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The 22q11.2 deletion/DiGeorge syndrome is a relatively common “genomic” disorder that 
results from heterozygous deletion of a 3-Mbp segment of chromosome 22. Of the more 
than 30 genes deleted in this syndrome, TBX1 is the only one that has been found to be 
mutated in some patients with a phenotype that is very similar to that of patients with the 
full deletion, suggesting that TBX1 haploinsufficiency is a major contributor to the 
syndrome’s phenotype. Multi- and single-gene mouse models have provided a 
considerable amount of information about the consequences of decreased and increased 
dosage of the genomic region (and in particular of the Tbx1 gene) on mouse embryonic 
development. Modified alleles of Tbx1, as well as conditional ablation strategies have 
been utilized to map in vivo the tissues and developmental stages most sensitive to gene 
dosage. These experiments have revealed substantially different sensitivity to gene 
dosage in different tissues and at different times, underlying the importance of the 
developmental context within which gene dosage reduction occurs. 
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22q11.2DS/DIGEORGE SYNDROME IS A CLINICALLY IMPORTANT EXAMPLE OF 
A DISORDER CAUSED BY GENE DOSAGE ALTERATION 

Gene dosage alterations are an important cause of congenital abnormalities and embryonic or neonatal 
lethality. Entire chromosomes (monosomies or trisomies) or portions of them (segmental aneuploidies) 
can be lost or be present in excess. Among the segmental aneuploidies, microdeletion syndromes are 
relatively frequent, and among those, 22q11.2 deletion syndrome (22q11.2DS) is thought to be the most 
common. This chromosomal deletion is the most common cause of DiGeorge and velocardiofacial 
syndromes. Clinical features of these syndromes have been extensively reviewed[1,2,3,4,5,6]. As with 
many segmental aneuploidies, the clinical presentation can be variable (in penetrance and expressivity of 
individual clinical symptoms) even within the same family[7] or among monozygotic twins[8,9], 
indicating that genetic and nongenetic factors can contribute to variability. However, to date, there are no 
reports of 22q11.2 deletion without any associated abnormality. 

The deletion is similar in most patients, indeed greater than 90% of them have the same 3-Mbp 
deletion[10,11,12]. Low copy repeats at the extremities of the deleted region are thought to represent a 
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substrate for aberrant recombination, as in other microdeletion syndromes[10,11,13,14]. Duplications of 
the same region, resulting from the same recombination event, have also been found in patients with a 
less characteristic and consistent phenotype[15,16]. Thus, both deletion and duplication of the region can 
lead to phenotypic abnormalities. 

The 3-Mbp 22q11.2 deletion spans 28 genes, while a less common, 1.5-Mbp deletion encompasses 
about 21 genes (Fig. 1). However, clinical reports have not been able to distinguish clearly or 
phenotypically patients with the two types of deletions[17]. Given the relatively small number of patients 
with the smaller deletion, and given the variability of the phenotype, it is difficult to draw definitive 
conclusions however. 

 

FIGURE 1. Genes eliminated by the two most common deletions in 22q11.2DS patients. (A) Normal human 
chromosome, (B) deletion present in approximately 90% of the patients, (C) deletion present in approximately 
10% of the patients. Genes indicated by arrows are cited in the text. The drawing is not to scale. 

The 22q11.2DS is most likely to be a contiguous gene syndrome, a condition in which the 
haploinsufficiency of different genes contributes to different clinical features. For example, platelet 
abnormalities are most likely contributed by GP1BB deletion, while there are several candidate genes for 
the behavioral and psychiatric disorders (PRODH, COMT, ZDHHC8, and possibly others[18]). However, 
the most characteristic clinical findings of the syndrome, which are those related to developmental defects 
of the embryonic pharyngeal apparatus, are caused by haploinsufficiency of TBX1[19,20]. The phenotypic 
complex related to abnormal pharyngeal development includes thymic, parathyroid, cardiovascular, and 
craniofacial anomalies. The developmental importance of Tbx1 was delineated in the mouse in 
2001[21,22,23] and, thus, it became the major candidate gene for the syndrome. In 2003, Yagi et al.[19] 
identified TBX1 mutations, including point mutations, in patients with typical 22q11.2DS phenotype, but 
without deletion. At least one of those mutations was later shown to cause TBX1 loss of function because 
it prevents the TBX1 protein from localizing to the nucleus, where it exerts its function as a transcription 
factor[20].  

