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Summary

The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic 

alterations underlying human cancers. At this historic junction marking the completion of genomic 

characterization of over 11,000 tumors from 33 cancer types, we present our current understanding 

of the molecular processes governing oncogenesis. We illustrate our insights into cancer through 

synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: 1) 
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somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; 2) the 

influence of the tumor genome and epigenome on transcriptome and proteome; and 3) the 

relationship between tumor and the microenvironment, including implications for drugs targeting 

driver events and immunotherapies. These results will anchor future characterization of rare and 

common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will 

guide the deployment of clinical genomic sequencing.

ITI

A synthesized view on oncogenic processes based on PanCancer Atlas analyses highlights the 

complex impact of genome alterations on the signaling and multi-omic profiles of human cancers, 

as well as their influence on tumor microenvironment.

Keywords

Oncogenic process; TCGA; Omics; Cancer; Cancer Genomics

Introduction

In the nearly half century of the “War on Cancer,” prevention and treatment have progressed 

significantly, but many forms of the disease remain incurable. The advent of large-scale 

DNA sequencing ushered in new possibilities. Beginning with coding regions (Sjöblom et 

al., 2006), sequencing has sparked a revolution in cancer research. Genomic studies have 

identified numerous cancer driver genes (Kandoth et al., 2013; Lawrence et al., 2014) and 

germline variants that increase disease susceptibility (Lu et al., 2015). We increasingly 

understand the molecular determinants of oncogenesis, including tumor suppressor 

inactivation and pathway alteration. Significant progress has been made in identifying driver 

mutations (Porta-Pardo et al., 2017), assessing their druggability (Niu et al., 2016), disease 
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subtyping (Waddell et al., 2015), prognosis (Cancer Genome Atlas Research et al., 2015), 

and residual disease detection (Martinez-Lopez et al., 2014).

Gene and protein expression are also key aspects. Studies have reported new fusions (Klijn 

et al., 2015), alternatively spliced transcripts (Oltean and Bates, 2014), expression-based 

stratification (Stricker et al., 2017), and implications of viral infection (Cao et al., 2016). 

Proteomic studies have made progress on sub-typing (Lawrence et al., 2015), biomarker 

identification (Sogawa et al., 2016), and drug sensitivity and resistance (Ji et al., 2017). 

Advancements have also been made in immune response (Bieging et al., 2014), infiltrate-

based subtyping (Akbani et al., 2015), associations of PD-1/PD-L1 with prognosis (Danilova 

et al., 2016), interactions between immune reprogramming and angiogenesis (Tian et al., 

2017), and immune cytolytic activity (Rooney et al., 2015). Each area shows enormous 

promise.

The era of the first large genome sequences was called the “end of the beginning” of 

genomics. It seems fitting to call the conclusion of The Cancer Genome Atlas (TCGA) the 

end of the beginning of cancer genomics. TCGA has systematized large-scale genomics-

based cancer research, with its projects and data on 11,000 tumors from 33 cancer types 

having led to enormous advancements. The TCGA PanCancer Atlas project has a special 

focus on the oncogenic processes governing cancer development and progression, with its 

ten analysis working groups (AWGs) presenting their findings. Together we synthesized 

findings from consensus somatic mutation calling, fusion detection, splicing events, 

aneuploidy, image analysis, and the immune system in oncogenesis (Figure 1). Here, we 

concentrate on three themes: 1) interactions between somatic drivers and germline 

pathogenic variants; 2) links across genomic substrates i.e., methylome, transcriptome, and 

proteome; and 3) tumor microenvironment and implications for targeted and immune 

therapies. We begin each section with an overview from AWG results and follow with 

additional analyses addressing questions not explored in individual AWG papers. The results 

of the PanCancer Atlas project will provide a foundation for subsequent phases of deeper, 

broader, and more sophisticated work that holds great promise for personalized cancer care.

Results

Insights into germline and somatic alterations

Previous TCGA studies often concentrated on focal copy number alterations rather than 

chromosomal-level aneuploidy. The PanCancer Atlas Aneuploidy AWG systematically 

quantified aneuploidy (Reference Aneuploidy), correlated its degree with genomic features, 

such as TP53 status, mutational load, and level of lymphocytic infiltrate, and provided 

experimental evidence confirming some predictions.

Gene fusions, which can drive overexpression or create fusion proteins, are another 

important class of drivers. The Fusion AWG systematically characterized fusions 

(Reference Fusions), finding that they are recurrent and disease defining in some neoplasms 

(e.g. SS18/SSX1 or SSX2 fusion in synovial sarcoma). In others, fusion drivers are present 

in small subsets of tumors (ALK or ROS1 fusions in lung adenocarcinoma). The 
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accompanying mutational events and how they differ among cancers provide functional 

insights (Reference Fusions).

Two other AWGs systematically characterized germline and somatic variants across 33 

cancer types (Table S1, Reference Germline and MC3). They generated and analyzed 1.5 

billion germline (Reference Germline) and ~3.6 million somatic calls (Reference MC3), 

making TCGA PanCancer Atlas the largest resource for investigating joint variant 

contributions to cancer. The germline group highlighted the two-hit hypothesis through loss 

of heterozygosity (LOH) and compound heterozygosity, rare copy number events, and 

additional evidence supporting variant pathogenicity. The somatic dataset anchored a 

comprehensive analysis using 26 bioinformatic tools, identifying 299 driver genes and over 

3,200 oncogenic mutations (Reference Driver). Similarly, the PanCancer Atlas Germline 

group identified >800 pathogenic or likely pathogenic germline variants in 99 predisposition 

genes affecting ~8% of all cases (Reference Germline).

Properties of oncogenic germline and somatic variants—Here, we used the 299 

driver and 99 predisposition genes to study interactions of germline and somatic events in 

9,389 samples (STAR Methods, Table S1). Many predisposition genes play roles in genome 

integrity (Green bars, Figure 2A, Table S2). Alterations in these genes represent a higher 

fraction of germline variants (63%, 490/769) versus somatic drivers (14%, 8850/75825, p-

value=7e-151 Fisher’s Exact Test), highlighting the role of genome integrity in cancer 

predisposition. The remaining somatic alterations are largely from genes involved in cell 

cycle, epigenetic modifiers, metabolism, oncogenic signaling, and transcriptional/

translational regulation. We surveyed the frequency of cases showing disruptions of genome 

integrity in individual cancer types. Of the 8 molecular process categories examined (STAR 

Methods), genome integrity dominates both germline and somatic alterations in OV due to 

BRCA1 or BRCA2 predisposition variants and a high fraction of TP53 mutations. Other 

cancers are further skewed with respect to percent of cases carrying mutations involved in 

genome integrity i.e., 4% of samples in LUSC have germline compared to 89% somatic 

(Figure 2B, Table S3).

DNA damage response (DDR) pathway: Most predisposition genes affecting genome 

integrity (23 of 36, 64%) belong to the Core DDR genes (Reference DDR AWG, Table S2). 

Several show high germline variant counts, including BRCA1, BRCA2, CHEK2, ATM, 
BRIP1, PALB2, and PMS2. When considering germline and somatic mutations jointly, the 

most frequently mutated genes are BRCA1 and BRCA2, together having 854 (571 samples) 

somatic and 153 (152 samples) germline mutations. We grouped samples with germline 

mutations, somatic, or no/low-impact mutations in these two genes by cancer type to 

establish associations between age of onset and somatic mutation load. Patients with 

germline BRCA1/2 mutations develop cancer at younger ages compared to wild type 

samples in OV, LUSC, and BRCA (FDR 9.12e-6, 9.23e-3 and 1.15e-2 respectively, t-test). 

Mean age of diagnosis in patients with germline mutations is 54.4+/−13.0 years (standard 

deviation), compared to 62.3+/−13.4 years when the mutation is somatic across the pan-

cancer cohort (P-value = 2.07e-10, 95% CI = (−10.27, −5.57), Figure 3A, Table S4). As 

expected, germline or somatic variants associate with higher mutation load across cancer 
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types (Figure 3B), being observed in OV samples with germline BRCA1/2 mutations (FDR 

3e-3 t-test) and BLCA, STAD somatic (FDR 5.6e-3, 9.2e-6, t-test).

Germline/somatic associated microsatellite instability (MSI) phenotypes: Many samples 

(250 out of 1464) with non-synonymous somatic mutations in DNA mismatch repair 

(MMR) genes have high MSI status (MSIsensor score > 4, Figure 3C, Table S5) (Niu et al., 

2013). Samples with germline pathogenic variants in MMR genes (18 out of 60) also have 

high MSI status. Notably, 16 of these 18 samples have both predisposition germline variants 

and somatic mutations in MMR genes (Table S2), representing a population with potentially 

higher neoantigen load and response to checkpoint blockade therapy. Indeed, samples with 

MSIsensor scores >4 had higher expression of immune response marker genes (GZMA, 

PRF1, GZMK, and GZMH) in the three cancer types with enough MSI high samples: 

COADREAD, STAD, and UCEC (two-sample Kolmogorov-Smirnov p < 0.01, Figure 3D). 

