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Abstract

The presence of subvisible particles in formulations of therapeutic proteins is a risk factor for 

adverse immune responses. Although the immunogenic potential of particulate contaminants 

likely depends on particle structural characteristics (e.g., composition, size, and shape), exact 

structure-immunogenicity relationships are unknown. Images recorded using flow imaging 

microscopy reflect information about particle morphology, but flow microscopy is typically used 

to determine only particle size distributions, neglecting information on particle morphological 

features that may be immunologically relevant. We recently developed computational techniques 

that utilize the Kullback-Leibler divergence and multidimensional scaling to compare the 

morphological properties of particles in sets of flow microscopy images. In the current work, we 

combined these techniques with expectation maximization cluster analyses, and used them to 

compare flow imaging microscopy datasets that had been collected by the US FDA after severe 

adverse drug reactions (including seven fatalities) were observed in patients that had been 

administered some lots of peginesatide formulations. Flow microscopy images of particle 

populations found in the peginesatide lots associated with severe adverse reactions in patients were 

readily distinguishable from images of particles in lots where severe adverse reactions did not 

occur.
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Introduction

Protein therapeutics offer numerous clinical benefits, and now comprise the fastest-growing 

class of drugs.1 A challenge in the development of protein therapeutics is that they may elicit 

adverse drug reactions (ADRs) which include acute responses such as anaphylaxis during IV 

administration, or long-term adverse reactions such as immune responses wherein patients 
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produce anti-drug antibodies (ADAs)2–4. The majority of current protein therapeutics are 

immunogenic in at least some patients5, and in some cases (e.g., interferon beta6–8) adverse 

immune responses may be observed in up to half of patients treated, reducing efficacy.8 

Adverse immune responses can result in clinical trial failures.9

There are a number of potential causes and risk factors associated with ADRs against protein 

therapeutics.10–17 Among these risk factors is the presence of aggregates within protein 

formulations.11, 18–28 Numerous animal studies29, human clinical studies30–34 and in vitro 
studies35–37 have associated particulate contaminants with infusion reactions, anaphylaxis, 

and activation of the innate and adaptive immune system.38, 39 Aggregation occurs as a 

result of various stresses to which proteins may be exposed, and different stresses such as 

freeze-thawing, exposure to air-water interfaces, pH extremes, elevated temperatures or 

chemical degradation produce different distributions of aggregates that are polydisperse in 

size and morphology.40 In vivo, these aggregate populations may provoke different levels 

and types of immune responses.40,20,36 For example, in one study, protein aggregates 

produced by process-related conditions and low pH were not immunogenic.41 Another study 

showed that larger, insoluble aggregates found in an antibody formulation after UV-light 

exposure were more immunogenic than soluble oligomeric aggregates of the same protein.42 

At the present time, it is unclear which characteristic(s) of protein aggregates dictate their 

immunogenicity, in part because of the difficulties involved analyzing the different 

populations of particles (e.g., particles generated through different mechanisms of 

formation) that may be present in a given sample. Better techniques for characterizing 

aggregates are necessary in order to identify the features of protein aggregates that influence 

their ability to trigger ADRs upon administration—features that could be then monitored to 

assess the risk of ADRs and allow the most dangerous aggregate populations to be identified 

and prioritized for removal.

Protein drug manufacturers frequently use flow-imaging microscopy (FIM) to monitor the 

concentrations of micron-sized subvisible particles (e.g., protein aggregates, silicone oil 

droplets, air bubbles) present in protein formulations. In this technique, a sample is pumped 

through a microfluidic channel where a microscope records digital images of particles of 

size greater than about 2 µm. This technique yields either grayscale or color images 

representative of the 104– 106 individual particles larger than 2 µm typically present in a 

given sample. These image datasets are frequently large, with data file sizes of up to a 

gigabyte per sample. These collections of images potentially offer a wealth of particle 

structural information, but FIM is frequently used to obtain only particle size distributions as 

a histogram for a given sample. While convenient, this practice neglects other potentially 

relevant morphological features that could be extracted from these images. We hypothesize 

that the neglected information about particle morphology contained in the rich data sets 

generated by FIM could be relevant to determining risk of ADRs from particles within a 

protein formulation.