Genes in the deleted region may contribute to the phenotype not only through a contiguous gene 
syndrome mechanism, i.e., by causing a particular aspect of the phenotype, but also by modifying, or in 
some way interacting with, the TBX1 haploinsufficiency phenotype. The gene CRKL is included in the 
large 3-Mbp deletion (but not in the 1.5-Mbp deletion) and the Crkl-/- mouse mutant phenotype includes 
abnormalities related to maldevelopment of the pharyngeal apparatus[24]. Crosses between Tbx1 and Crkl 
mutants have revealed that Crkl mutation strongly enhances the Tbx1 haploinsufficiency phenotype, 
indicating an interaction between the two genes[25]. These results are somewhat at odds with medical 
genetics data that have not identified striking clinical differences between patients with the 1.5- and 3-
Mbp deletions. However, as mentioned above, these clinical studies should be extended before drawing 
definitive conclusions. It would also be desirable to generate a multigene deletion mouse encompassing 
all the mouse homologs of genes in the 22q11.2 3-Mbp deletion, as the region may harbor not only 
enhancers, but also suppressors, of the Tbx1 mutant phenotype. 
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TESTING GENE DOSAGE SENSITIVITY IN THE MOUSE 

The initial mouse modeling work generated a deletion (Df1) and a duplication (Dp1) of part of the region 
harboring genes homologous to those deleted in 22q11.2DS[26]. Df1/+ mice had cardiovascular 
abnormalities, thymic and parathyroid hypoplasia, as well as learning and behavioral 
abnormalities[26,27,28]. A larger deletion (Lgdel/+) was reported later with a similar phenotype, although 
the behavioral phenotype of this mutant has not been reported[21].  

Important questions concerning multigene deletion mutants are (1) what is the effect of the 
rearrangement on neighboring genes and (2) is the level of expression of heterozygously deleted genes 
compensated for by up-regulation of the nondeleted alleles? To answer these questions, Prescott et al.[29] 
have performed transcriptome analysis of mid-gestation Df1/+ embryos using microarrays. Results 
indicated that all the deleted genes tested had reduced expression (approximately 50%), hence providing 
no evidence for dosage compensation. In addition, the rearrangement appeared not to have any effect on 
the expression of neighboring genes. Thus, the rearrangement caused no transcriptional disregulation in 
cis. Furthermore, despite the fact that the rearrangement involved 20 genes, the disruption of the 
transcriptome was relatively mild. 

The consequences of increased copy number of the Df1 or Lgdel genomic regions are less studied. 
Mice with three or four copies of the Df1 region (Dp1/+ and Dp1/Dp1 mice) were reported to be 
normal[26], even though three copies of the region deleted in 22q11.2DS cause phenotypic abnormalities 
in humans. In the light of new knowledge about the tissues and developmental times that are critical for 
the morphogenesis of the pharyngeal apparatus, it would be of interest to re-examine Dp1/Dp1 embryos 
and phenotype them molecularly, for example, through transcriptome analysis of the appropriate tissues at 
the appropriate developmental times. Comparisons of transcriptomes of Df1/+, +/+, Dp1/+, and Dp1/Dp1 
animals, i.e., animals that carry one, two, three, and four copies of the genomic region, respectively, may 
identify genes the expression of which correlates with the number of copies of the Df1 region. Despite the 
reported lack of abnormalities in mice carrying four copies of the Df1 region, transgenic mice carrying 
multiple copies (eight to ten) of a human BAC harboring TBX1 and three other genes (corresponding to a 
subsegment of the Df1 region), were shown to have abnormalities reminiscent of the Tbx1 
haploinsufficiency phenotype[21,30]. This phenotype could be partially corrected by crossing these 
transgenic mice with Tbx1 mutants, demonstrating that at least some of the phenotypic abnormalities 
observed in multicopy transgenic mice are due to extra copies of the TBX1 gene[30]. It would be of 
interest to establish whether the overexpression phenotype obtained with the human gene can also be 
obtained with the mouse gene in multicopy transgenics. 

