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Abstract

Basal ganglia dysfunction in Parkinson’s disease (PD) is thought to generate deficits in action 

control, but the characterization of these deficits have been qualitative rather than quantitative. 

Patients with PD typically show prolonged response times on tasks that instantiate a conflict 

between goal-directed processing and automatic response tendencies. In the Simon task, for 

example, the irrelevant location of the stimulus automatically activates a corresponding lateralized 

response, generating a potential conflict with goal-directed choices. We applied a new 

computational model of conflict processing to two sets of behavioral data from the Simon task to 

quantify the effects of PD and dopaminergic (DA) medication on action control mechanisms. 

Compared to healthy controls (HC) matched in age gender and education, patients with PD 

showed a deficit in goal-directed processing, and the magnitude of this deficit positively correlated 

with cognitive symptoms. Analyses of the time-course of the location-based automatic activation 

yielded mixed findings. In both datasets, we found that the peak amplitude of the automatic 

activation was similar between PD and HC, demonstrating a similar degree of response capture. 

However, PD patients showed a prolonged automatic activation in only one dataset. This 

discrepancy was resolved by theoretical analyses of conflict resolution in the Simon task. The 

reduction of interference generated by the automatic activation appears to be driven by a mixture 

of passive decay and top-down inhibitory control, the contribution of each component being 

modulated by task demands. Our results suggest that PD selectively impairs the inhibitory control 

component, a deficit likely remediated by DA medication. This work advances our understanding 

of action control deficits in PD, and illustrates the benefit of using computational models to 

quantitatively measure cognitive processes in clinical populations.
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Introduction

Computational models of cognition provide a quantitative account of behavioral data, and 

decompose performance into psychologically meaningful processes. These models force 

researchers to be explicit about underlying assumptions, and are increasingly used in clinical 

research to isolate impaired cognitive processes associated with disorders (Aschenbrenner, 

Balota, Gordon, Ratcliff, & Morris, 2016; Frank, 2005; Frank, Seeberger, & O’Reilly R, 

2004; Ho et al., 2014; Lee, Abramyan, & Shankle, 2015; Ratcliff, Perea, Colangelo, & 

Buchanan, 2004; Shankle et al., 2013; White, Ratcliff, & Vasey, 2015; White, Ratcliff, 

Vasey, & McKoon, 2010a, 2010b). A growing body of evidence suggests that basal ganglia 

dysfunction in Parkinson’s disease (PD) is associated with deficits in action control 

mechanisms, particularly in times of response conflict (e.g., Chan, Armstrong, Pari, 

Riopelle, & Munoz, 2005; Praamstra, Plat, Meyer, & Horstink, 1999; Praamstra & Plat, 

2001; Praamstra, Stegeman, Cools, & Horstink, 1998; Wylie, Ridderinkhof, Bashore, & van 

den Wildenberg, 2010; Wylie, Stout, & Bashore, 2005). Interpretation of data has been 

driven primarily by qualitative theories. The present study uses a new computational model 

of conflict tasks (Ulrich, Schröter, Leuthold, & Birngruber, 2015) to shed light on the nature 

of action control deficits in PD.

The effect of PD on action control mechanisms

Learning complex motor skills such as driving a car or playing the violin is a slow and 

effortful process that engages goal-directed systems. Motor plans become increasingly 

automatic with extensive training (Logan, 1988; Shiffrin & Schneider, 1977; Servant, 

Cassey, Woodman, & Logan, 2017). Although automatic response tendencies are an 

important component of adaptive behavior, they can sometimes conflict with goal-directed 

actions (Kornblum, Hasbroucq, & Osman, 1990). Theories of conflict processing generally 

assume that top-down inhibitory mechanisms are engaged to suppress automatic response 

tendencies and achieve goals (Ridderinkhof, 2002; Van den Wildenberg et al., 2010; but see 

Hommel, 1993, 1994).

Patients with PD typically show prolonged response times (RT) compared to healthy 

controls (HC) on tasks that instantiate a conflict between automatic response tendencies and 

goal-directed actions (e.g., Chan et al., 2005; Praamstra & Plat, 2001; Praamstra et al., 1998; 

van Wouwe et al., 2016; van Wouwe et al., 2014; Wylie et al., 2012; Wylie et al., 2010; 

Wylie et al., 2005; Wylie et al., 2009a, 2009b). This finding has been interpreted as 

reflecting a deficit in inhibitory control, resulting in a greater sensitivity to interference. 

Recent studies, however, suggest that goal-directed processing is also impaired in PD (de 

Wit, Barker, Dickinson, & Cools, 2011; Sharp, Foerde, Daw, & Shohamy, 2016).

Both goal-directed and inhibitory processes are mediated by basal ganglia circuits, and by 

dopaminergic (DA) projections in those circuits (Aron, 2007; Aron & Poldrack, 2006; 

Balleine & O’Doherty, 2010; Frank, 2006; Jahanshahi, Obeso, Rothwell, & Obeso, 2015; 

Yin & Knowlton, 2006). PD severely compromises the brain’s DA system, leading to altered 

processing in the basal ganglia (Bernheimer, Birkmayer, Hornykiewicz, Jellinger, & 

Seitelberger, 1973; Kordower et al., 2013; Redgrave et al., 2010; Robbins & Cools, 2014). 

Understanding the nature of these alterations is critical for developing efficient therapeutics. 
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In the present work, we use a computational model of conflict tasks to decompose cognitive 

processes involved in action control, and quantify the effects of PD and DA medication.

Simon task: measuring response conflict

The Simon task offers one of the most sensitive experimental measures of conflict between 

goal-directed and automatic actions (Hommel, 2011; Kornblum et al., 1990). Participants are 

instructed to issue a left or right hand button press response to an attribute (e.g., the color) of 

a spatially lateralized stimulus. Responses are typically slower and less accurate when the 

location of the stimulus and the response signaled by the imperative attribute do not 

correspond (e.g., a left hand response to a stimulus presented to the right visual half-field) 

than when they do, a phenomenon known as the Simon effect (Simon & Small, 1969). 

