution of choline degradation among E. coli strains, we
screened the ECOR collection using MacConkey agar supplemented with choline. The
ECOR collection consists of 72 E. coli strains that are representative of the genetic
variation of the species as a whole (64). Five of 72 ECOR strains were found to degrade
choline, and all five strains also tested positive for choline TMA lyase by PCR. Two of the
choline-positive ECOR strains were isolated from patients with urinary tract infections
(UTIs), and three strains were from feces of healthy individuals. We know of no specific
connection between choline degradation and E. coli 536 pathogenesis, although
choline does induce virulence factors in enterohemorrhagic E coli (76).

MATERIALS AND METHODS
Chemicals and reagents. Antibiotics, NAD�, and coenzyme A were from the Sigma Chemical

Company (St. Louis, MO). Choice Taq Blue master mix was from Denville Scientific (Holliston, MA). KOD
Hot Start master mix was from EMD Millipore (Billerica, MA). Isopropyl-�-D-1-thiogalactopyranoside (IPTG)
was from Diagnostic Chemicals Limited (Charlottetown, Prince Edward Island, Canada). Restriction
enzymes and T4 DNA ligase were from New England BioLabs (Beverly, MA). Bacterial protein extraction
reagent (B-PERII), 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), DNase, choline chlo-
ride, and other reagents were from Fisher Scientific (Pittsburgh, PA).

Bacterial strains and growth conditions. The bacterial strains used in this study are listed in Table
3. Biosafety level 2 (BSL2) precautions were used for all growth studies. The rich media used were
lysogeny broth (LB), also known as Luria-Bertani medium (Becton, Dickinson and Company, Franklin
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Lakes, NJ) (77), and Terrific broth (MP Biomedicals, Solon, OH). MacConkey-choline indicator plates were
prepared using a Difco MacConkey agar base supplemented with 0.8% choline chloride from a 50% stock
solution that was adjusted to pH 7.0. The liquid medium used was no-carbon-E (NCE) medium (78)
supplemented with 1 mM MgSO4, 50 �M ferric citrate, and one or more of the following: 1% choline
chloride (pH 7.0), 0.2% yeast extract, 50 mM disodium fumarate (pH 7.0), 10 mM glucose, and/or 10 mM
glycerol. Anaerobic growth curves were performed using 18 by 150-mm serum tubes sealed with butyl
rubber stoppers. Serum tubes (containing 6 ml of medium) were inoculated to 120 �l of overnight
culture grown aerobically on LB supplemented with 10 mM MgSO4. Tubes were moved inside an
anaerobic chamber (Coy Laboratory Products, Grass Lake, MI) allowed to degas, sealed, and removed.
The sealed tubes were incubated at 37°C with shaking at 275 rpm in an Innova 2400 shaker (New
Brunswick Scientific). Optical density was measured using a Spectronic 20D� spectrophotometer
(Thermo Fisher Scientific). For complementation studies, growth curves were determined using a
Synergy HT microplate reader (BioTek, Winooski, VT) as previously described (79), with the modification
that the microplate reader was placed inside an anaerobic chamber. The growth medium used for
complementation studies was NCE supplemented with 0.75% yeast extract, 175 mM NaCl, 50 �M ferric
citrate, and 10 mM MgCl2, with or without 1% choline chloride (pH 7.0).

Construction of chromosomal mutations. Chromosomal deletions were made using the lambda
Red recombinase, as described previously (68, 79). Chloramphenicol resistance was selected (kanamycin
selection gave many false-positive colonies). Chloramphenicol resistance markers were removed using
the FLP recombinase, as described previously (68). This leaves behind an 82-nucleotide scar (an FRT site).
All mutations were verified by colony PCR amplification across the scar, followed by DNA sequencing.

Electron microscopy. Double-strength LB medium (40 g/liter) supplemented with 10 mM MgSO4

and 50 �M ferric citrate was dispensed into two sterile test tubes (2 ml/tube), and one tube was
supplemented with 1% choline chloride. Both tubes were inoculated with 20 �l of an aerobic LB
overnight culture of E. coli 536 and incubated statically for 8 h in an anaerobic chamber. Inside an
anaerobic chamber, 300 �l of this starter culture was used to inoculate 30 ml of similar medium in 50-ml
sterile tubes. These cultures were incubated in the anaerobic chamber for �16 h at 37°C, statically. While
still working inside the anaerobic chamber, cells were dispensed into 50-ml centrifuge tubes, capped
tightly, and centrifuged at 10,000 � g using a Beckman JA-10 rotor. After centrifugation, the superna-
tants were decanted inside that anaerobic chamber. Cells were removed from the chamber, quickly
resuspended in 2% paraformaldehyde plus 0.3% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2), and
incubated for 30 min at room temperature. After fixation, cells were washed three times with 0.1 M
cacodylate buffer (pH 7.2). Imbedding, sectioning, and electron microscopy were carried out as described
previously (79).