Although multigene mutants represent more accurate models of segmental aneuploidies, single gene 
mutants offer considerable advantages for research because they are less complex and because one can 
engineer specialized alleles for detailed analysis of gene function. Mouse and human embryonic 
development is clearly sensitive to reduced dosage of the Tbx1 gene, and Tbx1+/- animals present with a 
distinctive phenotype, mostly aortic arch and great artery defects, that results from hypoplasia of the 
fourth pharyngeal arch arteries (PAA)[31]. This phenotype is milder than that of most 22q11.2DS 
patients. Tbx1-/- animals have severe abnormalities of the cardiac outflow tract and of other derivatives of 
the pharyngeal apparatus and they die soon after birth[22,32]. Thus, the heterozygous phenotype is too 
mild and the null phenotype too severe for further analysis of the sensitivity of developmental processes 
to Tbx1 dosage. Further information has been obtained by modifying the Tbx1 allele so as to reduce 
mRNA dosage. Hu et al. and Xu et al.[33,34] have generated hypomorphic alleles of Tbx1 and have 
shown that different organs and, presumably, different developmental processes, have different sensitivity 
to Tbx1 mRNA dosage. In particular, the craniofacial phenotype (including cleft palate) appeared to be 
less sensitive than the cardiovascular phenotype. These results provide a new perspective to the dosage 
sensitivity phenomenon, albeit a predictable one: Dosage sensitivity is a characteristic of the context 
within which the gene product functions. Thus, it is important to establish the tissue and developmental 
time in which the gene dosage sensitive process occurs. The most dosage-sensitive developmental process 
is growth and/or remodeling of the fourth PAA. Defects of this process occur not only in Tbx1+/- embryos, 
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which express 50% of the wild type Tbx1 mRNA, but also in Tbx1neo/+ embryos, which express 60% of 
WT mRNA (Tbx1neo is a hypomorphic allele producing about 10% mRNA of the wild type allele). 
Conditional deletion experiments using Cre drivers recombining in different tissues of the pharyngeal 
apparatus have shown that heterozygous deletion of Tbx1 in pharyngeal epithelia (ectoderm and 
endoderm) is sufficient to cause fourth PAA hypoplasia[35]. Ablation of the gene with a Cre driver 
recombining predominantly in the endoderm failed to reproduce this phenotype[36]. Together, these 
results suggest that the critical tissue may be the ectoderm, although positive confirmation that deletion in 
the ectoderm is sufficient to cause the fourth PAA phenotype must be obtained. Because ectodermal cells 
do not contribute directly to the fourth PAA, Tbx1 must have a cell-nonautonomous effect on the 
formation, growth, or remodeling of these arteries, possibly by regulating the expression of genes coding 
for extracellular signaling molecules. Systematic analysis of the temporal requirement for Tbx1 for 
various developmental processes in the mouse has shown that fourth PAA development requires full Tbx1 
dosage in early development, beginning around embryonic day (E) 8, and lasting for approximately 24 
h[37]. Such an early requirement coincides with the onset of Tbx1 expression in the ectoderm and in other 
tissues[35]. Hence, ectodermal function of Tbx1 at E8–E9 may hold the key to our understanding of the 
molecular mechanisms underlying the most Tbx1-dosage sensitive processes of mouse development.  

POSSIBLE MECHANISMS UNDERLYING GENE DOSAGE SENSITIVITY 

Tbx1 is a transcription factor of the T-box family. T-box proteins have critical functions in development 
of vertebrates and invertebrates, and several of the T-box encoding genes are haploinsufficient in humans 
and mice[38]. Current data suggest that Tbx1 works as a transcription activator[33,34,39]. Generally 
speaking, proteins participating in macromolecular complexes (like transcription factors) are more likely 
to be dosage sensitive[40]. However, this does not easily explain tissue- and time-specific gene dosage 
sensitivity because, presumably, Tbx1 needs interactors wherever and whenever its function is required. 
Tbx1 may participate to different types of complexes; for example, it may interact with other proteins to 
activate specific targets or it may participate in chromatin remodeling complexes and thereby have a 
broader transcriptional effect. Both scenarios have been reported for other T-box proteins (e.g., for 
Tbx5[41,42,43]), but not as yet for Tbx1. Thus, the phenotypic consequences of altered gene dosage may 
be different in different tissues and may be anatomically more or less obvious. The effect that has been 
more frequently reported for Tbx1 is one on cell proliferation[33,34,37], but it is unknown whether a cell 
proliferation defect causes the haploinsufficiency phenotype. Nevertheless, modulation of cell 
proliferation could explain many phenotypic findings of Tbx1-/- and conditional mutants, and it could also 
explain phenotypic variability, especially if there is a linear correlation between Tbx1 protein dosage and 
the rate of proliferation. For example, Tbx1 may regulate, in a dosage-dependent manner, Fgf8 and Fgf10 
expression[33,34,44] that could convey a proproliferation signal. 

