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Abstract
The cerebral cortex is subdivided into distinct areas that have particular functions. The rostrocaudal (R-C) gradient
of fibroblast growth factor 8 (FGF8) signaling defines this areal identity during neural development. In this study,
we recapitulated cortical R-C patterning in human pluripotent stem cell (PSC) cultures. Modulation of FGF8 signaling
appropriately regulated the R-C markers, and the patterns of global gene expression resembled those of the
corresponding areas of human fetal brains. Furthermore, we demonstrated the utility of this culture system in
modeling the area-specific forebrain phenotypes [presumptive upper motor neuron (UMN) phenotypes] of
amyotrophic lateral sclerosis (ALS). We anticipate that our culture system will contribute to studies of human
neurodevelopment and neurological disease modeling.

Key words: amyotrophic lateral sclerosis; areal patterning; fibroblast growth factor 8; pluripotent stem cell

Introduction
The cerebral cortex has a pivotal role in higher-order

brain functions in humans. It is divided into discrete,

specialized subdomains called areas, and its complex
information-processing capability is a function of neuronal
computation performed across these areas. Areal identity
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Although the cerebral cortex is organized into functionally unique subdivisions or areas, the areal specifi-
cation has not been studied extensively in pluripotent stem cell (PSC)-based neurodevelopmental models.
Here, we report a culture system to control the areal identity of PSC-derived cerebral cortical progenitors
along the rostrocaudal (R-C) axis by modulating fibroblast growth factor 8 (FGF8) signaling. Treatment with
FGF8 conferred rostral (the sensorimotor cortex) identity on cerebral cortical progenitors, whereas these
progenitors retained caudal (the temporal lobe) identity in the absence of FGF8. By using this culture
system, we succeeded in modeling area-specific forebrain phenotypes [presumptive upper motor neuron
(UMN) phenotypes] of amyotrophic lateral sclerosis (ALS). This system offers a novel platform in the field of
human neurodevelopment and neurologic disease modeling.
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is initially defined during neural development and is driven
by morphogens that are secreted from patterning centers
(O’Leary et al., 2007). For instance, it has been demon-
strated that the rostrocaudal (R-C) gradient of fibroblast
growth factor 8 (FGF8) secreted from the anterior neural
ridge (ANR) patterns the cortical areas (Fukuchi-Shimogori and
Grove, 2001). However, the mechanism of areal patterning
has mostly been studied in mouse models, and it is
unclear whether the findings can be applied to human
cerebral cortex development.

It is difficult to study human neurodevelopment using
human neural cells directly taken from embryos because
this process is ethically and technically restricted. To over-
come these limitations, researchers now take advantage of
human pluripotent stem cells (PSCs), including embryonic
stem cells (ESCs) and induced PSCs (iPSCs). These cells
have the potential to differentiate into various neural sub-
types and offer in vitro models to study the developmental
process in humans (Tao and Zhang, 2016). Indeed, human
PSCs can recapitulate the regional patterning of various
brain regions, including the forebrain, the midbrain, the
hindbrain, and the spinal cord (Kadoshima et al., 2013;
Maroof et al., 2013; Imaizumi et al., 2015; Lippmann et al.,
2015; Muguruma et al., 2015; Lu et al., 2016). In this way,
PSCs provide a promising tool to study human cerebral
cortical area patterning. However, cortical areal identity in
PSC cultures has not been extensively studied.

PSCs also have a remarkable potential to serve as in
vitro models of neurologic diseases. Given that it is diffi-
cult to obtain patient-derived neural cells or tissues be-
cause of the limited accessibility of the brain, PSC-based
recapitulation of disease phenotypes is an attractive tool
for clarifying pathogenesis. When modeling neurologic
diseases with PSCs, it is necessary to generate neural cells
with appropriate regional identities because most neurologic
diseases preferentially affect specific brain regions (Mattis
and Svendsen, 2011; Marchetto and Gage, 2012; Imaizumi
and Okano, 2014; Okano and Yamanaka, 2014). In terms
of diseases that affect the cortex, specific areas are often
selectively damaged; for example, the motor cortex is a
prime target in amyotrophic lateral sclerosis (ALS). There-
fore, the technology to control the areal identity of PSC-

derived cortical neurons will also be helpful for in vitro
modeling of neurologic diseases.

Here, we report a PSC-based culture system that mod-
els control of the areal identity of cerebral cortical progen-
itors along the R-C axis by modulating FGF8 signaling.
The control of R-C identity was confirmed by analyzing
the expression of the R-C markers and by comparing their
transcriptome with that of human fetal brains. Further-
more, we detected area-specific forebrain phenotypes
[presumptive upper motor neuron (UMN) phenotypes] of
ALS by using this culture system. Our work opens up new
opportunities for studies of human neurodevelopment
and neurologic disease modeling.

Materials and Methods
Generation and culture of undifferentiated ESCs and
iPSCs

Human ESCs (KhES-1, 46XX; Suemori et al., 2006),
control human iPSCs (201B7, 46XX; Takahashi et al.,
2007), FUS-mutated iPSCs (FALS-e46, 46XY; Ichiyanagi
et al., 2016), and ALS2-mutated iPSCs (4605, 46XY) were
used in this study. We generated ALS2-mutated iPSCs
from a patient with familial ALS (ALS2; Shirakawa et al.,
2009) as previously described (Seki et al., 2010). These
cells were cultured on SNL murine fibroblast feeder cells
in standard human ESC medium in an atmosphere con-
taining 3% CO2 (Imaizumi et al., 2015).