We recently developed a technique43 to analyze collections of FIM datasets in order to 

differentiate between various populations of particles represented in the datasets. In this 

technique, the distributions of particle properties in each sample are compared to the 

distributions of properties in other samples via the symmetrized Kullback-Leibler divergence 
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(KLD). A matrix of pairwise values of this divergence can then be processed via 

multidimensional scaling (MDS) to obtain a low-dimensional embedding of the data that 

captures the relative similarity between one dataset and the others included in the analysis. 

We previously demonstrated43 that this technique can successfully differentiate between 

populations of particles formed in monoclonal antibody solutions that had been subjected to 

different aggregation-inducing stresses (freeze-thawing, shaking and pH changes, and 

elevated temperatures).

A recent study by the US FDA associated elevated levels of nano- and microparticles found 

in a marketed formulation of peginesatide (Omontys®; Affymax, Inc., Cupertino, CA) with 

severe ADRs in patients.44 The drug, an erythropoiesis-stimulating agent consisting of a 

covalently dimerized synthetic peptide linked to polyethylene glycol, received FDA approval 

in 2012 for two formulations: a single-use vial formulation (SUV) and multi-use vial (MUV) 

formulation. The two formulations contain peginesatide at the same concentration, but have 

different excipients.45 Although the SUV formulation was used predominantly during the 

clinical trials, only the MUV formulation was marketed. The marketed MUV formulation 

was linked to 49 cases of anaphylaxis (7 of which were fatal) and a hypersensitivity rate of 

3.5 per 1000 exposed patients—significantly higher than the 0.84 per 1000 exposed patients 

rate that had been noted for the SUV formulation during the clinical trials. After the product 

was recalled voluntarily, the FDA investigated both the SUV and MUV formulations, 

conducting a variety of analyses in search of potential causes of the severe ADRs. Standard 

testing of the SUV and MUV formulations revealed that both formulations conformed to 

product specifications, including the pharmacopeial limitations on the concentrations and 

size distributions for particles described by USP <788>. However, although both 

formulations met current limitations on particle content, it was discovered that the marketed 

MUV formulation had higher and more variable concentrations of subvisible particles than 

did the SUV formulation. Direct causality could not be established, but the analysis 

conducted by the FDA found that elevated subvisible particle content in the MUV 

formulations compared to that in the SUV formulations was associated with the observed 

increased hypersensitivity reactions seen for the marketed MUV formulation of peginesitide.
44

The FDA study44 found that higher particle levels in MUV formulations of Omontys® were 

associated with increased rates of ADRs, but did not examine whether the formulations 

differed in particle characteristics other than concentration. Such differences might reflect 

different mechanisms by which the particles formed in the SUV and MUV formulations, 

which in turn could affect the propensity of the particles to generate ADRs. In the present 

study, we apply our KLD-MDS approach to the flow microscopy image datasets collected 

by the FDA in order to discern whether flow microscopy imaging can be used to 

differentiate between the ADR-associated particles found in MUV formulations of 

Omontys® and the particle populations that did not provoke adverse responses found in 

SUV formulations.
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Materials and Methods

Materials

Intravenous immunoglobulin (“IVIg”, GAMMAGARD LIQUID) was obtained from Baxter 

International (Deerfield, IL). 1× phosphate buffered saline (PBS) containing 144 mg/mL 

potassium phosphate monobasic, 795 mg/mL potassium phosphate dibasic, and 9000 

mg/mL sodium chloride was obtained from Gibco (Waltham, MA). Hellmanex III was 

obtained from Hellma Analytics (Mullheim, Germany). All other salts and materials used in 

buffer preparation were reagent grade or higher.

Flow-Imaging Microscopy (FIM)

Flow-imaging microscopy datasets from the peginesatide investigation were provided by the 

FDA under a Freedom of Information Act (FOIA) request. In their investigation of the 

drug44, the FDA analyzed samples from several SUV and MUV lots using a FlowCam VS1 

system (Fluid Imaging Technologies, Inc., Scarborough, ME). The instrument used an 80-

µm flow cell and a 10× objective. 450 µL of sample were analyzed in each measurement.

FIM datasets that we obtained from the FDA had been collected in three sets of FlowCam 

measurements referred to as “experiments” in the original study. We will use their 

nomenclature and denote these data collections as “Experiment A”, “Experiment B” and 

“Experiment C”. Due to limited sample volume, FIM settings were optimized over the 

course of data collection and thus each experiment used slightly different FIM settings. Both 

SUV and MUV samples were measured in each experiment. Experiment A contains 12 FIM 

datasets taken from 4 MUV lots and 4 datasets taken from a single SUV lot. Experiment B 

contains 11 datasets taken from 4 MUV lots and 8 datasets taken from 3 SUV lots. 