This highlights the influence of mutations and MMR genes and the MSI phenotype in the 

immune response against tumors. Finally, using Moonlight we found several pathways that 

are differentially expressed depending on whether the mutations affecting BRCA1 and/or 

BRCA2 are somatic or germline (Figure 3E, 3F). For example, BRCA samples with somatic 

mutations in BRCA1/2 downregulate genes involved in antigen processing and leukocyte 

cytotoxicity, whereas BRCA samples with germline BRCA1/2 mutations downregulate 

genes involved in mitochondrial respiratory chain complex and metabolic pathways. The 

impact of BRCA1/2 mutations may depend on both their somatic or germline status and the 

tissue of origin.

Somatic-somatic interactions—Interactions among somatic driver genes, ranging from 

sequential dynamics to interactions of pathway and synthetic lethality, hold potential for 

therapeutic exploitation. We used the MC3 somatic mutation (Reference MC3) dataset and 

the driver gene list (Reference Driver) to identify pairs of drivers that are mutually 

exclusive or tend to co-occur (STAR Methods). We found an extensive network of 

interactions (Cochran Mantel test FDR < 0.1, Figure 4A, Table S6). TP53 is the prime hub, 

co-occurring with IDH1, ATRX, PPP2R1A, RB1, and CDKN2A and mutually exclusive of 

PIK3CA, HRAS, CTNNB1, ARID1A, and FGFR3. As expected, driver genes and mutations 

that act via certain pathways/mechanisms show strong exclusivity, a primary example being 

BRAF and HRAS/NRAS/KRAS, all of which affect the Ras signaling pathway. Other 

examples are pairs of homologous genes, such as IDH1/IDH2 and GNAQ/GNA11, and 

interacting genes, such as PIK3CA and PIK3R1. These patterns held across virtually all 33 

tumor types, indicating discovery of a key oncogenic relationship. We also observed 

exclusivity in specific tissues (Figure 4B), for example BRAF, NRAS, and HRAS in THCA 

and GNAQ and GNA11 in uveal melanoma.

At a larger scale, some cancer types require cooperation between gene networks. For 

example, in UCEC, there are two mutually exclusive networks, the first consisting of TP53 
and PPP2R1A (and occasionally PTEN) and the second CTNNB1, PTEN, and CTCF. This 

is consistent with previous descriptions of UCEC subtypes, with TP53-driven endometrial 

tumors having a copy-number high phenotype and PTEN-driven endometrial tumors being 

copy-number low or hypermutated (either via MSI and/or POLE). Finally, we observed 
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cancer-specific somatic-somatic interactions. For instance, TP53 and KRAS are mutually 

exclusive in COAD, READ, and LUAD (Table S6), but significantly co-occur in PAAD 

(Table S6). These observations highlight the importance of investigating both at the pan-

cancer level and by tissue of origin (Park and Lehner, 2015).

Insights into interactions at -omics levels

The tumor genome and transcriptome interact at multiple levels. For example, 1–2% of 

genome mutations have detectable effects on splicing, with potential to alter the 

transcriptome and biochemical pathways (Wang and Cooper, 2007). Locally, cis-mutations 

can disrupt or activate splicing factor binding sites or splice sites. The Splicing AWG 

analyzed 8,656 TCGA tumors, finding that 1,964 mostly missense and synonymous 

mutations create novel splice junctions (Table S1) (Reference splicing). They also produce 

neo-antigens, often accompanied by an elevated immune response. Mutations in splice-

governing genes result in large-scale abnormal splicing, providing potential biomarkers and 

therapeutic targets (Dvinge et al., 2016) and acting as proto-oncogenes or tumor suppressors 

(Yoshida et al., 2011). The Spliceosome Pathway AWG surveyed 33 tumor types for somatic 

mutations of over 400 splicing factor genes, identifying 119 genes with likely driver 

mutations (Reference Spliceosome Pathways AWG). They confirmed aberrant splicing of 

frequently mutated genes, suggesting that splicing deregulation in cancer is broader than 

previously reported.

Integrating profiles from individual molecular platforms can provide insights into the 

molecular state of tumors and identify samples with shared regulation (sample clusters) 

across multiple assays. A recent analysis (Reference Cell of origin) performed clustering of 

individual platforms and subsequent clustering of cluster assignments (COCA) (Hoadley et 

al., 2014) on clusters derived from aneuploidy levels (10 clusters; 10,522 samples), mRNA 

(25 clusters with at least 40 samples; 10,165 samples), miRNA (15 clusters; 10,170 

samples), DNA methylation (25; 10,814), and RPPA (10; 7,858). They also performed 

integrative molecular subtyping with the iCluster method (Shen et al., 2009) in a joint 

analysis of aneuploidy, DNA methylation, mRNA, and miRNA levels across 9,759 tumor 

samples, identifying 28 iClusters. Consistent with previous multiplatform analyses (Hoadley 

et al., 2014), samples cluster primarily by tissue of origin.

Cis- and trans- effects of driver mutations and mutation types—We analyzed the 

impact of somatic mutations in the cis-expression of driver genes. We grouped samples for 

each gene according to whether they contained frameshift or nonsense mutations (group I), 

missense (group II), or no mutations (group III). This analysis shows clear up-regulation of 

cancer driver genes affected by missense mutations and down-regulation of those affected by 

nonsense or frameshift mutations (Figures 4C, 4D, Table S7), consistent with previous 

findings (Hu et al., 2017, Alvarez et al., 2016). We observed reduced expression for tumor 

suppressors, such as ATRX, BRCA1, NF1, and RB1 and elevated expression of oncogenes, 

like EGFR and KIT (FDR < 0.1, Figure 4E). We highlight the top 15 genes showing 

significant expression differences between at least two of the three groups in at least one 

cancer type (Figures 4F, 4G, S2). In most cases, the frameshift/nonsense group had 

significantly lower mRNA than the others, consistent with the hypothesis that they induce 
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nonsense-mediated decay (NMD) (Lindeboom et al., 2016). The exception is GATA3 in 

breast cancer, where samples with frameshift or nonsense mutations have higher mRNA 

levels (FDR = 4.54e-18 Welch’s test, Figure 4G), likely because GATA3 frameshift 

mutations can have gain-of-function, oncogenic effect (Mair et al., 2016). In cases such as 

CASP8, samples with missense mutations also overexpress the driver gene (FDR < 0.1, 

Figure 4G).

We used Moonlight to identify gene programs that are differentially expressed in each of the 

two mutated groups when compared against non-mutated samples (Figure 4H, Methods). 

Remarkably, several genes seem to affect different transcriptional programs, depending on 

the type of mutation affecting them. Following on the GATA3 mutations in BRCA, samples 

with frameshift/nonsense mutations associate with downregulated genes related to 

microtubule dynamics or organization of cytoskeleton, an effect not seen in those with 

missense mutations. Similar effects also happen with CDH1 in BRCA: samples with 

nonsense and frameshift mutations associate with upregulated genes involved in leukocyte 

migration, but not in samples with missense CDH1 mutations. The tissue of origin seems to 

also influence the transcriptional effects. For example, LGG samples with any kind of TP53 
mutations associate with downregulated expression of leukocyte migration genes, but the 

expression of these genes remains unaltered in LIHC or BRCA samples with TP53 
mutations (Figure 4H). Overall, associations of driver mutations and the transcriptome of the 

cancer cell seem to be affected by both the original cell type and the type of driver gene 

mutation.

Impacts of genome mutations on transcriptomic activities—Driver mutations 

often affect the expression of interacting genes and genes in the same pathway. We 

investigated this phenomenon by integrating protein interaction, transcriptomic, and 

mutation information using OncoIMPACT (Figure 5A). To reveal key deregulated oncogenic 

processes occurring in each cancer type, we calculated the fraction of patients for which an 

oncogenic process was associated with a driver mutation (Figure 5B). With few exceptions 

(e.g. KIRC), general tumorigenic processes, such as cell proliferation, death, signaling, and 

motility, are frequently deregulated across cancer types. These processes are mostly 

deregulated by TP53, PTEN, KRAS, and PIK3CA. Processes were more frequently 

deregulated in some cancers (e.g. HNSC, SKCM, and BRCA). We also observed 

associations between oncogenic process and cancer types, e.g. calcium signaling pathway 

deregulation and Uveal Melanoma (UVM), with frequent activating mutations in GNA11 
and GNAQ that are upstream members of the Calcium signaling pathway (Moore et al., 

2016) and frequent deregulation of the Notch signaling pathway in bladder urothelial 

carcinoma (BLCA) due to inactivating driver mutations in this pathway (Rampias et al., 

2014).