Enzyme assays. Overnight cultures (aerobic) were prepared in 3 ml of LB and 10 mM MgSO4 and
incubated overnight at 37°C with shaking at 275 rpm. This culture (500 �l) was used to inoculate 50 ml
of LB, 1 mM MgSO4, and 50 �M ferric citrate, with and without 1% choline chloride. Cells were incubated
anaerobically at 37°C for �5 h to an optical density at 600 nm (OD600) of �1.0 or aerobically at 37°C for
�2.5 h to an OD600 of �1.0. Cells were harvested by centrifugation at 5,000 � g for 10 min using a JA7.5

TABLE 3 Strains used in this study

Straina Genotype Source

E. coli 536 (BE2278) Wild type Gift from Harry L. T. Mobley
BE2346 ΔcutW::frt This study
BE2309 ΔcutX::frt This study
BE2348 ΔcutY::frt This study
BE2310 ΔIGR1::frt This study
BE2354 ΔcmcA::frt This study
BE2306 ΔcmcB::frt This study
BE2308 ΔcmcC::frt This study
BE2307 ΔcutF::frt This study
BE2352 ΔcmcD::frt This study
BE2305 ΔcutO::frt This study
BE2433 ΔcutC::frt This study
BE2362 ΔcutD::frt This study
BE2350 ΔcmcE::frt This study
BE2358 ΔcutH::frt This study
BE2356 ΔcutT::frt This study
BE2364 ΔcutU::frt This study
BE2360 ΔcutV::frt This study
BE2531 E. coli 536/pLac22 This study
BE2532 ΔcutX::frt/pLac22-cutX This study
BE2533 ΔcutX::frt/pLac22 This study
BE2534 ΔcutC::frt/pLac22-cutC This study
BE2535 ΔcutC::frt/pLac22 This study
BE2556 ΔcutF::frt/pLac22-cutF This study
BE2557 ΔcutF::frt/pLac22 This study
aAll mutants used in this study are derivatives of E. coli 536.
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rotor and a Beckman Avanti J-25 centrifuge. The cells were washed with 10 ml of 50 mM Tris (pH 8.0),
300 mM NaCl, and 5% glycerol. Cells were lysed with 1 ml of 50% B-PERII in 100 mM Tris (pH 8.0), 300
mM KCl, 10 mM MgCl2, 1 mg/ml lysozyme, 0.04 mM AEBSF, and 0.05 mg/ml DNase. The lysate was
centrifuged at 15,000 � g for 10 min at 4°C in a 5417R microcentrifuge (Eppendorf). The supernatant was
collected, and its protein concentration was determined using Bio-Rad protein assay reagent and used
for enzyme assays. Aldehyde dehydrogenase assays were performed by following the increase in
absorbance at 340 nM in assay mixtures containing 1 mm NAD�, 0.5 mM coenzyme A, 1 mM dithio-
threitol, 35 mM potassium phosphate (pH 8.0), 50 mM KCl, and an appropriate amount of enzyme, as
previously described (69). Quantification was based on �340 of 6.22 mM�1 · cm�1.

Molecular biology methods. Agarose gel electrophoresis, plasmid purification, PCR, restriction
digestion, ligation reactions, and electroporation were carried out using standard protocols, as described
previously (16, 80). Taq or Phusion DNA polymerase (New England BioLabs) was used for amplification
of chromosomal DNA and colony PCR. KOD DNA polymerase was used for amplification of plasmid
templates. Plasmid DNA was purified using Qiagen products (Chatsworth, CA), according to the manu-
facturer’s instructions. Following restriction digestion or PCR amplification, DNA was purified using
Promega Wizard PCR preps (Madison, WI) or Qiagen gel extraction kits. For ligation of DNA fragments,
T4 DNA ligase or NEBuilder HiFi DNA assembly master mix was used according to the manufacturer’s
instructions (New England BioLabs).

Complementation studies. Genes used for complementation were cloned into plasmid pLac22,
which allows for tight regulation of cloned genes by IPTG (81). Chromosomal genes were amplified using
Phusion DNA polymerase and cloned between the BglII and HinDIII sites of pLac22. Cloning was
accomplished either by designing PCR primers with BglII and HinDIII sites or �20 bp of homology for
ligation with T4 DNA ligase or by Gibson assembly, respectively. Positive clones were identified by colony
PCR, and the DNA sequences of all clones were verified.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JB
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