Theories of this effect assume that the irrelevant location of the stimulus automatically 

primes a corresponding lateralized response (De Jong, Liang, & Lauber, 1994; Hommel, 

1993; Kornblum et al., 1990; Ridderinkhof, 2002). Plots of accuracy data as a function of RT 

quantiles (i.e., conditional accuracy functions, or CAFs) provide support in favor of this 

hypothesis (Gratton, Coles, Sirevaag, Eriksen, & Donchin, 1988; Ridderinkhof, 2002; 

Servant, Montagnini, & Burle, 2014). For corresponding trials, accuracy is high and 

relatively constant over the distribution of RTs. By contrast, non-corresponding trials are 

associated with an early reduction of accuracy (Figure 2A, upper panel), betraying a fast 

response capture by the location of the stimulus. Electrophysiological recordings have 

provided converging findings. Early electrical activations of the motor cortex and response 

agonist muscles associated with the spatially-driven response hand have been observed in 

non-corresponding trials (Coles, Gratton, Bashore, Eriksen, & Donchin, 1985; C. W. 

Eriksen, Coles, Morris, & O’Hara, 1985; Leuthold, 2011; Servant, White, Montagnini, & 

Burle, 2015, 2016).

Theories explaining the Simon effect differ with respect to the evolution of the location-

based automatic response priming. Distributional analyses of RT have revealed that the 

magnitude of the Simon effect decreases as processing time increases. This dynamic is best 

appreciated with the delta plot technique (De Jong et al., 1994). Delta plots represent the 

difference (y-axis) against the average (x-axis) of equivalent RT quantiles between non-

corresponding and corresponding conditions (Figure 2A, lower panel). Decreasing delta 

plots have consistently been observed for healthy subjects, showing that the Simon effect is 

maximal early in the course of processing and decreases for higher RT quantiles (Pratte, 

Rouder, Morey, & Feng, 2010; Proctor, Miles, & Baroni, 2011; Schwarz & Miller, 2012). 

Ridderinkhof’s (2002) activation-suppression theory asserts that the location-based 

automatic response priming is actively suppressed by a top-down inhibitory process that 

takes time to build (see also Van den Wildenberg et al., 2010). Other theories propose that 

the automatic response priming passively decays over time (e.g., Hommel, 1993, 1994, 

2011). Our model-based analyses offer quantitative estimates of the buildup and reduction of 

automatic response priming, providing insight into these theoretical alternatives.

Comparisons of CAFs and delta plots from PD patients and HC matched in age, gender and 

education in the Simon task have revealed consistent patterns. The early dip of accuracy 

observed on CAFs in the non-corresponding condition does not generally differ between PD 
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and HC, suggesting that the strength of automatic response capture by the location of the 

stimulus is similar (van Wouwe et al., 2016; van Wouwe et al., 2014; Wylie et al., 2010). 

Delta plots, however, show an effect of disease, with a less negative-going delta plot slope 

for PD than HC. This effect has been interpreted in the context of the activation-suppression 

model (Ridderinkhof, 2002). Specifically, the shallower delta plot observed for PD is 

thought to reflect a deficit in top-down inhibitory response control (Wylie et al., 2010). 

Interestingly, delta plots are normalized by DA medication, suggesting that the deficit in 

inhibitory control is linked to basal ganglia dysfunction induced by DA depletion (van 

Wouwe et al., 2016).

It should be emphasized that theories of the Simon effect introduced so far are qualitative. In 

the present work, we sought to provide a quantitative account of behavioral data from PD 

patients and HC using a computational model of conflict tasks (Ulrich et al., 2015). This 

model, introduced below, has proven to account for RT distributions and accuracy data 

observed in the Simon task, and corresponding neurophysiological dynamics (Servant et al., 

2016).

The Diffusion Model of conflict tasks (DMC)

The DMC (Ulrich et al., 2015) is an extension of the diffusion model for decision-making 

(Ratcliff, 1978). The diffusion model has been widely employed in basic and clinical 

research to decompose behavioral performance from two-choice RT tasks into 

psychologically interpretable processes (Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown, 

& McKoon, 2016; White et al., 2010b). The model assumes that task-relevant sensory 

information is continuously accumulated until it reaches a threshold level, and then the 

decision terminates in a choice and the response is executed. Noise in physical stimulations 

and sensory systems makes the process stochastic, potentially leading to an incorrect choice 

(Brunton, Botvinick, & Brody, 2013; Ratcliff, 1978). The diffusion model has four main 

parameters (Figure 1, left). The rate of task-relevant sensory information accumulation is 

called the drift rate (v); it is determined by the quality of the sensory information and the 

efficiency of attentional processes. Decision thresholds (b: correct choice; -b: incorrect 

choice) regulate the speed/accuracy strategy. Lower thresholds produce faster but less 

accurate responding. The starting point (z) of the accumulation process indexes response 

bias. The process is biased toward the response associated with the nearest threshold. The 

decision time is the latency between the onset of the accumulation process and the first 

crossing of a decision threshold. A residual processing latency (Ter), comprising sensory 

encoding and motor execution components, is added to the decision time to produce a RT. 

The model predicts the shape of RT distributions for correct and incorrect responses, which 

can be specified by the probability density function or from computer simulations. These 

predictions can be fit to data to extract underlying parameters (Ratcliff & Tuerlinckx, 2002).

The DMC extends the diffusion model framework by incorporating components of 

automatic processing. Performance is determined by the sum of automatic and goal-directed 

decision activations, an architecture reminiscent of a model of automaticity proposed by 

Logan (Logan, 1980). Contrary to its predecessor, however, the DMC assumes that the 

contribution of automatic processes is short-lived in conflict tasks such as the Simon task 
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(Ellinghaus, Karlbauer, Bausenhart, & Ulrich, 2017; Lu & Proctor, 1995; Simon, Acosta, 

Mewaldt, & Spiedel, 1976). The automatic decision activation Xa(t) is modeled as a pulse-

like gamma function that favors the correct response in corresponding trials and the incorrect 

response in non-corresponding trials (Figure 1, middle). Its expected mean as a function of 

time is described by the following equation:

E Xa t = Ae−t /τ te
a − 1 τ

a − 1

Where a, τ and A are the shape, characteristic time and peak amplitude of the gamma 

function respectively. The peak amplitude A quantifies the strength of the automatic 

activation: the higher the peak amplitude, the stronger the automatic activation. In 

corresponding trials, automatic and goal-directed processes converge to activation of the 

correct choice, thereby facilitating RT and accuracy. In non-corresponding trials, the 

automatic activation favors the incorrect choice, triggering fast errors and slowing down RT 

(Figure 1, right).