Experiment C contains 12 datasets taken from 4 MUV lots and 12 datasets taken from 3 

SUV lots. Representative images taken from Experiment C for both formulations are shown 

in Figure 1.

Image Analysis

Data analysis was performed in Python 3.6 (Python Software Foundation, OR). Images of 

the particles identified via the FlowCam instrument were imported into the software and 

segmented using custom image processing code to identify the particle-containing regions of 

the image.

This analysis results in a “particle mask” or the portion of the raw image identified as a 

particle. The particle mask was then used to calculate several morphological properties for 

each particle. The area based diameter of a particle was calculated by calculating the area of 

the particle mask in pixels and calculating the diameter of a circle with the same area. The 

aspect ratio of a particle was calculated by fitting the shape of the particle mask to an ellipse 

using principle components analysis (PCA) and dividing the length of the minor axis by the 

length of the major axis. The circularity of the particle was calculated by calculating the 

perimeter of the particle mask and dividing by the perimeter of a circle with the same area as 

the particle. The average particle intensity (i.e. grayscale color) was calculated by averaging 

the intensity of the pixels over the area of the particle. Histograms of the various particle 
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properties were constructed in order to visualize the distribution of properties within the 

datasets. The properties included in this analysis vary in scale. Aspect ratio, circularity, and 

average intensity values may vary from 0 to 1, but particle diameters can take on a much 

wider range of values. To avoid bias resulting from these differences in scale, each property 

was normalized by subtracting the mean value and dividing by the standard deviation before 

further analysis, effectively giving each observed property equal weighting in our analysis.

Kullback-Leibler Divergence (KLD)

The Kullback-Leibler Divergence is an information theory metric that can be used to 

estimate the similarity between two probability distribution functions (PDFs). A low value 

of this divergence indicates little difference in the distributions of particle properties and 

increasingly higher values indicate more strongly dissimilar distributions.

The KLD between two PDFs P(d⃑) and Q(d⃑) over a vector of particle properties d⃑ can be 

calculated by:

K(P‖Q) = P(d )ln P(d )
Q(d )

dd (1)

where K(P‖Q) is the KLD between distributions P(d⃑) and Q(d⃑) and d⃑ is a vector containing 

normalized values of the four particle properties included in this analysis: diameter, aspect 

ratio, circularity, and average intensity. In this analysis P(d⃑) is an estimate of the distribution 

of particle properties in a FIM measurement containing np = 2000 particles with properties 

d⃑k where k = 1 …np indexes particles. P(d⃑) is estimated from d⃑k using a kernel density 

approximation with a hard sphere kernel of radius 0.6. Q(d⃑) is defined similarly for 2000 

particles taken from a separate FIM dataset. As previously described43, since P(d⃑) describes 

the frequency of specific values of d⃑k appearing in np particles, we can approximate K(P‖Q) 

as:

K(P‖Q) = 1
np

∑
k = 1

np
ln

P(d k)
Q(d k)

(2)

It is important to note that the KLD is not symmetric about the two distributions; K(Q‖P) 

will yield a different value than K(P‖Q) unless P = Q due to the P weighting on the integral 

in eq. (1). This asymmetry can pose issues when trying to interpret the KLD as a measure of 

distribution similarity. We therefore use a symmetrized form of the KLD:

K(P, Q) = 1
2(K(P‖Q) + K(Q‖P)) (3)

where K(P, Q) is the symmetrized KLD. Future mentions of the KLD will refer to this 

symmetrized form.
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We wish to use eq. (2–3) to compare all possible pairs of FIM measurements in a dataset 

containing N FIM measurements. To compare dataset i to dataset j where i = 1 …N and j = 1 

…N for both index datasets, we first compute Pi and Qj, the distribution of particle 

properties in datasets i and j respectively. The particle properties that we utilize in this 

analysis are the particle diameter, aspect ratio, circularity, and average intensity, but other 

measures derived from the images, such as estimated masses of the individual particles46 

could also be used. We can then use these distributions to construct a matrix A whose 

elements aij are the squared pairwise divergences between datasets i and j. aij can be 

calculated as:

aij = K(Pi, Q j)
2 (4)

Multidimensional Scaling (MDS)

While matrix A contains significant information about the similarity between pairs of 

datasets, it is challenging to extract global similarity information from these pairwise 

divergence values. We can use multidimensional scaling (MDS) to find a low-dimensional 

embedding of the datasets that best captures the pairwise similarity information contained in 

A as was described and performed in previous work43. MDS techniques are designed to 

operate on a matrix of pairwise distances like the distances between cities on a map. 