We also observed known pairs of significantly mutually exclusive mutated genes such as 

TP53 and PIK3CA (Kandoth et al., 2013) and KRAS and BRAF (Loes et al., 2016) in cell 

death and MAPK signaling processes (Figure 5C, permutation test, p-value < 10−5), 

suggesting that a single driver suffices to perturb these processes and that mutations in 

multiple drivers are functionally interchangeable in certain contexts. In heterogeneous 
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tumors, this functional redundancy might serve as an important source of drug resistance and 

metastatic clones.

Interactions between different molecular layers—Having established the 

connections between driver events and the transcriptome, we investigated the relationship 

between driver genes and the methylomic, transcriptomic, and proteomic profiles of tumors 

(Figure 6A). We used the clustering data from the Cell of origin AWG (Reference Cell of 
origin) to search for cluster combinations enriched in driver events (Figure 6B), identifying 

40 genes associated with multiplatform clusters; TP53, KRAS, and PIK3CA mutations were 

enriched in 10 or more multiplatform clusters, and ARID1A, BRAF, CTNNB1, KMT2D, 
PTEN, and APC mutations were significantly enriched in 4 or more clusters (Tables S8 and 

S9).

Interestingly, we found similar multiplatform clusters that differ in their associated genes. 

One notable case is comprised of LGG and GBM samples, which are predominantly covered 

by mRNA cluster 1 and RPPA cluster C1, but which differ markedly in their methylome 

profiles. IDH1-driven LGGs are in methylation cluster 1, where 330 of the 351 samples 

carried IDH1 mutations, while EGFR-driven LGG and GBM are in methylation cluster 16 

(Figure 6C). Another example is that APC and KRAS-driven COAD/READ tumors are 

strongly enriched in mRNA cluster 15 and RPPA cluster C8, but separate in methylation 

clusters 10 and 11. Similar circumstances are observed for PIK3CA-driven BRCA tumors, 

which are enriched in mRNA and proteome clusters 23 and C6, respectively, but which can 

belong to methylation clusters 24 or 6.

Notably, we also found instances where specific driver genes differentiate among cluster 

combinations. For example, UCEC samples belong mostly to multiplatform clusters 4/18/C3 

and 23/18/C3, which again differ only in methylation profile. The first multi-cluster is 

enriched in ARID1A, PTEN, CTNNB1, and PIK3CA mutations and has fewer TP53 
mutations. The second cluster is conversely dominated by TP53 and PPP2R1A mutations, 

indicating that differences in driver prevalences can be reflected in the methylation profile. 

While multiplatform clusters are largely driven by tissue of origin (Figure 6D), they may 

also be affected by the mutations that drive tumor growth.

Insights into interactions in the tumor microenvironment

A third frontier involves interactions between cancer cells and the tumor microenvironment 

(TME), comprising stromal cells and the immune infiltrate. Results from the Immune 

Response Working Group (IRWG) (PanImmune reference) indicate that the TME can be 

characterized as belonging to one of six immune subtypes, namely Wound Healing (C1), 

IFN-γ Dominant (C2), Inflammatory (C3), Lymphocyte Depleted (C4), Immunologically 

Quiet (C5), and TGF-β Dominant (C6) (Tables S8 and S10).

While immune signatures can infer levels of lymphocytic infiltrates in tumors, they provide 

no information on spatial distribution of the lymphocytes. The IRWG exploited high 

resolution imaging of hematoxylin and eosin (H&E) to estimate tumor associated 

lymphocytes across all samples from 13 of the 33 TCGA tumor types (Reference Imaging). 

These data revealed relationships between degree of lymphocytic infiltrates measured by 
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gene expression and feature extraction from imaging data using neural network algorithms. 

Further correlations were made with cancer molecular subtypes, oncogenic events and 

outcome, highlighting the power of the underutilized image resources of the TCGA.

Impact of driver mutations on the immune communication network—Here, we 

further study the relationship between specific driver events, composition of the immune 

infiltrate, and the signaling network among different cell types within distinct immune 

subtypes. The networks identified for each immune subtype (STAR Methods) might be 

relevant to identifying synergistic interventions between targeted drugs and immuno-

therapies.

BRAF-driven tumors have a higher proportion of CD8 T-cells than NRAS-driven tumors 

(ANOVA p < 2×10−5 in both cases) (Figure 7A, Table S11) in the C3 immune subtype. 

Elevated CD8 T-cell proportion, considered an important effector of checkpoint inhibition 

(Ji et al., 2012), correlates with better outcomes. We also identified a signaling loop 

involving CD8 T-cells, CD274 (PD-L1), and PCDC1 (PD-1) (Methods) in C3, where 

targeting BRAF and PD-L1 might have synergistic effects. The analysis also reveals an 

interesting network within the C5 subtype. Samples having mutations in ATRX or TP53 
have higher presence of macrophages and lower of CD8 (ANOVA p < 2×10−8 in both cases). 

Interestingly, these macrophages secrete HMGB1, which promotes proliferation and 

metastasis in glioma (Bassi et al., 2008), a prominent cancer type in C5.

Driver mutations in KRAS/NRAS/HRAS and BRAF V600 are among the most frequently 

predicted neoantigens in cancer (Reference PanImmune) and could thus, as presented 

peptides, be directly steering immune response. Additionally, driver gene mutations may 

impact the transcriptional regulation that guides immune response. For example, IDH1-

driven gliomas associate with lower levels of STAT1, which can decrease levels of immune 

infiltrate by ultimately decreasing the secretion of CXCL10, a critical chemokine for T-cell 

trafficking in brain (Kohanbash et al., 2017). Also models of transcriptional networks 

(Reference PanImmune) implicate Ras family members and other driver genes in 

transcriptional control of genes affecting TME composition.

Mutation burden and immune fraction—Another way in which somatic mutations 

interact with the immune system is through neo-antigens presented on Class I or II major 

histocompatibility complex (MHC) proteins, which can activate immune cells. This has been 

studied by various PanCancer Atlas groups, describing splice-creating mutations and fusion 

events creating immunogenic neoantigens (Reference Splice, Reference Fusion) and 

neoantigens based on the derived HLA type and their predicted binding affinity (Reference 
PanImmune).

Using neoantigen predictions and immune infiltrate composition, we investigated 

associations between numbers of presented neoantigens and relative proportion of immune 

cells comprising immune subtypes (Table S12). These associations differ by immune 

subtype (Figure 7B). C2 has the greatest overall immune activity. Here, the CD8 T-cell 

fraction increases with neoantigen load (FDR < 1e-15, Figure 7C), suggesting that CD8 T-

cells may respond to neoantigen burden. CD4 T-cell fraction and neutrophil fraction increase 
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in relation to neoantigen burden in C3, perhaps reflective of the overall balanced immune 

response and good prognosis of C3 tumors (FDR < 1e-25, Figure 7C). Macrophages have 

greater infiltration with neoantigen burden in C5, which contains many gliomas and for 

which TAMs (tumor-associated macrophages) support tumor growth (FDR < 5e-3, Figure 

7C).

Discussion

This study summarizes and expands the findings of the TCGA PanCancer Atlas project 

investigating oncogenic processes. The germline genome has far-ranging, pathway-

dependent influences on the somatic landscape, often promoting somatic mutations. 

Interactions between driver genes and the transcriptome are context-dependent, as is the 

impact of driver mutations in both cis- and trans-. Some oncogenic processes that tend to be 

deregulated in few cancer types, such as cell adhesion, are more related to specific genes 

rather than to prominent drivers. Findings also suggest that networks involving driver 

mutations, cell types, and cytokines might be used as blueprints for combining two or more 

immunomodulatory therapies (Tian et al., 2017) in selected tumors.

In summary, this work illuminates the complex milieu of oncogenic processes by integrating 

an enormous corpus of data obtained over the course of TCGA into organized themes. In 

effect, biomedical science is now graduating from studying the tumor in isolation to 

assessing it within its larger environmental context. The findings described here suggest 

drastic changes in clinical practice and drug development. For example, molecular 

treatments will increasingly be developed with “multi-omics”. This strategy is being used to 

create small molecule inhibitors for druggable mutations (Drilon et al., 2017), mutation 

signatures (Davies et al., 2017), and gene expression (Li et al., 2017), immunotherapeutic 

agents (Le et al., 2017), and vaccines (Ott et al., 2017). Bioinformatic systems will help 

efficiently design optimized treatment plans lurking within large combinatorial spaces with 

respect to dosage, efficacy, side-effects, etc.