The DMC can be used to distinguish passive decay from activation-suppression theories. 

Decay theory interprets the gamma function as the growth and decay of automatic activation. 

Activation-suppression theory interprets the gamma function as the activation and inhibition 

of automatic activation. Decay should depend primarily on time, not strategy, whereas 

inhibition should depend on strategy. We address this issue in the discussion section. For 

now, we assume that the automatic activation is actively suppressed. The onset latency and 

strength of suppression can be derived from the gamma parameters. The onset of 

suppression Sonset corresponds to the peak latency of the automatic activation, Sonset = τ(a 
− 1). Let t90th denote the latency at which 90% of the automatic activation has been emitted. 

Technically speaking, t90th corresponds to the 90th percentile of the gamma percent point 

function. Suppression strength Sstrength can be estimated by computing the difference 

between t90th and Sonset (Figure 1, right). The larger Sstrength, the less efficient the 

suppression.

The aim of the present work was to provide a model-based analysis of action control 

mechanisms in PD. We fit the DMC to Simon task behavioral data from PD and HC 

matched in age, gender and education (van Wouwe et al., 2014; referred to as Dataset 1) to 

quantify the efficiency of goal-directed (parameter v) and inhibitory (gamma-derived 

statistics Sonset and Sstrength) processes. We also measured the strength of the location-based 

automatic activation (parameter A). Dataset 1 was well suited for these purposes because it 

contained sufficient trials per condition and a speed-accuracy manipulation, which further 

constrained model fits. Finally, we fit another Simon task dataset from PD ON versus OFF 

DA medication (van Wouwe et al., 2016; referred to as Dataset 2) to quantify the effect of 

DA medication on goal-directed and inhibitory processes.
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Methods

A brief overview of critical details about participants and experimental procedures for 

Dataset 1 (van Wouwe et al., 2014) and Dataset 2 (van Wouwe et al., 2016) is recounted 

below.

Participants

Participants with PD were diagnosed by a neurologist specialized in movement disorders. 

Ratings on the Hoehn and Yahr scale (Hoehn & Yahr, 1967) and the Unified Parkinson’s 

Disease Rating Scale (UPDRS) indicated mild to moderate disease severity. All participants 

met the following exclusion criteria: (i) schizophrenia, bipolar disorder or other psychiatric 

disease known to affect cognitive functions and (ii) severe mood disorder or medical 

condition known to interfere with cognition (e.g., diabetes, pulmonary disease).

Dataset 1 featured 21 PD patients and 21 HC matched in age, gender, education, and Mini-

Mental Status Exam scores (MMSE; Folstein, Folstein, & McHugh, 1975). MMSE scores 

ranged 27–30, i.e. well beyond the standard cut-off of 24 indicating cognitive impairment 

(Tombaugh & McIntyre, 1992). Nineteen of the 21 PD patients were taking DA medication, 

and were tested during the optimal “ON” phase of their DA medication cycle.

Dataset 2 contained 55 PD patients and 56 HC matched in age, gender, and education. PD 

patients were tested in their optimal ON phase of their DA medication cycle (condition ON) 

versus after a 36- to 48 hr withdrawal from their DA medication (condition OFF). The order 

of visits was counterbalanced across patients. MMSE scores were not available. Instead, PD 

patients completed the Montreal Cognitive Assessment (MoCA) test (Nasreddine et al., 

2005). Ratings indicated very mild to minimal gross cognitive difficulties (all scores ≥ 23).

Procedure

Subjects from Dataset 1 completed 20 blocks of 40 trials from a Simon task featuring a 

speed-accuracy manipulation. A central fixation cross was presented at the center of the 

screen during the whole duration of each block of trials. Stimuli (blue and green circles) 

were presented to the left or right of fixation for 250 ms. A response deadline was set at 

1200 ms. The interstimulus interval was 1250 ms. In each group, half of the subjects gave a 

right hand response to blue stimuli and a left hand response to green stimuli. This mapping 

was reversed for the other half. Speed and accuracy instructions were alternated between 

blocks. At the end of each block, subjects were given a feedback on their performance to 

ensure compliance with instructions.

Subjects from Dataset 2 completed 4 blocks of 60 trials. The task was similar to that used 

for Dataset 1 except that (i) subjects always had to respond as fast and as accurately as 

possible (no speed-accuracy manipulation), (ii) the response deadline was fixed at 1500 ms, 

and (iii) the intertrial interval was 1750–2250 ms (randomly jittered using a rectangular 

distribution).
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DMC fitting procedure

The DMC was fit to behavioral data from each subject individually using a procedure 

developed by Ratcliff and collaborators (Ratcliff & Smith, 2004; Ratcliff & Tuerlinckx, 

2002). The model was simultaneously fit to correct and error RT distributions (.1, .3, .5, .7, .

9 quantiles) and to accuracy data. Because the number of errors Ne was generally low, 

particularly in the corresponding condition, we used an adaptive procedure that only 

considered the median RT of errors if 0 < Ne ≤ 5, three RT quantiles (.3, .5, .9) if 5 < Ne ≤ 

10, and five RT quantiles (.1, .3, .5, .7, .9) if Ne > 10. Because the DMC is mathematically 

intractable (Ulrich et al., 2015), computer simulations were performed using an integration 

constant dt = 1 ms to obtain model predictions. The magnitude of within-trial noise, called 

diffusion coefficient, was fixed at 4 (arbitrary value) to satisfy a mathematical scaling 

property of the model (Ulrich, Schröter, Leuthold, & Birngruber, 2016). Because left and 

right responses were equiprobable, we assumed an unbiased starting point (z = 0, halfway 

between correct and incorrect decision thresholds). Data and model predictions were 

compared through a chi-square statistic. For a standard Simon task with corresponding and 

non-corresponding conditions (Dataset 2), the chi-square statistic has the following form:

χ2 = ∑
i = 1

2
Ni ∑

j = 1

B (pi j − πi j)
2

πi j

Where Ni is the number of observations per condition i. pij and πij are, respectively, the 

observed and predicted proportions of trials in bin j of condition i, which sum to 1 across 

each pair of correct and error distributions. The variable B represents the number of bins 

bounded by RT quantiles across each pair of correct and error distributions. Consequently, 

we have B = 8 if 0 < Ne ≤ 5, B = 10 if 5 < Ne ≤ 10, and B = 12 if Ne > 10. The chi-square 

statistic was minimized with the Simplex algorithm (Nelder & Mead, 1965) to obtain best-

fitting parameters. Because Simplex is sensitive to the initial parameter guess, we used 40 

different starting points drawn from uniform distributions bounded by previous fits of the 

model to data (Servant et al., 2016; Ulrich et al., 2015). Twenty-five thousand trials per 

condition were simulated for each minimization cycle. Next, we submitted the two best 

parameter sets (obtained from different starting points) to additional Simplex runs, and 

simulated 50,000 trials per condition and minimization cycle. The DMC and fitting 

procedure were programmed in python. Codes were run on Vanderbilt’s advanced 

computing center for education and research.

Model selection

We tested different DMC variants and compared their goodness-of-fit performance using 

chi-square tests for nested models (for a similar approach, see Boucher, Palmeri, Logan, & 

Schall, 2007; Logan, Yamaguchi, Schall, & Palmeri, 2015). The test statistic is the 

difference χ2
Model A - χ2

Model B summed over subjects, where Model A is nested in Model 

B. The number of degrees of freedom for the test is the difference in the number of free 

parameters multiplied by the number of subjects.
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The DMC has 6 main parameters: upper (correct) decision threshold (b; incorrect threshold 

is at -b), drift rate for the goal-directed process (v), mean non-decision time (Ter), peak 

amplitude (A; positive in corresponding trials, negative in non-corresponding trials), shape 

(a), and characteristic time (τ) of the gamma automatic activation. Ulrich et al. (2015) 

further incorporated intertrial variability in nondecision time and starting point, two 

assumptions inherited from the standard diffusion model (Ratcliff, 2013; Ratcliff & Rouder, 

1998). We thus evaluated the goodness-of-fit of 3 nested DMC variants: a model without 

intertrial variability, a model with intertrial variability in nondecision time (normally 

distributed with mean Ter and standard deviation σTer), and a model with intertrial 

variability in nondecision time and starting point (uniformly distributed with range σz). To 

account for the speed-accuracy manipulation in Dataset 1, we further compared 

unconstrained models (all parameters free to vary between speed and accuracy conditions) 

against models in which one or more parameters were fixed across conditions. Although 

speed pressure is considered to mainly affect decision thresholds in the diffusion model 

framework (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010; Ratcliff & Smith, 

2004), recent modeling and neurophysiological studies suggest that it might also affect other 

parameters such as drift rate (Cassey, Heathcote, & Brown, 2014; Heitz & Schall, 2012; Rae, 

Heathcote, Donkin, Averell, & Brown, 2014) and nondecision time (Spieser, Servant, 

Hasbroucq, & Burle, 2016; White, Ratcliff, & Starns, 2011). Spieser et al. (2016) found an 

effect of speed pressure on the electromyographic (EMG) activity of response agonist 

muscles in a flanker task (B. A. Eriksen & Eriksen, 1974). Specifically, the motor time 

(latency between the onset of EMG activity and the mechanical response) was significantly 

shorter under speed than accuracy instructions, and accounted for more than 20% of the total 

effect on global RT. In light of these findings, we let the nondecision time parameter (Ter) of 

the DMC model free to vary across speed-accuracy instructions.

Parameter recovery

Computational models are only useful as measurement tools if their parameters can be 

adequately recovered. Stochastic models with a high number of free parameters (such as 

diffusion models) can be associated with parameter tradeoffs and a sloppy spectrum of 

parameter sensitivities (e.g., Gutenkunst et al., 2007). White, Servant, and Logan (2017) 

recently conducted a parameter recovery study on the main parameters of the DMC. The 

quality of the recovery monotonically increased as the number of trials per condition 

increased, and was generally better for basic diffusion model parameters (b, v, Ter) than for 

parameters driving the gamma automatic activation (a, τ, and A). For the range of trials in 

Datasets 1 and 2 (100–200 trials per condition), the corresponding trial range in the 

parameter recovery study yielded correlations between simulated and recovered parameters 

of 0.81-.99 for basic diffusion model parameters and .4-.65 for gamma parameters. Among 

gamma parameters, the peak amplitude A showed the best recovery results (0.59–0.65). In 

addition, gamma-derived statistics showed good recovery (suppression onset Sonset: 0.88–91; 

suppression strength Sstrength: .77-.83), validating their use in the present work1.

1To simplify parameter estimation, Ulrich et al. (2015) fixed the shape parameter (a) of the gamma function at 2. With this constraint, 
the characteristic time parameter τ corresponds to the onset of suppression Sonset = τ(a − 1) = τ. White et al. (2017) conducted an 
additional parameter recovery study on the DMC and fixed a at 2. The recovery for Sonset (.8-.82) was poorer than for the 

Servant et al. Page 8

Neuropsychologia. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Fits to Dataset 1 (van Wouwe et al., 2014)

Figure 2A shows CAFs (upper panel) and delta plots (lower panel) averaged across subjects 

for each group and condition of Dataset 1. Each datapoint is accompanied by a 95% 

confidence interval assuming a student’s t distribution. van Wouwe et al. (2014) constructed 

delta plots from 10 RT quantiles. We instead represented delta plots from the 5 RT quantiles 

(.1, .3, .5, .7, .9) used to fit the model to data. Delta plots constructed from 5 versus 10 RT 

quantiles exhibited very similar trends. Their slope was generally more negative-going for 

HC than PD, and more negative-going for the accuracy than the speed condition. By 

contrast, CAFs appeared relatively similar between HC and PD groups. CAFs were 

constructed by sorting the RT data into 5 bins of equal size. Accuracy in each bin (y-axis) 

was plotted against the corresponding mean RT (x-axis). CAFs showed the typical early dip 

of accuracy in the non-corresponding condition. This dip was more pronounced under speed 

pressure, showing that the proportion of fast errors increased.