Although the KLD is a divergence between distributions and not a distance metric, in this 

analysis we will treat the symmetrized KLD as a distance measurement and use MDS 

techniques as a method to visualize the relative similarity between datasets.

In classical multidimensional scaling (CMDS), we seek values of hypothetical points x⃑i 

where i = 1 …N again indexes datasets whose values are set so that the distance between xi⃑ 

and x⃑j (where j = 1 …N again indexes datasets) is similar in value to the corresponding entry 

in matrix A aij. To perform this analysis, we first apply double centering to A using the 

centering matrix J whose elements jkl are defined as:

jkl = δkl − 1
N (5)

where k = 1 …N and l = 1 …N are now indices in the centering matrix and δkl is the 

Kronecker delta. This matrix can be used to double center matrix A or to subtract the mean 

of each row and each column from the matrix:

B = − 1
2JAJ (6)

where B is the double centered matrix. The minimization to find points x⃑i can now be 

written in terms of entries in the double centered matrix bij as:
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min
x

∑
i = 1

N
∑
j = 1

N
bij − x i − x j

2 2
(7)

The values x⃑i that minimize equation (N) can be found by performing eigendecomposition 

analysis on matrix B. Matrix B can be represented in terms of a matrix of N eigenvalues and 

N corresponding eigenvectors:

B = QΛQ−1 (8)

where Λ is a diagonal matrix of eigenvalues and Q is a matrix of the corresponding 

eigenvectors. To find values two dimensional coordinates that satisfy the minimization in eq. 

(7), we simply select the two eigenvectors with the largest corresponding eigenvalues. x⃑i can 

then be calculated using:

x i = Q2Λ2
1/2 (9)

Where Λ2 is a diagonal matrix of the two highest eigenvalues and Q2 a matrix containing the 

corresponding eigenvectors. This equation yields a two-dimensional representation of the 

pairwise KLD values that can easily be plotted and analyzed.

KLD-MDS Plots

To compare the FIM datasets, the distribution of particle diameter, aspect ratio, circularity, 

and average intensity in each dataset were compared to those of the other datasets via the 

Kullback-Leibler divergence. The pairwise divergences were then analyzed via classical 

multidimensional scaling to obtain a 2D embedding for each dataset. The resulting 2D 

coordinates reflect the underlying similarity between datasets as measured by the KLD: two 

datasets that are similar as indicated by a low value of the KLD will generally appear closer 

together on the figure than two datasets that are more dissimilar.

It is important to note that MDS assigns coordinates to the datasets so that the distance 

between any two points describes the relative value of the corresponding value of the KLD. 

The distances between points on the 2D projection thus are the main quantities that can be 

used to interpret the FIM datasets described by the figure. The axes on which the coordinates 

are oriented are chosen to represent these distances and do not have any easily discernable 

physical meaning in terms of either the underlying particle properties or the values of the 

KLD between datasets. Since only the relative locations of the points in the embedding is 

significant, for ease in visualization we chose to rotate the axes obtained from KLD-MDS so 

that the average coordinate of both SUV and MUV datasets lay on the x-axis and that the 

SUV was on the left of the embedding.

KLD-MDS embeddings were obtained using data from Experiments A, B, and C 

individually. Additionally, we also performed the analysis using data from all three 
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experiments at once. Since the FlowCam settings varied between the three experiments, it is 

possible that the differences in settings could introduce artifacts into the final KLD-MDS 

embedding. To account for these potential differences, data in each experiment was 

normalized to the mean and standard deviation of properties within that experiment before 

normalizing to the overall mean and standard deviation.