As we look to the future, there are many questions. For example, we are only beginning to 

realize that oncogenic mutations, such as BRAF V600E, frequently occur in healthy people 

(Martincorena et al., 2015). Could some somatic mutations be tolerated in normal 

development? If so, how does this impact our understanding of oncogenic mutations? TCGA 

data come mostly from primary tumors, yet patients usually succumb to metastases: can we 

find the alterations that drive this process? The next leaps to be taken by the Cancer 

Moonshot Initiative and Human Tumor Atlas Network (HTAN) will involve pre-cancer, 

primary, and metastatic tumors associated with treatment sensitivity or resistance and will 

advance the multidimensional mapping of human cancers over time for informing future 

cancer research and clinical decision-making.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Li Ding (lding@wustl.edu)
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

For this research we used data collected by The Cancer Genome Atlas. Under the direction 

of the National Cancer Institute (NCI) and the National Human Genome Research Institute 

(NHGRI), TCGA collected both tumor and non-tumor biospecimens from more than 10,000 

human samples with informed consent under that authorization of local Institutional Review 

Boards (https://cancergenome.nih.gov/abouttcga/policies/informedconsent). These steps 

ensured that patients were exposed to no unnecessary risks and that the resulting research is 

legal, ethical, and well designed. Mutation and clinical data (including age and sex) used for 

this manscript are deposited by the GDC (https://gdc.cancer.gov/about-data/publications).

METHOD DETAILS

Germline variant calling—TCGA sequence information was obtained from the database 

of Genotypes and Phenotypes (dbGaP). Data from paired tumor and germline samples were 

independently aligned to human reference GRCh37-lite using BWA (Li and Durbin, 2009) 

v0.5.9 and de-duplicated using Picard 1.29. GenomeVIP (Mashl et al., 2017) was used to 

orchestrate germline calling using the following tools. Germline single nucleotide variants 

(SNVs) were identified using Varscan (Koboldt et al., 2012) version 2.3.8 (default 

parameters, except where –min-var-freq 0.10, --p-value 0.10, --min-coverage 3, --strand-

filter 1) operating on an mpileup stream produced by samtools (Li et al., 2009) version 1.2 

(default parameters, except where -q 1 -Q 13) and GATK (McKenna et al., 2010) version 3.5 

using the haplotype caller in single-sample mode with duplicate or unmapped reads removed 

and calls with quality threshold of 10 retained. Germline indels were identified using 

Varscan and GATK, both as configured as above, along with Pindel (Ye et al., 2016) version 

0.2.5b8. We specified an insert size of 500 whenever this information was not present in the 

BAM header. Variants were limited to coding regions of full length transcripts obtained from 

Ensembl release 70 plus two additional base pairs flanking each exon that cover splice 

donor/acceptor sites. The union of GATK and VarScan SNVs was processed through our in-

house false-positive filter (Kanchi et al., 2014). We included indels called by at least two out 

of the three callers (GATK, Varscan, Pindel) and high-confidence, Pindel-unique calls (at 

least 30× coverage and 20% VAF). The combined indels set was again processed through 

our false-positive filter (default parameters, except where --min-homopolymer 10 --min-var-

freq 0.2 --min-var-count=6). The entire process is described in more detail in (Reference 
germline). For germline and somatic variant comparision we restricted our data to the 

overlap of samples with at least one mutations in the MC3 MAF after restricting variants as 

outlied below. This overlap removed one gene from the germline predisposition list (CYLD).

Somatic variant calling—A publicly available MAF file (syn7824274, GDC LINK) was 

compiled by the TCGA MC3 Working Group and annotated with filter flags to highlight 

potential artifacts and discrepancies (Reference MC3). A host of possible artifacts were 

flagged, including strand-bias, contamination, Oxo-guanine artifacts, and low normal read 

depth. If a mutation escaped flagging and was called by 2 or more variant calling tools, it 

was labeled a ‘PASS’. We restricted analysis to PASS calls, except for samples from OV and 

LAML, which were early entrants in TCGA that were whole genome amplified (WGA). Of 

the 412 OV and 141 LAML samples in our data set, 347 (84%) and 141 (100%), 

respectively, had artificial variants induced by WGA. In order to maintain sample sizes and 
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uniformity in mutation calling, we did not filter mutations containing only ‘wga’ filter tags 

from these two cancer types. Seven bioinformatic tools were applied, five for Single 

Nucleotide Variants (SNV) and three for short Insertion Deletion (INDEL) events, with 

Varscan 2 providing both types of analysis. This list is comprised of MuTect (Cibulskis et 

al., 2013), VarScan2 (Koboldt et al., 2012), Indelocator (Chapman et al., 2011), Pindel (Ye et 

al., 2016), SomaticSniper (Larson et al., 2012), RADIA (Radenbaugh et al., 2014), and 

MuSE (Fan et al., 2016). The final call set was filtered to identify cohort level artifacts and 

was subject to extensive variant, subject, and cohort level QC. In total, 22,485,627 putative 

variants were identified and 2,907,335 high confidence mutations were retained after 

filtering.

Association testing between biological processes and germline and/or 
somatic BRCA1/2 mutations—Additionally, Moonlight (Colaprico et al., 2018) analysis 

was considered to incorporate multiple molecular levels to identify differentially expressed 

genes in the context of biological pathways (Figure 3 and Figure S1). For this analysis 

samples with germline predisposition variants in the BRCA1 and/or BRCA2 were 

considered for OV and BRCA. Similarly if a sample harbored somatic missense, frameshift, 

nonsense, splice site, or in-frame in BRCA1 or BRCA2, that sample was aggregated into the 

somatic group. If a sample had both germline and somatic mutations, it was not considered 

for this comparison. A full table of GSEA results is publically available at https://

github.com/ibsquare/MoonlightOP “Moonlight_GSEA_NES_results_Rebut_v3”.

Germline and somatic gene assignment to pathway analysis—Assignment of 

genes to specific pathways was performed to provide a landscape of frequently mutated 

biological processes across 33 cancer types. Primarily genes were classified into 24 unique 

categories comprised of which combined the drivers and essentiality working group 

classification supplemented by Kegg pathway designations provided by Moonlight. These 

pathways included: apoptosis, cell cycle, chromatin SWI/SNF complex, chromatin histone 

modifiers, chromatin other, epigenetics DNA modifiers, genome integrity, histone 

modification, immune signaling, MAPK signaling, metabolism, NFKB signaling, NOTCH 

signaling, other, other signaling, PI3K signaling, protein homeostasis/ubiquitination, RNA 

abundance, RTK signaling, splicing, TGFB signaling, TOR signaling, Transcription factor, 

and Wnt/B-catenin signaling. This was then further reduced to the 8 molecular processes 

shown on Figure 2.

In order to calculate the prominent molecular process in each tumor type, a single process 

was assigned to each sample. This was calculated as follows. If a sample did not carry a 

predisposing germline variant or missense/frameshift mutation in a driver gene then it was 

merely added to the denominator of that cancer type. Otherwise, if a sample carried a 

mutations in a germline and/or somatic driver gene, each driver mutation was compared to 

the ranked order molecular processes based on the cancer type as a whole. For example, if 

the top molecular processes, by frequency, for LGG were ranked metabolism, genome 

integrity, and oncogenic signalling, and a sample only carried mutations in both a metabolic 

gene and a genome integrity gene, then that sample would be classified for the highest rank 

of that particular cancer.
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Detection of gene programs differentially expressed in samples with indels or 
nonsense mutations (FSN) and missense mutations (MIS)—Cancer Genome Atlas 

(TCGA) cohort were available in Genomic Data Commons (GDC) Data Portal and were 

used in this study in September 2017. We focused on these 16 cancer types because the top 

15 cases of cancer-gene combinations for two groups (30 combinations in total) from the 

frameshift / missense from the significant cis-expression associations RNA-seq raw counts 

of 7668 cases as legacy archive, and using the reference of hg19 were downloaded, 

normalized and filtered using the R/Bioconductor package TCGAbiolinks version 2.5.9 

(Colaprico et al., 2016) using GDCprepare for tumor types (level 3, and platform 

"IlluminaHiSeq_RNASeqV2") using data.type as “Gene expression quantification” and 

file.type as "results". This allowed us to extract the raw signal for expression of a gene for 

each case following the TCGA pipeline used to create Level 3 expression data from RNA 

Sequence data that uses MapSplice (Wang et al., 2010) to do the alignment and RSEM to 

perform the quantificiation (Li et al., 2010). Integrative analysis using mutation, clinical and 

gene expression were performed following our recent TCGA’s workflow (Silva et al., 2016).