We fit five nested DMC variants to data to identify the model that provided the best fit. All 

parameters of Models 1, 2 and 3 were free to vary across speed and accuracy conditions. 

Model 1 contained the main DMC parameters (b, v, Ter, a, τ, and A). Model 2 incorporated 

intertrial variability in nondecision time (σTer). Model 3 incorporated intertrial variability in 

nondecision time and starting point (σz). We found that intertrial variability in nondecision 

time was critical to capture the shape of RT distributions for both HC (Model 1 - Model 2: 

χ2(42) = 1775, p < .001) and PD (Model 1 - Model 2: χ2(42) = 2117, p < .001). The 

goodness-of-fit for Model 3 was significantly better than Model 2 (HC: χ2(42) = 106, p < .

001; PD: χ2(42) = 252, p < .001), presumably because σz captured fast guesses in the speed 

condition. Consistent with this hypothesis, marginal χ2 differences between Model 2 and 

Model 3 were larger in the speed (HC: χ2 = 81; PD: χ2 = 176) than the accuracy condition 

(HC: χ2 = 25; PD: χ2 = 76).

We then compared Model 3 against a nested model in which the drift rate for the goal-

directed process (v) was constrained to be fixed across speed-accuracy instructions (Model 

4). The goodness-of-fit for Model 3 was significantly better than Model 4 (HC: χ2(21) = 

1161, p < .001; PD: χ2(21) = 1656, p < .001). Constraining v to be fixed across speed-

accuracy instructions prevented the DMC from capturing accuracy data. We finally 

considered a nested model in which gamma parameters were fixed across speed-accuracy 

instructions (Model 5). Model 5 failed to capture the shape of RT distributions (HC: χ2(63) 

= 1162, p < .001; PD: χ2(63) = 1808, p < .001).

CAFs and delta plots predicted by Model 3 averaged across subjects are shown in Figure 2A 

(dashed lines). The model captures all trends of the data, and the majority of predictions fall 

into 95% confidence intervals. Observed versus predicted RT quantiles of correct responses 

across individual subjects are displayed in Figure 2B. Datapoints are gathered around the 

ideal x = y line for each group and experimental condition, diagnostic of a good fit.

unconstrained DMC model variant (0.88-.91). Consequently, we treated the shape parameter of the gamma as a free parameter in our 
modeling.
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The best-fitting parameters for Model 3 averaged across subjects are shown in Table 1. We 

conducted mixed-design analyses of variance (ANOVAs) to assess the effects of disease 

(between-subjects) and speed-accuracy (within-subjects) on model parameters. The strength 

of the automatic activation, as quantified by the peak amplitude of the gamma (A), did not 

differ between PD and HC, F(1, 40) = 1.06, p = .31. By contrast, the onset of suppression 

(Sonset) was significantly delayed for PD than HC, F(1, 40) = 15.11, p < .001. Suppression 

strength was also less efficient for PD than HC, as revealed by larger values of Sstrength, F(1, 

40) = 7.56, p = .009. Although the effect of disease on the drift rate of the goal-directed 

process (v) failed to reach significance F(1, 40) = 1.76, p = .19, drift rate values were 

numerically smaller for PD than HC.

Speed pressure significantly lowered decision thresholds F(1, 40) = 40.55, p < .001, 

consistent with previous work on the standard diffusion model (e.g., Ratcliff & Smith, 

2004). We also found significant effects of speed pressure on the drift rate of the goal-

directed process (v; F(1, 40) = 20.9, p < .001) and the peak amplitude of the automatic 

activation (A; F(1, 40) = 5.06, p = .03), suggesting that speed pressure altered the efficiency 

of goal-directed processing and increased the sensitivity to irrelevant stimulus information. 

Non-decision times (Ter) were significantly faster in the speed than the accuracy instructions 

F(1, 40) = 62.39, p < .001, consistent with EMG results of Spieser et al. (2016). The 

magnitude of the effect (30 ms) was close to that observed on the EMG motor time (23 ms). 

No other main effects nor interactions between disease and speed-accuracy instructions 

reached significance (all ps > .1).

To facilitate comparison between Datasets 1 and 2, we computed an additional mixed-design 

ANOVA on model parameters, considering only those 19 PD patients that were tested in 

their optimal ON phase of their DA medication cycle. This analysis revealed similar findings 

with one exception: the effect of disease on the drift rate of the goal-directed process was 

marginally significant, F(1, 38) = 3.50, p = .069. Note that empirical delta plot patterns/

analyses remained similar when considering PD ON patients only (Appendix A).

To summarize, model fits to Dataset 1 showed that the strength of the automatic response 

capture by the irrelevant location attribute of the stimulus was similar between PD and HC. 

However, inhibitory control was delayed and less efficient for PD compared to HC, resulting 

in a longer-lasting interference. The modeling also suggests a deficit in goal-directed 

processing in PD, although this effect failed to reach statistical significance.

Fits to Dataset 2 (van Wouwe et al., 2016)

Figure 2C displays CAFs (upper panel) and delta plots (lower panel) averaged across 

subjects for each group (HC, PD OFF DA medication, PD ON) of Dataset 2. van Wouwe et 

al. (2016) showed that the delta plot slope was less negative-going for PD OFF than HC, and 

did not differ between PD ON and HC. The latter appears in sharp contrast with empirical 

findings from Dataset 1. Remember that 90% of PD patients in Dataset 1 were tested during 

the optimal ON phase of their DA medication cycle, and their delta plot was significantly 

less negative-going compared to HC. This discrepancy between studies will be thoroughly 

discussed in the general discussion.
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We fit Model 1 (main DMC parameters), Model 2 (DMC with intertrial variability in 

nondecision time σTer) and Model 3 (DMC with intertrial variability in nondecision time and 

starting point σz) to behavioral data from each subject. Consistent with previous fits, we 

found that intertrial variability in nondecision time was critical to capture the shape of RT 

distributions for all groups (Model 1 - Model 2; HC: χ2(56) = 1512, p < .001, PD OFF: 

χ2(55) = 1346, p < .001, PD ON: χ2(55) = 1094, p < .001). The goodness-of-fit of Model 3, 

however, was not significantly better than Model 2 (HC: χ2(56) = 65, p = .18, PD OFF: 

χ2(55) = 53, p = .53, PD ON: χ2(55) = 43, p = .89). Thus, intertrial variability in starting 

point was not necessary for good fits. Predicted CAFs and delta plots averaged across 

subjects are displayed in Figure 2C (dashed lines). The model captures all trends of the data, 

and the majority of predictions fall into 95% confidence intervals.