Clustering Analysis

KLD-MDS can be used to compare the types of particles present in the two formulations to 

determine whether the formulation influences the morphology of the particles present in a 

dataset. Since only a finite number of particles are present in a given sample, we expect 

some variation in the types of particles present between every pair of FIM measurements in 

a given dataset—even for samples taken from the same formulation. If the formulation 

significantly influences the morphology of the particles in the sample, two FIM 

measurements taken from different formulations will have more dramatic differences in 

particle morphology than two measurements taken from the same formulation. These 

differences in particle morphology will then be apparent as larger KLD values for pairs of 

measurements taken from different formulations than for measurements taken from the same 

formulation. This pattern in KLD values will manifest as clustering in the final embedding: 

FIM measurements on SUV samples will embed closer to other measurements performed on 

SUV samples and further away from MUV measurements. We can therefore identify a 

formulation-dependent shift in subvisible particle properties by assessing the clustering in 

the final KLD-MDS plots. If the samples can be successfully clustered by formulation, then 

the subvisible particles likely exhibit a formulation-dependent shift in particle properties 

indicative of a change in the subvisible particle population.

The clustering in the KLD-MDS plots can be assessed visually to determine if the datasets 

cluster by formulation. Alternatively, various metrics can be used to quantitatively measure 

the resolution of the clustering. One such metric is the silhouette coefficient47, which is a 

measure of how similar a given data point in a cluster is to other points in its cluster relative 

to its similarity to points outside its cluster. The silhouette coefficient for a given point xi in a 

set of two clusters si(xi) is calculated as

si(xi) =
dinside(xi) − doutside(xi)

max dinside(xi), doutside(xi)
(10)

Where dinside(xi) and doutside(xi) are the average Euclidean distance between point xi and 

points inside the cluster xi belongs to and outside the cluster, respectively. The silhouette 

coefficient can take on values from −1 to 1 with higher values indicating increasing relative 

similarity to the other points in the cluster xi is assigned to. Since every point in the KLD-

MDS dataset will have a silhouette coefficient associated with it, we report the average 

silhouette coefficient for SUV and MUV datasets in each of the 3 experiments.

We can also identify if the known clustering in formulation can be recovered using an 

unsupervised clustering technique. To accomplish this, expectation maximization48 (EM) 
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was applied to the unlabeled coordinates from each experiment to estimate two 2D Gaussian 

Distributions to represent the two expected clusters. Starting from an initial guess of the two 

distributions, EM iteratively calculates the probability of each point in the KLD-MDS 

embedding belonging to the two clusters and, using these probabilities as weights, re-

estimating the mean and covariance matrix of the two distributions. This process is repeated 

until two distributions that represent the clustering in the coordinates are obtained. Points in 

the KLD-MDS embedding with p > 0.01 for a given distribution were then assigned to the 

cluster that distribution represents. We anticipate that this process should group datasets by 

the formulation of the sample if the subvisible particles in the two formulations are 

significantly different in morphology.

Effect of Formulation Differences

The two approved Omontys® formulations contain identical concentrations of peginesatide 

as well as sorbitol, but the SUV uses a phosphate buffer and contains micromolar 

concentrations of Tween 20, whereas the MUV uses a methionine buffer and contains phenol 

as a preservative. These differences in formulation might have affected particle formation 

mechanism(s) and consequently the resulting particle morphologies in the two formulations. 

However, it is also possible that these differences might have affected the capability of FIM 

to accurately detect and measure morphological features of particles. For example, 

differences in refractive index (RI) can alter the apparent transparency of particles in FIM49. 

It is therefore possible that different populations of particles detected using KLD-MDS 

analysis could reflect formulation differences, rather than differences in particle 

morphologies.

To test whether the KLD-MDS analysis was detecting only formulation differences between 

SUV and MUV formulations rather than differences in the morphologies of particles within 

the respective formulations, we created a standard population of protein aggregates, and then 

spiked small amounts of these pre-formed aggregates into solutions whose excipient 

concentrations matched those of the SUV and MUV formulations. FIM and KLD-MDS 

analyses were then conducted to determine whether the standard protein aggregate particles 

appeared to be different in the two formulations.

Preparation of suspensions of standard protein particles in MUV and SUV formulations