For this study we used TCGAbiolinks version 2.7.6 and MoonlightR Version 1.2.0 in 

October 2017 with the following parameters: (i) for Differential Phenotype Analysis (DPA) 

we filtered out differentially expressed genes with fdr.cut = 0.01 and logFC.cut = 1, (ii) for 

Functional Enrichment Analysis (FEA) we considered significantly enriched BPs by each 

signature of DEGs with a Fisher Test FDR less than 0.01, (iii) for Gene regulatory network 

(GRN) the pairwise mutual information was computed using entropy estimates from k-

nearest (k=3) neighbor distances filtering out non-significant interactions using a 

permutation test (nboot=100, nGenesPerm = 1000), (iv) Upstream Regulator Analysis 

(URA) was performed considering the output of previous steps with nCores = 64. 

Hierarchical cluster analysis using a complete linkage method to finds similar cluster of BPs 

was applied to generate the heatmap (Figure 4H) sorted by each cancer type. A full list of 

Moonlight significance scores are pubically available at https://github.com/ibsquare/

MoonlightOP (“Moonlight_FrameShift_Missense_SupplementalData”)

We used Moonlight (Colaprico et al., 2018) to find pathways and biological processes that 

show differences in the expression levels of their genes based on the presence and type of 

mutations in driver genes. We had three groups: WT, missense and frameshift/nonsense. 

Samples with both types of mutations, missense and frameshift/nonsense were excluded 

from this analysis.

Identification of biological processes associated with cancer driver genes—
OncoIMPACT (Bertrand et al., 2015) integrates genomic and transcriptomic profiles using a 

gene interaction network model to discern patient-specific drivers based on their 

“phenotypic” effect. We used this tool to predict patient-specific modules of deregulated 

genes associated with mutational driver genes. Modules are constructed by: 1) identifying 

phenotype genes defined as significantly deregulated genes associated with a driver mutation 

(deregulated in ≥5% of patients, permutation test, FDR < 0.1) for a particular cancer type, 2) 

aggregating patient specific modules by linking driver genes to the phenotypes genes using 

the protein interaction network. For each cancer type, deregulated genes of a patient were 

identified by calculating the log2 fold-change between the patient gene expression value and 
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the cancer type median gene expression value. After obtaining the gene modules predicted 

by OncoIMPACT based on patients’ transcriptomic and mutational profiles (SNV, indels and 

CNA), we selected, for each patient, the largest module containing at least one driver gene 

from the PanCancer Atlas oncogenic process working group cancer driver genes list. Genes 

affected by a focal amplification/deletion were filtered out from the modules, as their change 

in expression may be associated with the copy number change. Biological processes 

associated with each module were identified by using enrichment analysis on MSigDB’s 

GO_BP and KEGG_PATHWAY gene lists (Fisher exact test, FDR < 0.05). Patient-specific 

predictions were then combined at the cancer type level to obtain the fraction of patients for 

which an oncogenic process was associated with a driver mutation. To control for Type 1 

errors introduced by the FDR threshold (0.05 of the predictions are expected to be false 

positive), we performed a binomial test for each fraction reported (expected frequency 0.05) 

and filtered out any fraction with a Bonferroni corrected p-values > 0.05. The total number 

of samples used in this analysis was 6,224 (samples from DLBC and CHOL were excluded 

due to their small module sizes).

Additionally, we tested if the five most frequently mutated driver genes were significantly 

mutually exclusive in each oncogenic process using the R-exclusivity test (Leiserson et al., 

2016). For each oncogenic process, we constructed a mutation matrix where rows are driver 

genes and columns are samples. We then counted the number of samples harboring mutually 

exclusive driver mutations and performed a permutation test by maintaining frequencies of 

all five driver genes. The reported p-value is based on the number of permuted matrices 

(100,000) showing higher numbers of samples harboring mutually exclusive driver 

mutations. The full table of results from this anlayis can be located at https://github.com/

CSB5/OncoIMPACT/blob/development/TCGA_PAN_CAN_ANALYSIS/

gene_list_driver.csv.

Integration for cell of origin clusters with mutations—Sample and cluster 

information was provided in the private communication with the cell-of-origin group for 3 

additional molecular levels, methylation, mRNA, and reverse phase protein array (RPPA). 

These sets had varying samples sizes based on data quality and availability (Table S8). 

These 3 level identifiers were concatenated to create a new cluster identifcaiton number that 

was utilized for down stream analysis and investigation. From the data provided we identifed 

166 samples with one a single sample in the classifier. Samples is missense, indel, or splice 

site mutations (considered drivers for this analysis) in any of the 299 genes identifed by the 

PanCancer Atlas drivers group were merged in by sample and a gene enrichement analysis 

was performed comparing clusters sizes (by sample) to the number of samples with a driver 

mutation. FDR ≤ 0.05 was considered significant. We also determined what fraction of the 

cluster ids originate from a single tissue of origin. To address this, we implented a simple 

heuristic to estmate cluster homogeneity. We define cluster homogeneity as those clusters 

with ≥20 samples that have ≥90% of the samples from a single cancer type (Figure 6D). 

58/414 cluster have 20 or more samples, of which, 69% are homogeneous (40/58), however 

there are a number of clusters that capture more universal molecular patterns are shared 

across cancer types.
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The cell-to-cell communication network—A network of documented ligand-receptor, 

cell-receptor, and cell-ligand pairs was retrieved from the FANTOM5 resource at (http://

fantom.gsc.riken.jp/5/suppl/Ramilowski et al 2015/). Because CIBERSORT cell types are 

more granular than immune cells in FANTOM5, CIBERSORT abundance estimates were 

aggregated by summing to yield estimates for FANTOM5 immune cell abundances, as 

defined above. This network was augmented with additional known interactions of 

immumodulators, and only ligand-receptor edges that contained at least one cell or one 

immune modulator were retained, yielding a ‘scaffold’ of possible interactions.

From the scaffold of possible interactions, interactions were identified that could be playing 

a role within the TME in each subtype as follows. Cellular fractions were binned into tertiles 

(low, medium, high), as were gene expression values for ligands and receptors, yielding 

ternary values for all ‘nodes’ in the network. The binning was performed over all TCGA 

samples. In subsequent processing, nodes and edges were treated uniformly in processing, 

without regard to type (cell, ligand, receptor). From the scaffold, interactions predicted to 

take place in the TME were identified first by a criterion for the nodes to be included 

(‘present’ in the network), then by a criterion for inclusion of edges. For nodes, if at least 

66% of samples within a subtype map to mid or high value bins, the node is entered into the 

subtype-network. An edge present in the scaffold network between any two nodes is then 

evaluated for inclusion. A contingency table is populated for the ternary values of the two 

nodes, over all samples in the subtype, and a concordance vs discordance ratio 

(“concordance score”) is calculated for the edge in terms of the values of ((high,high)+

(low,low))/((low,high)+(high,low)). Edges were retained with concordance score > 2.9, set 

based on evaluation of quantile distributions (Table S11). Additional details in (Reference 
Pan-Immune).

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparison of clinical and mutational impact of somatic and germline BRCA1 
and BRCA2 variants—We grouped samples according to whether they had BRCA1 

and/or BRCA2 germline, somatic or no mutations. We then compared the number of somatic 

mutations (Reference MC3) in each group using a Wilcoxon test. We also used the clinical 

data (https://www.synapse.org/#!Synapse:syn4983466.1) to compare the age at onset of each 

group using also a Wilcoxon test. Samples with both, germline and somatic BRCA1/2 

mutations were included in both categories. These results are reported in Table S4 and 

distiguishable with the column header AnalysisGrouping (Figure 3A).

Comparison of clinical and mutational impact of somatic and germline DDR 
pathway alterations—We grouped samples according to whether they had germline, 

somatic or no mutations in the core DDR pathway (Figure 3B). This pathway consists of 80 

genes according to genes from the Pathways DDR AWG (Table S2). The number of 

mutations was compared using Wilcoxon test. Samples with both, germline and somatic in 

DDR genes mutations were included in both categories. These results are reported in Table 

S4 and distiguishable with the column header AnalysisGrouping.
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Comparison of clinical and mutational impact of somatic and germline MSI 
pathway alterations—We grouped the samples as in Figure 3C, but using the MSI 

pathway definition instead, which consists of 33 genes (Table S2). We used MSIsensor (Niu 

et al., 2013) to determine the MSI score of each sample and compared the scores in each 

group using a Wilcoxon test (Table S3). In addition to stratifiying our analysis by mutation 

status in MSI and germline predisposition genes, promoter methylation status for MLH1 was 

appended to UCEC, COAD, and STAD and was obtained from MIRMRR (Foltz et al., 

2017).