The best-fitting parameters averaged across subjects are shown in Table 2. As a first step, we 

conducted independent t-tests to assess the effect of disease (comparison PD OFF versus 

HC) on model parameters2. The strength of the automatic activation (A) did not differ 

between PD OFF and HC t(109) = 0.12, p = .99, consistent with previous findings. Although 

suppression onset (Sonset) was delayed and suppression strength (Sstrength) reduced for PD 

OFF relative to HC, these modulations failed to reach significance (t(109) = −1.12, p = .27 

and t(109) = −.92, p = .36 respectively). Disease significantly altered the drift rate of the 

goal-directed process (v), t(109) = 2.09, p = .039. No other comparison reached significance 

(all ps > .1).

As a second step, we performed paired t-tests to assess the effect of DA medication on 

model parameters (comparison PD OFF versus ON). Although suppression onset occurred 

earlier for PD ON than PD OFF, this effect failed to reach significance, t(54) = .95, p = .35. 

No other comparison reached significance. For completeness, we computed independent t-
tests between HC and PD ON. Consistent with results reported for PD OFF, this analysis 

revealed a significantly reduced drift rate of the goal-directed process (v) for PD ON 

compared with HC, t(109) = 2.17, p = .033. No other comparison reached significance.

To summarize, modeling results for Dataset 2 showed that PD impairs goal-directed 

processing. Contrary to Dataset 1, we found no effect of disease on inhibitory control 

parameters. In addition, we found no evidence for a modulatory role of DA medication on 

any of the model parameters.

Discussion

The aim of the present work was to provide a model-based analysis of action control 

mechanisms in PD and HC matched in age, gender, and education. Previous studies suggest 

a deficit in the ability to resolve conflict between goal-directed processing and automatic 

response tendencies in PD, but the nature of this deficit remains unclear. We modeled two 

Simon task behavioral datasets (van Wouwe et al., 2014, 2016) with the DMC (Ulrich et al., 

2015) to decompose cognitive processes involved in action control, and quantify the effects 

2Because the sampling distribution of model parameters is unknown, we also conducted permutation tests. t-tests and permutation 
tests yielded virtually similar results. For sake of clarity and brevity, we only report results from t-tests.
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of PD and DA medication. Our results indicate some inconsistencies between the two 

datasets that we sought to explain and reconcile in the following sections3.

A deficit in inhibitory control in PD?

The modeling of Dataset 1 (van Wouwe et al., 2014; Simon task featuring a speed-accuracy 

manipulation) and Dataset 2 (van Wouwe et al., 2016; standard Simon task) showed that the 

strength of the location-based automatic activation, as quantified by the peak amplitude of 

the gamma function A, was similar for PD ON and HC subjects. This finding suggests that 

disease doesn’t affect response capture. Although suppression statistics Sonset and Sstrength 

were significantly larger for PD ON than HC in Dataset 1, these effects were not replicated 

in Dataset 2. This failure reflects inconsistencies in delta plot patterns between the two 

studies. Ulrich et al. (2015) demonstrated that the slope of the delta plot predicted by the 

DMC is largely determined by the onset of suppression (Sonset). Specifically, the slope of the 

delta plot becomes more positive as Sonset increases. Consistent with our modeling, van 

Wouwe et al. (2014) found a significantly more positive-going delta plot for PD ON than HC 

in both accuracy and speed conditions. This modulation, however, was not replicated in their 

subsequent work (van Wouwe et al., 2016): delta plots were not significantly different 

between PD ON and HC. As we discuss below, the discrepancy might be caused by a 

variation in the amount of inhibitory control engaged in the two Simon task variants.

Qualitative theories of the Simon effect diverge as to whether the location-based automatic 

activation decays passively (Hommel, 1993, 1994, 2011) or is actively suppressed 

(Ridderinkhof, 2002). As outlined in the Introduction section, passive decay should depend 

primarily on time, and should be the same regardless of subjects’ speed-accuracy strategy. 

Consequently, decay theory predicts a similar time-course of the automatic activation across 

speed and accuracy instructions, consistent with the modeling of Dataset 1. Neither the main 

effect of speed pressure nor the interaction between disease and speed pressure on 

suppression statistics (Sonset and Sstrength) reached statistical significance. However, a rapid 

look at model parameters in Table 1 shows that suppression onset (Sonset) is delayed and 

suppression strength (Sstrength) is weaker under speed pressure for HC only. Indeed, separate 

ANOVAs for HC and PD showed a marginally significant effect of speed pressure on Sonset 

and Sstrength for HC (F(1, 20) = 4.14, p = .055 and F(1, 20) = 3.04, p = .096 respectively), 

but not for PD (all ps > .1), suggesting that (i) an inhibitory control component also 

contributes to the reduction of the automatic activation and (ii) this component might be 

selectively impaired in PD. The contribution of the two components (passive decay and 

active suppression) to the reduction of the automatic activation might be largely determined 

by context, which might explain why empirical findings currently favor both accounts (e.g., 

Hommel, 1993, 1994; Ridderinkhof, 2002). Arguably, demands on inhibitory control 

processes were generally higher for Dataset 1 than Dataset 2, due to the incorporation of a 

speed-accuracy manipulation. If PD selectively impairs the inhibitory control component, 

we would thus expect an effect of disease on suppression parameters in Dataset 1 only. This 

is exactly what we found. Our modeling results are thus consistent with the view that 

3To facilitate comparison between the 2 datasets, we only consider modeling results from the 19 PD ON patients from Dataset 1 in the 
discussion section.
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inhibitory control mechanisms are impaired in PD (e.g., Chan et al., 2005; Praamstra & Plat, 

2001; Praamstra et al., 1998; van Wouwe et al., 2016; van Wouwe et al., 2014; Wylie et al., 

2012; Wylie et al., 2010). They also suggest that the reduction of interference in the Simon 

task is driven by a mixture of inhibitory control and passive decay, the contribution of each 

component being modulated by context. This hypothesis deserves further investigation. 