To generate a standard suspension of protein aggregates, 0.5 mg/mL IVIg in 1×PBS were 

centrifuged at 20,000 g at 4°C for 20 minutes to remove small aggregates. 0.9 mL aliquots 

of the supernatant were placed in 1.5 mL microcentrifuge tubes and exposed to six freeze-

thaw cycles. Each cycle consisted of suspension in liquid nitrogen for 2 minutes followed by 

suspension in a hot water bath at 30 °C for 6 minutes. Two buffers were made which 

matched the excipient profile of the SUV and MUV formulation as described in the 

prescribing information. The SUV formulation contained 47 mg/mL sorbitol, 2.3 mg/mL 

anhydrous sodium phosphate monobasic, 0.12 mg/mL sodium phosphate dibasic, and 0.04 

mg/mL polysorbate 20. The MUV formulation contained 47 mg/mL sorbitol, 5 mg/mL 

phenol, 1.5 mg/mL L-methionine, and 0.6 mg/mL glacial acetic acid. The pH of the SUV 

and MUV formulations were 6.0 and 5.4, respectively. 50 µL aliquots of the standard 

suspension fo protein aggregates were mixed with 950 µL aliquots of either the SUV and 
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MUV formulation buffers to form triplicate 1 mL aliquots of IVIg particles in the SUV and 

MUV formulations.

Analysis of standard protein particles spiked into MUV and SUV solutions

Flow-imaging was performed on three 300 µL aliquots of each sample using a FlowCam® 

VS (Fluid Imaging Technologies, Inc., Scarborough, ME) instrument using a 100-µm flow 

cell and the 10× objective. The flow cell was flushed with 1% Hellmanex III solution 

followed by water before running samples and with water between individual measurements. 

Images obtained from the FlowCam were analyzed using the KLD-MDS algorithm using the 

same particle properties used to analyze the full Omontys® dataset (i.e. size, aspect ratio, 

circularity, and average intensity). Since the FlowCam model used in this analysis collects 

RGB color images as opposed to the grayscale images available in the initial dataset 

collected by the FDA researchers, color images were converted to grayscale images prior to 

analysis. RGB pixel values were converted to grayscale intensities using the luminosity 

conversion:

cgray = 0.2126cred + 0.7152cgreen + 0.0722cblue (10)

where cgray is a grayscale pixel value (i.e. pixel intensity) and cred, cgreen, and cblue are the 

red, green, and blue channel values, respectively, of the corresponding RGB pixel.

Results

Image Analysis

Figure 2 (a, b) shows representative histograms of the particle size distributions obtained 

from the image analysis for randomly chosen SUV and MUV vials, respectively, taken from 

experiment C. The two samples have relatively similar size distributions and would 

otherwise be difficult to differentiate by visual analysis, especially in a quantitative manner.

KLD-MDS Plots

Figure 3 (a, b, c) shows the two-dimensional embeddings obtained from the KLD-MDS 

analysis for experiments A, B, and C, respectively. Grouping of samples by formulation can 

be observed in all three figures. For all three experiments SUV samples appear closer to 

other SUV samples than MUV samples in the KLD-MDS embedding. Although three MUV 

samples overlap with SUV samples in figure 3 (b) and two samples are separated from the 

MUV samples in figure 3 (c), in general MUV samples also generally exhibit clustering 

behavior.

Clustering Analysis

Table 1 shows the average silhouette coefficient for each formulation in each of the three 

experiments as well as the average overall silhouette coefficient for the experiment. 

Experiments A and C have approximately similar values of the silhouette coefficient while 

Experiment B has a significantly lower average silhouette coefficient as was expected from 

Figure 3 (b). Note that, with the exception of MUV vials in experiment B, all formulations 
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have moderate positive average silhouette coefficients, indicating that the datasets are 

generally clustered by formulation.

Figure 3 (a, b, c) also shows the boundary of clusters obtained from EM analysis for 

Experiments A, B, and C, respectively. The boundaries represent the p > 0.01 probability 

region of the two 2D Gaussians representing the two clusters. The clusters obtained from 

EM generally separate the datasets by formulation. As shown in figure 3 (a), 14 of the 16 

datasets in Experiment A are correctly sorted by formulation. Similarly, 16 of the 19 datasets 

are correctly sorted by formulation for Experiment B and 21 of the 24 datasets are correctly 

sorted for Experiment C.

Figure 4 shows the two-dimensional embedding obtained from performing the KLD-MDS 

analysis using data from all three experiments at once. In spite of the differences in 

FlowCam analysis parameters used by the FDA for the three experiments, with proper 

normalization the KLD-MDS analysis still indicates a significant formulation dependency 

on the properties of subvisible particles present in the sample. Although only a single cluster 

appears in the figure, the coordinates are segregated by formulation within this cluster with 

the majority of SUV datasets appearing on the left of the cluster and the majority of MUV 

datasets appearing on the right.