Correlation between MSI scores and expression of immune-related genes—We 

grouped samples according to whether they had high or low MSI scores (MSIsensor score 

≥4 and MSIsensor score < 4 respectively). Then we compared the log2 expression of 

immune-related genes (GZMA, PRF1, GZMK and GZMH) in both groups using both 

student’s t-test and a two sample Kolmogorov–Smirnov test (KS-test). We limited our 

analysis to those cancer types because there were sufficient number of MSIhigh samples: 

UCEC, STAD and COADREAD. We used the KS-test significance of p-value < 0.01 for 

(Figure 2D). All groups indicated as significnat also showed significance using the t-test 

except when comparing GZMH abundence in UCEC (t-test p-value= 0.49; KS-test pvalue = 

0.003).

Mutation mutual exclusivity and co-occurrence analysis—We performed a 

mutually exclusivity/co-occurring mutation analysis of samples between all official pairs 

(258/299) of consensus driver genes from (Reference Driver), which included splice site 

mutations, but excluded non-coding and silent mutations. The analysis was run at the gene 

level. We used a two-sided exact Mantel-Haenszel test (mantelhaen.test R function) to 

identify significant patterns for each individual cancer type and for the PanCancer set as a 

whole, with multiple test correction of FDR < 0.1. The covariate stratum for this test used 

mutation burden and the identity of the cancer type for the PanCancer analysis. Mutation 

burden was dichotomized at a 500 mutations threshold based on an even split of the 

minimum hypermutated sample threshold (1,000 mutations per sample). This was intended 

to control for spurious co-occurrence inferences induced by samples with very high mutation 

burden. Odds ratios of greater or less than one indicate tendencies toward co-occurrence and 

mutual exclusivity, respectively. Note that in the tissue-specific analyses, this amounts to the 

tables being 2×2×2 (Gene1 / Gene2 / Mutation burden) whereas in the Pancan analysis they 

are 2×2×66 (Gene1 / Gene2 /Tissue + mutation burden). We corrected for multiple 

hypotheses using the Benjamini-Hochberg FDR method, reporting all gene pairs having a 

FDR < 0.1.

Association testing between different types of mutations and biological 
processes—We conducted this analysis on the extended consensus driver list of 299 

genes, grouping the associated samples for each cancer type into three categories; (i) 

samples having only frameshift indels or nonsense mutations (FSN), (ii) those having only 

missense mutations (MIS), and (iii) those having no mutations (WT). Samples with both 

types of mutations, missense and frameshift/nonsense, were not included in this analysis. 

For each combination of cancer type and gene, we compiled subsets of samples for these 
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three categories. Any cancer-gene combination not having at least five samples in each of 

the three categories was excluded for lack of power.

RNA-Seq gene expression data were obtained for each sample category for the above 

cancer-gene combinations. All RSEM value sets were transformed into normal distributions 

with Box-Cox transformations, after which Z-Scores were calculated. For a given cancer 

type, gene, and respective subsets of samples (distinguished by mutation category), Welch’s 

t-Test was performed to assess the significance of the difference of expression distributions 

between the test subset and the subset of wild type samples from the same cancer type and 

gene. Here, the t-statistic is

t =
X1 − X2

S1
2

N1
+

S2
2

N2

where, Xi, Si, and Ni are the respective sample mean, standard deviation, and tally of the ith 

distribution. Welch’s test is especially appropriate, since we do not always find equal 

variances or sample numbers between the distributions. The t-scores and degrees of freedom 

generated by the t-test were used to perform a two-tailed significance test against the t-

distributions. The distribution of t-scores and their corresponding significance status is 

depicted in Figure 4. The results from this analysis are reported in Table S7, and seperated 

by Mutated (any non-silent mutation) and “Frame_Shift_And_Nonsense” or 

“Missense_Only” under the column header “AnalysisGrouping”. These two groups 

(“Mutated” and “Frame_Shift_And_Nonsense”/ “Missense_Only”) were tested independent 

of each other. Additionally, we have included results by expanding our analysis to all non-

silent mutations and show the top results in Figure S2.

Correlation between driver events and immune cell types—We focused our 

analysis on the set of 299 driver genes and >3200 driver mutations from (Reference 
Driver). We considered that a sample had a driver event if it carried a frameshift or 

truncating mutation, or a missense mutation detected by at least 2 different signals of 

oncogenicity (Reference Driver). In order to reduce the issues related to multiple-testing we 

analyzed only driver events present in 10 or more samples. We considered both individual 

driver mutations and entire driver genes that met these criteria.

Then, for each of the six immune subtypes (Reference PanImmune) we checked for a 

correlation between the presence of the driver event and the quantity of different immune 

cells in the tumor microenvironment. The quantification of immune cells is described in 

“Immune Fraction Estimates” below. Then, we used domainXplorer to identify driver events 

that correlate with the presence of different immune cell types (Porta-Pardo and Godzik, 

2016). Briefly, domainXplorer uses a linear correlation model that accounts for different 

variables that might bias the results, such as the tissue of origin or the number of mutations 

in the tumor sample. The model is:
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CF = β0 + β1T + β2N + β3D

where CF is the cell fraction of each sample, T is the tissue of origin for each sample, N the 

total number of mutations in the sample and D is a binary variable showing whether the 

sample has a certain driver event or not. To correct for multiple testing, the Benjamini-

Hochberg method was applied to p-values of the D factor from the ANOVA test of each 

driver event (Table S11).

DATA AND SOFTWARE AVAILABILITY

Germline predisposition variant list—The list of germline variants was obtained from 

(Reference Germline). While the details on how to obtain the final 1,461 germline variants 

are explained in detail in the manuscript, in brief the group first selected for cancer-relevant 

pathogenic variants, based on whether they were found in the curated cancer variant 

database or in the curated cancer predisposition gene list, and their associated ClinVar trait. 

This resulted in 1,678 variants for manual review using the Integrative Genomics Viewer 

(IGV). For candidate germline variants having the same genomic change as somatic 

mutations, we further filtered for the germline variants that may have originated from 

contaminated adjacent normal samples by eliminating variants called from adjacent normal, 

the VAF in normal < 30%, and co-localizing with any known somatic mutation.

Driver gene list—The list of driver genes was obtained from (Reference Driver genes). 

The details about how this list was created are further detailed in that manuscript, but in 

brief, the Driver AWG combined the predictions of 8 different tools comprising algorithms 

based on mutation frequency (MuSiC2(Dees et al., 2012) and MutSig2CV(Lawrence et al., 

2014)), features (20/20 (Tokheim et al., 2016), CompositeDriver(in preparation) and 

OncodriveFML(Mularoni et al., 2016)), clustering (OncodriveCLUST(Tamborero et al., 

2013)), and externally defined regions (e-Driver(Porta-Pardo and Godzik, 2014) and 

ActiveDriver(Reimand and Bader, 2013))

The preliminary total of 2,101 potential driver genes was identified by taking the union of 

genes predicted by the eight driver-gene discovery tools. They refined this list by 

calculating, for each gene predicted in each cancer type, a consensus score that compensated 

for outlier results and correlation among tools. The consensus score was defined as a 

weighted sum of the number of tools that predicted the gene to be a driver in each cancer 

type (see Gene Discovery Weighting Strategy). They required a minimum of two tools to 

agree, where both could not be outliers (score≥1.5).

To maximize the coverage of the analysis and ensure the accuracy of the final list, they 

reviewed previous findings in 31 individual cancer types and PanCancer-12 from TCGA. For 

cancer types not yet having a TCGA publication, they consulted with the relevant analysis 

working groups (LIHC, TGCT, UVM, SARC, PAAD, and THYM). They included in the 

final consensus list all those genes that were previously described as drivers by experts in the 

cancer-specific analysis of TCGA datasets and that were also identified by at least one of the 

eight algorithms, even if they did not meet the consensus score threshold (≥1.5). Then, to 
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limit false positives in the expanded list, they applied linear discriminant analysis, removing 

45 genes from the consensus we detected as likely false positives.

Finally, given the limitations of a systematic approach, they additionally manually rescued 

41 genes based on supportive evidence from the following sources: hypermutator phenotype 

related genes (since they excluded hypermutated samples in our systematic discovery), 

established cancer genes from LAML because of low quality variant calling originating from 

tumor contamination of the normal samples, genes supported by omic network tools: 

OncoIMPACT (Bertrand et al., 2015) and DriverNet (Bashashati et al., 2012). Addition of 

genes to the final list was subjected to expert manual curation.

Cell of origin transcript data—The PanCancer Atlas Cell Origin manuscript provided 

us with cluster data for 3 additional substrates: methylation, mRNA, and RPPA (Table S9). 