There is also an alternative explanation for tissue- and time-specific dosage sensitivity, the hint of 
which comes from an apparently unlikely correlation. The most Tbx1-dosage-sensitive developmental 
process, namely fourth PAA growth or remodeling, is also the one that requires Tbx1 at an early 
developmental time point. In contrast, the least dosage-sensitive process (among those studied), namely 
palate closure, is the one that requires Tbx1 at a late developmental point[37]. Simulations of stochastic 
gene expression predict that the loss of one copy of a gene has a more deleterious effect, in terms of 
reduced accumulation of gene product, during the process of activation of gene transcription, rather than 
during a steady-state phase of expression[45]. In other words, gene haploinsufficiency may cause 
significant delay in the achievement of a critical level of gene product after the signals for gene activation 
have been deployed. Thus, developmental processes that require Tbx1 near the time of gene activation are 
more likely to be affected than those that require the gene product at a later time (Fig. 2). This might 
explain why fourth PAA development, which requires Tbx1 in the ectoderm around the time when the 
gene is normally activated, is so sensitive to Tbx1 dosage. 



Baldini: The 22q11.2 Deletion Syndrome TheScientificWorldJOURNAL (2006) 6, 1881–1887
 

 1885

 

FIGURE 2. Schematic drawing illustrating a model of integration of temporal and 
dosage requirements for a given developmental process in a specific cell population. The 
assumption, supported by experimental data, is that the gene product (e.g., Tbx1) has 
only a limited time to effect its function. The “dose/density range” refers to the minimum 
concentration of gene product in a cell population required for the developmental process 
to occur normally. The deletion of one copy of the gene may increase the time necessary 
for the gene product to reach a particular concentration, as predicted by models of 
stochastic gene expression[45].  

CONCLUDING REMARKS 

The multigene deletion models generated so far have provided critical information that led to the 
identification of Tbx1, the gene that is sufficient to cause a 22q11.2DS-like phenotype in humans and 
mice when mutated. However, none of the deletions produced in mice so far encompass all the genes 
deleted in 22q11.2DS patients; thus, we do not know if other genes may contribute, positively or 
negatively, to penetrance and expressivity of the Tbx1 haploinsufficiency phenotype. Indeed, recent data 
have shown that Crkl heterozygous mutation can enhance the Tbx1 haploinsufficiency phenotype in mice 
(Crkl is not included in any of the available multigene-deletion models)[25]. The generation and 
characterization of full-deletion models should afford better comparisons between the mouse and human 
disorders. Perhaps, morphological phenotyping should be integrated with transcriptome analysis in 
animals with different copies of the genomic region (reduced and in excess) to identify genes the 
expression of which correlate with copy number. These may be candidate effectors of the gene dosage 
phenotype. 

It is predictable, however, that considerable effort will continue to be dedicated to the analysis of 
Tbx1 function. Of relevance to the scope of this review, future research into the mechanisms of gene 
dosage sensitivity should have two main objectives.  

The first objective would be to identify proteins interacting directly with the Tbx1 protein. 
Interactions with protein partners in transcriptional or chromatin remodeling complexes is likely to be a 
critical source of Tbx1 dosage sensitivity. To date, no Tbx1 interactor has been reported. It will be of 
interest to test whether reduced dosage of the interactor may rescue the haploinsufficiency phenotype by 
re-establishing correct stoichiometry. This may happen if the complex is simple (e.g., heterodimer), but 
less likely to work if Tbx1 contributes to large multiprotein complexes.  

The second objective would be to study the dynamics of Tbx1 gene expression in the precise 
developmental context (time and tissue) in which dosage sensitivity is more pronounced. This may be 
technically challenging and may require some creative experimental approaches, but may provide 
evidence, and measure, of the predicted delay in gene activation caused by heterozygous mutations in the 
appropriate context.  
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In conclusion, clinical relevance, developmental importance, and availability of several mutant alleles 
make Tbx1 an excellent model for testing dosage sensitivity mechanisms in vivo. 
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