Effect of Omontys formulations on FIM analysis

Figure 5 shows the results of KLD-MDS analysis of suspensions of standard protein 

aggregates in the MUV and SUV formulations. The populations of standard protein 

aggregates in the two formulations were indistinguishable by KLD-MDS analysis, with 

silhouette coefficients of 0.023 and 0.14 for the SUV and MUV formulations, respectively.

Discussion

Automated image processing techniques are continuously growing in prominence in 

performance in tasks ranging from object recognition50 to developing self-driving cars51. 

These image processing techniques have also shown potential in areas of biomedical 

research such as diagnosing lung cancer from CT imaging52 and diagnosing melanoma from 

smartphone images53. In these cases, image analysis techniques could diagnose cancers with 

accuracy meeting or exceeding that of trained clinicians. These image processing techniques 

may greatly enhance the amount of subvisible particle information that can be extracted 

from FIM. Although machine learning techniques have recently been used to analyze these 

images, these approaches have primarily been used to perform simple classification tasks 

such as the differentiation of silicone oil droplets from protein aggregates54–56. It is 

anticipated that more sophisticated image analysis techniques such as this Kullback-Leibler 

divergence-based approach may allow users to perform more complicated characterization 

tasks.

KLD-MDS can be applied to FIM datasets to identify a difference in particle morphology 

between the two formulations of peginesatide. In the 2D embedding obtained from KLD-

MDS, most FIM measurements in the three experiments cluster with other measurements 

taken from the same formulation, e.g., FIM datasets from MUV samples are closest to 
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datasets from other MUV samples, and similarly FIM datasets from SUV samples are 

closest to datasets from other SUV samples. The clustering is most apparent for datasets 

collected in Experiments A and C. Although the measurements taken in Experiment B 

exhibit less well-resolved clusters, the majority of datasets is still reasonably clustered in the 

KLD-MDS embedding. These formulation-dependent differences can also be identified 

when comparing FIM datasets from multiple experiments at once with proper normalization. 

Although the KLD-MDS embedding obtained from performing the analysis on the 

combined FIM data sets from all three experiments A, B and C lacks the more resolved 

clustering observed for the individual experiments, the new datasets still appear to be readily 

sorted by the formulation from which the dataset was obtained.

Clustering analysis by EM analysis was performed using a fixed number of clusters (two), as 

opposed to traditional clustering problems where the number of clusters may be a fitted 

variable. The clustering of these datasets as determined by application of EM algorithms 

agrees well with a simple visual analysis of the KLD-MDS plots, in which it is apparent that 

the data are largely segregated into two groups composed mostly of either SUV- or MUV-

derived samples. Because the goal of this analysis is to see how well an unsupervised 

clustering technique can recover the anticipated formulation-dependent subvisible particle 

differences, fixing the number of clusters at two is sufficient for our purposes.

In the KLD-MDS analysis, the sets of data from the SUV and the MUV lots were relatively 

well-separated, so the value of p used to specify the decision boundary of the clusters 

calculated by EM had relatively little effect on which points were contained within the given 

clusters. However, we anticipate that the choice of p value will be more important for 

eventual applications of these techniques in process monitoring and control. For instance, 

consider a process-monitoring application in which FIM datasets recorded on new lots of a 

product are compared to sets of FIM measurements from older lots that are known to meet 

product specifications. p is the significance level threshold that determines whether or not a 

given lot has particles that match those found in the lots that meet product specifications. In 

this example p should be set high enough to identify samples with particles that dramatically 

vary in subvisible particle populations and potential immunogenicity from the normal 

product, but low enough to avoid unnecessary process downtime due to an incorrectly 

identified process upset. Optimization of the value of p needed to balance these two risks 

was outside the scope of this study.

The clustering of datasets by formulation suggests that populations of subvisible particles in 

the two peginesatide formulations exhibit significantly different morphologies; these 

differences in particle characteristics are larger than any differences between samples of the 

same formulation. These subtle differences in particle morphology are difficult to detect, 

even at a qualitative level, using currently standard FIM analyses like the particle size 

distribution histograms shown in Figure 1. Although histograms such as those shown in 

Figure 1 are visually difficult to differentiate even in a qualitative manner, the KLD-based 

approach is capable of identifying a quantitative difference in subvisible particle populations 

between the two formulations. This variation correlates with the difference in the frequency 

of severe ADRs that was observed in the clinic, suggesting that a change in particle 

morphology could have contributed to the change in immunogenicity.
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The SUV and MUV formulations of peginesatide were slightly different in composition and 

were filled into different containers. These differences in formulation and container-closure 

systems likely contributed to differences in the mechanisms by which the particles were 

created, and in turn resulted in differences in particle morphology that could be detected by 

our KLD-MDS analyses of FIM datasets. An alternative explanation is that apparent 

differences in particle populations detected in SUV and MUV datasets are the result of 

formulation-generated biases in the FIM analyses, rather than actual differences in particle 

morphology. This alternative explanation can be discounted, because an analysis conducted 

on suspensions of standard aggregates in the same formulations yielded no detectable 

differences in particle populations that could be ascribed to formulation effects on FIM 

images.