This overview supports notion that cancers should be classified by their molecular 

characteristics and can effectly identify molecular subgroup patterns. Methylation data used 

unsupervised clustering of 10,814 tumors using Ward’s method to cluster the distance matrix 

computed with the Jaccard index. This resulted in 25 number of clusters. Unsupervised 

consensus clustering using Consensus Cluster Plus (Wilkerson and Hayes, 2010) was 

performed on RSEM (mRNA normalized expression) for 10,165 smamples and 15,363 

genes and resulted in 43 clusters. And finally, reverse phase protein arrays (RPPA) was also 

clustered using Pearson’s correlation coefficient as the distance metric and Ward’s method 

as the linkage function, which resulted in 10 clusters.

Expression and copy number data—Gene expression and copy number information 

for each sample were retrieved from the Genomic Data Commons unless indicated otherwise 

in specific sections of STAR Methods

Cancer Immune Subtypes—To characterize the commonality and diversity of 

intratumoral immune states, we scored 160 published immune expression signatures on all 

available TCGA PanCancerAtlas tumor samples and performed cluster analysis to identify 

similarity modules of multiple immune signature sets. The 160 immune expression 

signatures were selected based on extensive literature search, utilizing diverse resources 

considered to be reliable and comprehensive based on expert opinions of immuno-

oncologists. 83 signatures were derived in the context of immune response studies in cancer 

and the remaining 77 are of general validity for immunity. TCGA RNA-seq values from the 

PanCancer Atlas normalized gene expression matrix were scored for each of the 160 

identified gene expression signatures using single-sample gene set enrichment (ssGSEA) 

analysis, using the R package GSVA. Clusters of similar signature scores were identified by 

weighted gene correlation network analysis (WGCNA)(Langfelder and Horvath, 2008). 

Based on the WGCNA analysis, five immuno-oncology-related immune expression 

signatures: activation of macrophages/monocytes (Beck et al., 2009), overall lymphocyte 

infiltration (dominated by T and B cells) (Calabrò et al., 2009), TGF-β response 

(Teschendorff et al., 2010), IFN-γ response (Wolf et al., 2014), and wound healing (Chang 

et al., 2004)), robustly reproduced co-clustering of the immune signature sets, and were 

selected to perform cluster analysis of all cancer types, with the exception of hematologic 

neoplasias (acute myeloid leukemia, LAML; diffuse large B-cell lymphoma, DLBC; and 
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thymoma, THYM). Clustering of tumor samples scored on these five signatures was 

performed using model based clustering, using the mclust R package (Scrucca et al., 2016), 

with the number of clusters, K, determined by maximization of Bayesian Information 

Criterion (BIC). Maximal BIC was found with a six cluster solution, and the six resulting 

clusters C1-C6 (with 2416, 2591, 2397, 1157, 385 and 180 cases, respectively) were 

characterized by a distinct distribution of scores over the five representative signatures, and 

effectively categorized each TCGA sample as belonging to one of six cancer “immune 

subtypes”, namely Wound Healing (C1), IFN-γ Dominant (C2), Inflammatory (C3), 

Lymphocyte Depleted (C4), Immunologically Quiet (C5), or TGF-β Dominant (C6). 

Additional details in (Reference PanImmune, Table S11, Table S12).

FANTOM5 network—A network of documented ligand-receptor, cell-receptor, and cell-

ligand pairs was retrieved from the FANTOM5 resource at (http://fantom.gsc.riken.jp/5/

suppl/Ramilowski et al 2015/).

Immune cellular fraction estimates—The relative fraction of 22 immune cell types 

within the leukocyte compartment were estimated by applying CIBERSORT (Newman et 

al., 2015) to TCGA RNASeq data (Table S12). CIBERSORT (cell-type identification by 

estimating relative subsets of RNA transcripts) uses a set of 22 immune cell reference 

profiles to derive a base (signature) matrix which can be applied to mixed samples to 

determine relative proportions of immune cells. As several key immune genes used in the 

signatures are absent from TCGA GAF (Generic Annotation File) Version 3.0, we applied 

CIBERSORT to a re-quantification of the TCGA data using Kallisto and the Gencode GTF, 

which includes the missing genes. A version of the entire TCGA RNA-seq data normalized 

to Gencode with Kallisto was computed on the ISB Cancer Genomics Cloud by Steve 

Piccolo’s group at BYU (https://osf.io/gqrz9/wiki/home/) (Tatlow and Piccolo, 2016). In this 

study, the 22 CIBERSORT values were aggregated into 9 overall cell types as follows

Mast.cells=Mast.cells.resting + Mast.cells.activated,

Dendritic.cells=Dendritic.cells.resting + Dendritic.cells.activated,

Macrophage=Macrophages.M0 + Macrophages.M1 + Macrophages.M2,

NK.cells=NK.cells.resting+NK.cells.activated,

B.cells=B.cells.naive + B.cells.memory,

T.cells.CD4=T.cells.CD4.naive+T.cells.CD4.memory.resting

+T.cells.CD4.memory.activated

Neutrophils=Neutrophils,

Eosinophils=Eosinophils,

T.cells.CD8=T.cells.CD8

Additional details in (Reference PanImmune), where this particular combination is referred 

to as “Aggregate 2”.
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HLA typing and Predicting mutant peptide-MHC binding (neoantigens 
[pMHCs]) from SNVs—HLA class I typing of samples (raw RNA-Seq from 8872 samples 

and aligned reads from 715 samples) was performed on the Seven Bridges Cancer Genomics 

Cloud using a Common Workflow Language (CWL) description of the OptiType tool 

(version 1.2) (Szolek et al., 2014). The aligned RNA-Seq samples were first converted to 

raw sequences using a CWL description of the Picard SamtoFastq tool (version 1.140). The 

reads from each raw RNA-Seq sample were first aligned to the HLA class I database using a 

CWL description of the yara aligner (version 0.9.9) (Siragusa et al., 2013) with its error rate 

parameter set to 3%. Next, the CWL description of OptiType was used to compute the HLA 

class I types for the sample. Potential neoantigenic peptides were identified using 

NetMHCpan v3.0 (Nielsen and Andreatta, 2016), based on HLA types. For each sample, all 

pairs of MHC and minimal mutant peptide were input into NetMHCpan v3.0 using default 

settings. NetMHCpan will automatically extract all 8–11mer peptides from a minimal 

peptide sequence and predict binding for each peptide-MHC pair. After computation, the 

results were parsed to only retain peptides which included the mutated position. Peptides 

containing amino acid mutations were identified as potential antigens on the basis of a 

predicted binding to autologous MHC (IC50 < 500 nM) and detectable gene expression 

meeting an empirically determined threshold of 1.6 transcripts-per-million (TPM). This 

threshold was selected in order to divide the bimodal distribution in the expression data. 

Additional details in (Reference PanImmune)

CIBERSORT—CIBERSORT (cell-type identification by estimating relative subsets of 

RNA transcripts, Newman et. al., 2015) uses a set of 22 immune cell reference profiles to 

derive a base (signature) matrix which can be applied to mixed samples to determine relative 

proportions of immune cells. It can be accessed at https://cibersort.stanford.edu

MOONLIGHT—Moonlight (Colaprico et al., 2018) is a new methodology available as R 

bioconductor package, (https://bioconductor.org/packages/release/bioc/html/

MoonlightR.html, DOI: 10.18129/B9.bioc.MoonlightR) that does not only identify driver 

genes playing a dual role (e.g. tumor suppressor genes (TSGs) in one cancer type and 

oncogenes (OCGs) in another), but also helps in elucidating the biological processes 

underlying their specific roles.

For this study we used MoonlightR Version 1.2.0 in July 2017 with the following 

parameters: (i) for DPA we filtered out differentially expressed genes with fdr.cut = 0.01 and 

logFC.cut = 1, (ii) for FEA we considered significantly enriched BPs by each signature of 

DEGs with a Fisher Test FDR less than 0.01, (iii) for GRN the pairwise mutual information 

was computed using entropy estimates from k-nearest (k=3) neighbor distances filtering out 

non-significant interactions using a permutation test (nboot=100, nGenesPerm = 1000), (iv) 

URA was performed considering the output of previous steps with nCores = 64, (v) Firstly 

we retrieved a list of validated OCGs and TSGs from the Catalogue of somatic mutations in 

cancer (COSMIC). The list consists of 84 OCGs, 55 TSGs, 17 dual role genes and 439 genes 

without validated role. Secondly PRA was performed considering the URA output as input 

for the random forest learning approach together with the list of known OCGs and TSGs 
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(COSMIC) used to construct the training set and using a permutation test with nrand = 1000 

for obtaining p-values filtered by FDR = 0.01.

domainXplorer—This pipeline identifies events that show statistically significant 

correlations with the presence of immune cells in the tumor microenvironment (Porta-Pardo 

and Godzik, 2016). It accounts for several potentially confounding factors, such as the 

presence of neo-antigens. It can be accessed at https://github.com/eduardporta/

domainXplorer.git

OncoIMPACT—Integrates genomic and transcriptomic profiles using a gene interaction 

network model to discern patient-specific drivers based on their “phenotypic” effect. It can 

be accessed at https://github.com/CSB5/OncoIMPACT.git.

