Skip to main content
. 2018 Mar 8;19(1):243–262. doi: 10.1080/14686996.2018.1431862

Table 1. Summary of 3D printing technology with respect to soft robots.

Mechanism Robot part State of starting material Layer creation technique Materials Size Advantage Disadvantage Application Sub-Heading number Reference
Stereolithography (SLA) Bio-bot arrays   Layer by layer Poly(ethylene glycol)   Less resin material, large build volume, Precise control, Rapid polymerization Post-curing, warping, brittle parts with a tacky surface, support required, little choice of material, unused material is toxic Miniaturized Walking I [59]
Diacrylate (PEGDA)  
Biological Machines
Multi-material cantilevers   Layer by layer Poly(ethylene glycol) diacrylate (PEGDA) and acrylic-PEG-collagen (PC) mixtures 2 × 2 × 4 mm   [60]
Actuator   Bottom up approach Elastomeric precursor; Spot-E resin, Spot-A 40.0 × 71.1 mm2 Octopus Tentacles [61]
Inkjet Printing Bellows actuators, gear pumps, soft grippers and a hexapod Robot, Liquid Multi-material layer by layer printing Tangoblack+ 14 × 9 × 7 cm     Hydraulically actuated robots Ii [62]
Complete robot   Multi-material UV-curable printing Urethane and epoxy 80 × 5 × 5 mm Tri-legged soft bot with spider Mimicry [63]
Mould     ABS and silicon rubber   Caterpillar-inspired soft-bodied rolling robot [64]
Selective laser sintering (SLS) Bellow actuators   Top-Down Elastic silicone material   No support required   Soft robotic hand Iii [65]
Flexure hinges     Polyamide (PA 12, Nylon) 0.1 mm × 0.5 mm     Soft Robot Kinematics of snake [66]
DIW Extensible sensing skin     Silicone elastomer, hydrogel elastomers, polyacrylamide etc. 3.75 × 3.75 cm   Unable to fabricate continuous fibre-reinforced composites Tactile Machines with kinesthetic sense Iv [69]
SDM Cockroach Limbs     Viscoelastic polyurethane 120 mm × 120 mm × 50 mm     Biomimetic Components V [70]
Small robot limbs     Viscoelastic polyurethane Biomimetic Robotic Mechanisms [71]
Fingers of robot     Two-part industrial polyurethanes   Robust compliant grasper [73]
Hexapedal Robots     Viscoelastic polyurethane, polyester fibres and low melting temperature wax 16 cm Performance and locomotion Dynamics of insects [72]
Fingers of Grasper     Polyurethane elastomer 116 cm3 Soft, Atraumatic and Deployable surgical grasper [74]
Fused deposition modelling (FDM) Actuator   Layer by layer Silicone elastomer 50 × 20 × 40 mm     Soft robot prototypes Vi [75]
3D structures   Layer by layer Nafion 5 mm × 10 mm × 0.5 mm Macro-scale soft robotic systems [76]
Actuator modules     Silicon rubber elastomer Soft snake [77]
Flexible Fingers     Poly(vinyl chloride) (PVC) sheets Soft prosthetic Finger [78]
Soft pneumatic actuators     Thermoplastic elastomer filament ninjaflex (ninjatek, PA) 150 mm × 25 mm × 11 mm Soft Robotic applications [79]
3D Printing       Fugitive (Pluronic F127) and catalytic inks       Entirely soft octobot with embedded electronics   [47]
Moulds     Elastomeric silicon   Pneumatic networks for soft robotics   [48]
Moulds     ABS 15 cm Robotic Tentacles   [49]
Soft Actuators, main frame   Layer by layer ABS Plastic 30 × 10 mm Rehabilitation of spinalized rodents   [50]
Whole body   Multi-material printing Tangoplus and veroclear 8 cm Mimicking of caterpillar motion   [51]
Soft Skin   Multi-material printing Tangoplus 173 cm3 Safe human-robot interaction   [52]
Robot Body   Multi-material printing     Combustion-powered robot   [53]
Outer mould, lid, model core   Layer by layer Silicon rubber 0.45 m × 0.19 m × 0.13 m Hydraulic autonomous soft robotic fish   [54]
Mould, passive wheel, valve holders, tail enclosure     Silicon rubber   Dynamics of a fluidic soft robot   [55]
Mould     Silicon rubber 2.5 × 2.5 × 11 cm Soft Robotic Gripper   [56]
Softworms     Deformable rubber-like Polymer       Bio-inspiration soft robots   [57]