Although the FDA researchers had previously identified differences in the numbers of 

subvisible particles found in the clinical and marketed Omontys® formulations44, we stress 

that we have identified a separate difference in between their populations of subvisible 

particles. The FDA reported that the MUV formulation generally had higher concentrations 

of subvisible particles than did the SUV formulation. In contrast, our analysis is not 

influenced by the concentration of particles in the sample but is instead focused on 

identifying differences in morphology between populations of particles in the two samples. 

Our analysis therefore identifies particle morphology as a separate factor that could have 

contributed to the ADRs to the marketed Omontys® formulation.

Our findings in conjunction with the earlier findings of the FDA44 indicate that the two 

Omontys® formulations exhibited substantial differences in subvisible particle populations. 

Although both formulations met particle concentration limitations set by USP <788> for 

particles of size larger than 10µm and larger than 25 µm44, subvisible particle populations 

for the two formulations differed both in particle concentration and, as is evident from our 

KLD-MDS analysis, particle morphological properties. Although they are associated with 

the serious ADRs experienced by patients receiving the MUV formulations of Omontys®, 

neither the population distributions of subvisible particles nor their respective morphologies 

can be causally linked to the ADRs. It is apparent in retrospect, however, that had the 

differences in concentrations and morphologies of subvisible particles between the safe, 

clinically-tested SUV formulation and the ADR-provoking MUV formulation been known, a 

red flag should have been raised prior to initiation of marketing.
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Figure 1. 
Sample images taken from a) SUV and b) MUV samples analyzed in experiment C.
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Figure 2. 
Histograms of particle size of a random a) SUV and b) MUV sample taken from experiment 

C. The MUV sample shows the presence of generally larger particles than the SUV sample. 

However, the histograms otherwise indicate generally similar distributions of particle sizes.
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Figure 3. 
KLD-MDS plots of the FIM data collected in (a) experiment A, (b) experiment B, and (c) 

experiment C. Plots were constructed using the distribution of particle diameter, aspect ratio, 

circularity, and average intensity in the FIM datasets. Also shown on these figures are the p 
> 0.01 regions of the 2D Gaussians obtained from expectation maximization as represented 

by the red and blue ovals. As can be seen visually, datasets in experiment B exhibit moderate 

clustering by formulation and datasets in experiments A and C exhibit much more 

substantial clustering by formulation. This clustering is confirmed by EM; most SUV 

datasets (open blue circles) are within the p > 0.01 region of the SUV cluster (blue oval) and 
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most MUV datasets (red-filled circles) are within the p > 0.01 region of the MUV cluster 

(red oval).
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Figure 4. 
KLD-MDS plot showing data for all three experiments. Plots were constructed using the 

distribution of particle diameter, aspect ratio, circularity, and average intensity in the FIM 

datasets. Although the plot lacks resolved clusters for the SUV (open blue circles) and MUV 

samples (red-filled circles), the datasets still exhibit noticeable segregation by formulation 

indicative of a formulation dependency in the subvisible particle populations.
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Figure 5. 
KLD-MDS plot of the IVIg particles suspended in SUV (red-filled circles) and MUV (open 

blue circles) formulation buffers. As in figure 3 plots were constructed using the distribution 

of particle diameter, aspect ratio, circularity, and average intensity in the FIM datasets. 

Visually the clustering present in figures 3–4 is mostly absent when both formulations 

contain identical particles, suggesting that the refractive indices of the two formulations does 

not significantly influence the KLD-MDS analysis.
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Table 1

Silhouette coefficients for each of the three experiments.

Experiment SUV Silhouette
Coefficient

MUV Silhouette
Coefficient

Average
Silhouette
Coefficient

A 0.37 0.53 0.49

B 0.78 −0.04 0.31

C 0.71 0.25 0.48
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