ABSOLUTE—We used ABSOLUTE (Carter et al., 2012) calls to infer whether each 

mutation was clonal or sub-clonal. ABSOLUTE optimizes/solves a mixture model for the 

observed allelic fraction for each mutation (i.e. the mutated reads could have arisen from 1 

copy, 2 copies, 3 copies, etc. or from a subclonal population). We defined ‘clonal’ as all 

mutations that were predicted only as clonal by ABSOLUTE (n = 910,138 out of a total 

1,451,623 mutations, 62%). It can be accessed at http://software.broadinstitute.org/cancer/

software/genepattern/modules/docs/ABSOLUTE

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. An overview of PanCancer Atlas analyses on oncogenic molecular processes

2. Germline genome affects somatic genomic landscape in a pathway-dependent 

fashion

3. Genome mutations have impacts on expression, signaling, and multi-omic 

profiles

4. Mutation burdens and drivers influence immune cell composition in 

microenvironment
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Significance

At this historic juncture of the completion of The Cancer Genome Atlas project, the 

PanCancer Atlas consortium carried out a broad set of analyses on more than 11,000 

tumor samples spanning 33 cancer types. Here we present an overview and additional 

new results of the PanCancer Atlas oncogenic process analyses: somatic driver events vs. 

germline pathogenic variants, influence of the tumor DNA alterations on the 

transcriptome and proteome, and multi-faceted interactions with immune cells infiltrating 

the tumor microenvironment. These analyses of this remarkable data set have important 

ramifications for both basic cancer research and clinical intervention within the cancer 

development process.
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Figure 1. Overview of the PanCancer Atlas oncogenic process group
PanCan Atlas studies use data from multiple working groups, with relationships shown by 

gray edges between associated studies. New connections described in this study are shown 

as orange edges.

Ding et al. Page 34

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Sequence level evaluation of samples with pathogenic germline mutations
A Circos plot for each predisposition cancer gene. Width of each slice is proportional to 

germline variant frequency. The outermost tier shows age at onset, while middle indicates 

total number of somatic mutations for each sample. Links designate one sample that has 

multiple pathogenic or likely pathogenic germline mutations and are green if one of the 

genes is from the Fanconi anemia pathway. B shows somatic and germline driver genes 

grouped into 8 molecular process categories. On the x-axis, germline and somatic 

proportions are plotted using number of samples as the denominator. Cancers are sorted by 

increasing germline contribution.
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Figure 3. Evaluation of BRCA1/BRCA2 DDR, and MSI genes using somatic and germline 
variation
A Samples with BRCA1 or BRCA2 mutations are grouped by cancer type and stratified by 

somatic, germline, or wild-type status. Box-plots highlight mutations per-sample (left) and 

age at onset (right). Outlier samples are plotted as points. B Box-plots for samples having 

mutations in DNA damage response genes grouped by cancer. C Violin plots of MSIsensor 

scores with samples grouped based on mutation status of MSI genes. Samples with MLH1 

promoter methylations status are shown in red. D Gene expression differences for cytokine 

activators for three cancer types. Black dots are samples with predisposition germline 
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mutation in MSI genes. Red stars highlight significant differences between groups. E 
Moonlight workflow shows how samples were stratified based on germline vs. wild type 

(condition 1) and somatic vs. wild type (condition 2) and integrated across pathways with 

genes that are labeled as differentially expressed. These were then compared using dynamic 

recognition analysis to identify patterns. F Normalized scores from gene set enrichment 

analysis for germline and somatic mutations in BRCA1 and/or BRCA2 only, as conditions 

of OV and BRCA cancer types. Only the first 50 characters of each pathway are shown 

(additional information in Supplemental Figure 1).
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Figure 4. Interactions between somatic driver events
A Mutual exclusivity and cooccurrence of driver events. Nodes sized according to degree 

and edges colored according to odds ratio of pairs of drivers: red for mutually exclusive (OR 

< 1) and blue for co-occurrence (OR > 1). B Tissue-specific interactions of driver events. 

Waterfall plots show whether each patient has clonal (dark purple), sub-clonal (light purple), 

or no driver mutation (gray). Each plot is flanked with a color corresponding to genes in 

panel A. C Landscape of cis-expression changes shown for three mutation types, with FDR 

< 0.1 considered significant. D Distribution of T-values for gene expression analyses. ECis-

effects of mutations in expression of driver genes. Gray violin plot depicts expression in all 
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samples of driver gene in the tissue marked below each plot. Red boxes show expression of 

samples with any mutations in that gene blue boxes show expression for samples with no 

mutation in that gene. Each dot represents a sample and is red if there is a copy number 

alteration of the gene. F Same information as in E, but separating samples according to 

frameshift and nonsense (green) versus missense mutations (orange). Selected genes show 

the top-15 t-values when comparing between the missense and no-mutation groups (FDR < 

0.1). G Same as in F, but genes selected by top-15 t-values between nonsense/frameshift and 

no-mutations groups. H Moonlight scores for groups of mutations in driver genes in specific 

cancer types (y-axis) and genes annotated with several GO terms (x-axis). Boxes colored red 

or blue if Moonlight Z-score is positive (overexpression of the biological function) or 

negative (downregulation), respectively. See also supplemental figure 2.
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Figure 5. Relationships between oncogenic processes and driver genes
A Identifying processes deregulated by driver gene modules using OncoIMPACT. Pathways 

associated with each module were identified using enrichment analysis (Methods). B 
Relationships among oncogenic processes, cancer types, and driver genes. (Left) Heatmap 

shows fraction of samples with deregulated processes associated with sample-specific driver 

mutations. The three most frequently mutated driver genes are shown with each cancer type. 

(Right) Graph of associations between processes and top three genes predicted to be 

responsible for their deregulation. Grey cells represent non-significant fraction of patients 

(binomial test, p-value Bonferroni corrected > 0.05). Edge widths represent relative fraction 

of samples with deregulated processes associated to each driver gene. C Oncoprint of 

mutational profile of the 5 most mutated genes associated with deregulation of 3 biological 

processes. (Left) Different samples harbor driver genes in a mutually exclusive manner, 

suggesting many samples have only one process driver gene. (Right) Number of samples 

having driver gene mutated. P-values are computed using R-exclusivity test (Methods).
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Figure 6. Complexities of multi dimensional molecular evaluation
A Clustering analysis was performed using 3 substrates: methylation, mRNA, and RPPA. 

Samples divided into 24 methylation clusters, 41 mRNA, and 10 RPPA clusters. Links show 

each tumor was given a unique cluster combination identifier. B Gene enrichment analysis 

for each cluster assignment is displayed as a volcano plot. Dashed square is enlarged in an 

inset. Overlapping dots show number of samples in the cluster assignment (dark blue) and 

the number of samples with a given mutation superimposed (light blue), jointly indicating 

the mutated proportion in that cluster. C The 21 most gene enriched cluster identities, with 

breakdown by tissue type proportion and most frequently mutated gene from that cluster 

identity. Sample size for each identity appears in bar plot. D The 58 cluster identities having 

≥20 samples. Pie chart illustrates fraction of uniform clusters, where 90% of samples within 

a cluster are from a single cancer type.
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Figure 7. Statistical associations and predicted interactions within the tumor microenvironment
A Networks of driver gene events in distinct cancer immune subtypes C1-C6 shown in each 

subpanel. Lines between events and immune cells are green if correlation between immune 

cell in samples with the driver event is positive and red if negative. Lines between cell types, 

ligands, and receptors denote interaction pairs known to occur in other contexts and for 

which there are concordant values across multiple tumor samples in the subtype. B Heatmap 

shows Spearman correlation between number of predicted neoantigens in each sample of 

each immune subtype and proportion of different types of immune cells. Colored outline 

boxes are detailed in the next panel. C In subtypes C1 and C2, proportion of CD8 T cells 

increases with burden of predicted neoantigens (left two plots). Correlation between number 

of neoantigens and Neutrophils in samples of C3 subtype (top right) and between number of 

neoantigens and fraction of macrophages in the TME in samples with C5 immune response 

(bottom right).
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