Context may refer to the environment or the way the task is performed. A recent study 

showed a decrease of the Stroop effect when subjects were standing than when they were 

sitting, suggesting that body posture modulates cognitive control mechanisms (Rosenbaum, 

Mama, & Algom, 2017). Context also refers to experimental manipulations such as urgency, 

proportion of non-corresponding trials, or relevance of the location attribute of the stimulus. 

For example, Ridderinkhof (2002) intermixed regular color-Simon trials with 25% of trials 

in which subjects had to respond on the basis of the location of the stimulus (context where 

location was the target aspect of the stimulus, condition ‘CLT’) versus 25% of trials in which 

subjects had to respond to the shape of the stimulus (context where location could always be 

ignored, condition ‘CLI’). Demands on inhibitory control processes should be stronger for 

CLI than CLT. Accordingly, the slope of the delta plot was more positive for CLT than CLI. 

This path of research should be pursued in order to better understand the relative 

contributions of decay versus inhibitory control to the reduction of interference in the Simon 

task.

An alternative, although not necessarily exclusive, explanation of the empirical and 

modeling inconsistencies between Datasets 1 and 2 concerns variations in DA-related 

variables between samples of PD patients. DA medication daily dose intensity, as quantified 

by Levodopa Equivalent Daily Dose (LEDD), was higher on average for PD patients from 

Dataset 2 (M = 732; SD = 431) than PD patients from Dataset 1 (M = 547; SD = 244). PD 

might thus impair inhibitory control mechanisms, but this deficit might be improved by DA 

medication. van Wouwe et al. (2016) reported a significantly more positive delta plot for PD 

OFF compared with PD ON and HC, although the amplitude of the modulation was small 

(see Figure 2C, lower panel). Accordingly, our modeling revealed a numerical trend for 

delayed suppression in PD OFF compared to PD ON and HC (Table 2). This numerical 

trend, however, was small and non-significant. Noise in model fits4 might have hurt our 

ability to detect a significant effect of DA medication on suppression parameters, if this 

effect does exist. To get further insight into the relationship between DA medication and 

inhibitory control, we computed the Pearson correlation coefficient between LEDD and 

suppression parameters (Sonset and Sstrength) in each dataset and condition. We found a 

significant correlation between suppression strength (Sstrength) and LEDD in the speed 

condition of Dataset 1, r = −.48, p = .039. The higher the LEDD, the stronger the 

suppression. No other correlation reached statistical significance (all ps > .1). Consequently, 

DA medication likely improves the PD-related deficit in inhibitory control, but this effect 

might be hard to detect in Dataset 2 due to (i) the small contribution of inhibitory control to 

performance and (ii) noise in model fits.

4Dataset 2 featured a relatively small number of trials per condition (see Methods), which necessarily alters the validity of parameter 
estimates (White et al., 2017).
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A recent meta-analysis of studies comparing performance from PD patients and HC on tasks 

that presumably engage inhibitory control suggests that disease duration interacts with DA 

medication to produce modulations of performance (Manza, Amandola, Tatineni, Li, & 

Leung, 2017). Specifically, DA medication seems to improve inhibitory control for PD 

patients with shorter disease duration. However, the average disease duration was close 

between the two samples of PD ON patients from Dataset 1 (M = 6.4 years) and Dataset 2 

(M = 6 years). In addition, we did not find any significant correlation between disease 

duration and suppression parameters (Sonset and Sstrength) in each Dataset (all ps > .1). 

Consequently, disease duration is unlikely to have played a modulatory role in the present 

empirical and modeling findings.

To summarize, our analyses suggest that PD impairs inhibitory control, a deficit likely 

remediated by DA medication. They also suggest that the reduction of interference in the 

Simon task is driven by a mixture of inhibition control and passive decay, the contribution of 

each component being modulated by context.

The effect of PD on goal-directed processing

Beyond parameters related to the location-based automatic activation, our modeling revealed 

a lower rate of task-relevant sensory evidence accumulation (parameter v) in PD than HC, 

demonstrating a deficit in goal-directed processing. The rate of task-relevant sensory 

evidence accumulation in the diffusion model framework is thought to depend on the 

efficiency of sensory encoding and attentional processes (Ratcliff & Smith, 2004; Smith & 

Ratcliff, 2009; White et al., 2011). The model, however, does not allow for decomposition of 

these two processing components.

The effect of disease on goal-directed processing was significant in Dataset 2, but only 

marginally significant in Dataset 1. The comparison between PD ON and OFF in Dataset 2 

suggests that this deficit is not related to DA-related variables: drift rate values were very 

similar between the two groups of patients (PD ON: v = 0.434; PD OFF: v = 0.437). Beyond 

differences in DA-related variables, samples of PD patients from Datasets 1 and 2 differ in 

terms of cognitive symptoms. PD patients from Dataset 1 showed high cognitive 

functioning, as indicated by scores at ceiling on the MMSE (range 27–30). However, the 

sample of PD patients from Dataset 2 allowed from mild to minimal gross cognitive 

difficulties (range 23–30 on the MoCA). Consequently, the deficit in goal-directed 

processing might be mediated by cognitive symptoms. To test this hypothesis, we computed 

the Pearson correlation coefficient between the drift rate of the controlled process (parameter 

v) and MoCA scores for PD patients from Dataset 2. This correlation was high and 

significant for both groups (PD ON: r = .46, p < .001; PD OFF: r = .35, p < .001, see Figure 

3), showing that greater cognitive difficulties are associated with slower goal-directed 

processing. This finding appears consistent with the lack of effect of DA medication on 

parameter v, as MoCA is typically used to assess extra-basal ganglia progression of PD to 

frontal areas (e.g., Nazem et al., 2009; but see discussion below)5.

5For completeness, we computed the correlation between MoCA scores and suppression parameters (Sonset and Sstrength) for each 
group of PD patients from Dataset 2. These correlations were not significant (all ps > .1).
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Our findings add to the growing body of evidence showing a deficit in goal-directed 

processing in PD (de Wit et al., 2011; Sharp et al., 2016). In addition, they suggest that 

cognitive impairment is an important mediator of the goal-directed deficit, which might 

explain discrepant results in the literature (Redgrave et al., 2010; Robbins & Cools, 2014). 

However, grey zones remain. De Wit et al. (2011) did not find an effect of DA medication on 

goal-directed processing, consistent with our findings. By contrast, Sharp et al. (2016) found 

that the deficit in goal-directed processing in PD was completely restored by DA 

medication. The reason for this discrepancy is unclear. Neuroimaging studies have shown 

that the striatal DA deficit in PD is a strong predictor of frontal lobe executive dysfunction 

(Bruck et al., 2001; Jokinen et al., 2009), consistent with positive results of Sharp and 

colleagues. However, DA-independent factors such as the deterioration of cholinergic 

pathways, β-amyloid plaque and Lewy body depositions in PD also contribute to frontal 

dysfunction (e.g., Bohnen et al., 2012; Jellinger, 2006). In addition, the neurobiological 

effects of DA medication remain poorly characterized, and variations in DA medication type 

(e.g., DA agonist monotherapy, levodopa monotherapy) and LEDD between samples might 

contribute to the discrepant results.

To summarize, our model-based analyses suggest that PD impairs inhibitory control, a 

deficit likely remediated by DA medication. They also suggest that the reduction of 

interference in the Simon task is driven by a mixture of inhibition control and passive decay, 

the contribution of each component being modulated by context. Consequently, observed 

variations in delta plot patterns should be interpreted with caution. Finally, our modeling 

highlights a deficit in goal-directed processing in PD, mediated by early cognitive symptoms 

and extra-basal ganglia progression of PD to frontal areas. This work illustrates the benefit 

of using computational models to quantitatively measure cognitive processes in clinical 

populations.
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Highlights

• We used a new computational model of action control to characterize and 

quantify the effects of Parkinson’s disease (PD) and dopaminergic medication 

(DA).

• Relative to healthy controls, PD patients showed a deficit in inhibitory 

control.

• The PD-related deficit in inhibitory control is likely remediated by DA 

medication.

• PD patients also showed a deficit in goal-directed processing, and the 

magnitude of this deficit correlated with cognitive symptoms.
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Figure 1. 
Architecture of the diffusion model of conflict tasks (DMC). The decision process is the sum 

of automatic and goal-directed decision activations. The goal-directed decision activation 

X(t) is similar to the standard drift diffusion model. The automatic decision activation Xa(t) 
has a pulse-like gamma shape. b: correct decision threshold (incorrect threshold is at –b); v: 

drift rate of the goal-directed process; A: peak amplitude of the gamma function; Sonset: 

suppression onset, corresponding to the peak latency of the gamma function [Sonset = τ(a 
− 1)]; t90th: 90th percentile of the gamma percent point function (i.e., the latency at which 

90% of the gamma automatic activation has been emitted); Sstrength: suppression strength, 

defined as t90th - Sonset.
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Figure 2. 
A and C: Observed (datapoints) versus predicted (x’s) conditional accuracy functions 

(CAFs) and delta plots for each group and condition of Dataset 1 (panel A; van Wouwe et 

al., 2014) and Dataset 2 (panel B, van Wouwe et al., 2016) averaged across subjects. Each 

datapoint is accompanied by a 95% confidence interval assuming a student’s t distribution. 

B and D: Observed (x-axis) versus predicted (y-axis) RT quantiles of correct responses 

across individual subjects and conditions from Dataset 1 (Panel B) and Dataset 2 (Panel D). 

comp: compatible stimulus-response; incomp: incompatible stimulus-response.
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Figure 3. 
Correlation between the drift rate of the goal-directed process (parameter v) and MoCA 

scores for PD OFF (left panel) and PD ON (right panel) patients from Dataset 2 (van Wouwe 

et al., 2016). Also shown are lines of best fit (dashed lines).
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Table 1

Best-fitting DMC parameters to Dataset 1 (van Wouwe et al., 2014) averaged across subjects.

HC accuracy HC speed PD accuracy PD speed

DMC parameters

b 65.8 54.5 63.3 54.2

v 0.486 0.418 0.457 0.387

A 25.1 27.2 22.5 25.9

a 2.3 2.5 2.5 2.8

τ (ms) 41.2 52.4 59.1 54.2

Ter (ms) 324 292 312 283

σTer (ms) 42.7 48.5 46 47.2

σz 43.9 48.1 46.8 53

Gamma-derived statistics

Sonset (ms) 47.1 69.2 80.5 86.2

Sstrength (ms) 120 158 179 170

Note. The DMC was simulated with an integration constant dt = 1 ms and a diffusion coefficient fixed at 4. b: upper (correct) decision threshold 
(incorrect threshold is at –b); v: drift rate of the controlled process; Ter: mean nondecision time; σr: intertrial variability in nondecision time; σz: 

intertrial variability in starting point; A, a, τ: peak amplitude, shape, and characteristic time of the gamma automatic activation; Sonset: 
suppression onset, corresponding to the peak latency of the gamma automatic activation [Sonset = τ(a−1)]; Sstrength: suppression strength, 

computed as t90th - Sonset where t90th is the 90th percentile of the gamma percent point function (i.e., the latency at which 90% of the gamma 

automatic activation has been emitted). Parameters Ter, σr, τ, and gamma-derived statistics Sonset and Sstrength are in milliseconds (ms). Other 

parameters are in units of diffusion coefficient (arbitrary).
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Table 2

Best-fitting DMC parameters to Dataset 2 (van Wouwe et al., 2016) averaged across subjects.

HC PD OFF PD ON

DMC parameters

b 66.3 70.2 72.1

v 0.485 0.437 0.434

A 25.8 25.8 24.4

a 2.3 2.5 2.4

τ (ms) 49 52 53.5

Ter (ms) 350 362 365

σTer (ms) 47.6 55 53.7

Gamma-derived statistics

Sonset (ms) 62.5 76.5 65.7

Sstrength (ms) 146 159 158
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