ESCs were used in accordance with the guidelines re-
garding the utilization of human ESCs, with approval from
the Ministry of Education, Culture, Sports, Science, and
Technology of Japan and the Keio University School of
Medicine Ethics Committee. All experimental procedures for
iPSCs derived from patients were approved by the Keio
University School of Medicine Ethics Committee (approval
no. 20080016).

Neuronal induction
Neuronal induction of ESCs/iPSCs was performed by

using the neurosphere culture system as previously de-
scribed (Imaizumi et al., 2015) with slight modifications.
Briefly, ESCs/iPSCs were pretreated for 6 d with 3 �M
SB431542 (Tocris) and 150 nM LDN193189 (StemRD).
They were then dissociated and seeded at a density of 10
cells/�l in media hormone mix (MHM; Shimazaki et al.,
2001; Okada et al., 2004, 2008) with selected growth fac-
tors and inhibitors under conditions of 4% O2/5% CO2.
The growth factors and inhibitors included 20 ng/ml
FGF-2, 1� B27 supplement without vitamin A (Invitrogen),
2 �M SB431542, 10 �M Y-27632 (Calbiochem), and 3 �M
IWR-1e (Calbiochem). Defining the day on which neuro-
sphere culture was started as day 0, cells were reseeded
at 50 cells/�l in MHM with 1� B27 and 10 �M Y-27632 on
day 12. The following patterning factors were also added
on day 12: 50–200 ng/ml FGF8 (Peprotech) and 100 ng/ml
soluble FGFR3 (Peprotech). On day 18, neurospheres
were replated en bloc on coverslips coated with poly-
ornithine and laminin and cultured under conditions of 5%
CO2. The medium was changed to MHM supplemented
with 1� B27.
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For lower motor neuron (LMN) induction, pretreated
PSCs were seeded at 10 cells/�l in MHM with 20 ng/ml
FGF-2, 1� B27, 2 �M SB431542, 10 �M Y-27632, and 3
�M CHIR99021 (Stemgent), 1 �M retinoic acid (Sigma)
under conditions of 4% O2/5% CO2. On day 2, 100 ng/ml
Shh-C24II (R&D Systems) and 1 �M purmorphamine (Cal-
biochem) were added. On day 6, cells were reseeded at
10–50 cells/�l in MHM with 20 ng/ml FGF-2, 1� B27, 10
�M Y-27632, 1 �M retinoic acid, and 1 �M purmorphamine.
On day 12, neurospheres were replated and cultured under
conditions of 5% CO2. The medium was changed to MHM
supplemented with 1� B27 and 1 �M DAPT (Sigma).

Quantitative RT-PCR
Total RNA was isolated with the RNeasy Mini kit

(QIAGEN) with DNase I treatment, and cDNA was pre-
pared by using a ReverTraAce qPCR RT kit (Toyobo). The
qRT-PCR analysis was performed with SYBR premix Ex
Taq II (Takara Bio) on a ViiA 7 Real-Time PCR System
(Applied Biosystems). Values were normalized to ACTB.
Reactions were conducted in duplicate, and data were
analyzed by using the comparative (��Ct) method. Relative
expression levels are presented as geometric means �
geometric SEM. The primers used for qPCR were as follows:
ACTB, forward 5’-TGAAGTGTGACGTGGACATC-3’, re-
verse 5’-GGAGGAGCAATGATCTTGAT-3’; SP8, forward 5’-
TTCTAGGGCGTGGTGCTTG-3’, reverse 5’-GAAGAGG
ACGAGGAGCGTTT-3’; PEA3, forward 5’-CTCGCTCCG
ATACTATTATG-3’, reverse 5’-CTCATCCAAGTGGGACA
AAG-3’; COUP-TFI, forward 5’-AAGCCATCGTGCTGT
TCAC-3’, reverse 5’-GCTCCTCACGTACTCCTCCA-3’;
and FGFR3, forward 5’-GCCTCCTCGGAGTCCTTG-3’,
reverse 5’-CGAAGACCAACTGCTCCTG-3’.

Immunocytochemistry
Cells were fixed with 4% paraformaldehyde for 15 min

at room temperature and then washed three times with
PBS. After incubating with blocking buffer (PBS contain-
ing 5% normal fetal bovine serum and 0.3% Triton X-100)
for 1 h at room temperature, the cells were incubated for
1–2 d at 4°C with primary antibodies at the following
dilutions: cleaved CASPASE3 (rabbit, CST, 9661, 1:500),
COUP-TFI (mouse, Perseus, PP-H8132-00, 1:1000), CTIP2
(rat, Abcam, ab18465, 1:200), HB9 (mouse IgG1, DSHB,
81.5C10, 1:250), FOXP2 (goat, Santa Cruz Biotechnology,
sc-21069, 1:500), OTX1 (mouse, DSHB, 5F5, 1:5000),
SOX1 (goat, R&D Systems, AF3369, 1:500), SP8 (goat,
Santa Cruz Biotechnology, sc-104661, 1:500), and �III-
tubulin (mouse IgG2b, Sigma, T8660, 1:500). The cells
were again washed three times with PBS and incubated
with secondary antibodies conjugated with Alexa Fluor
488, Alexa Fluor 555, or Alexa Fluor 647 (Life Technolo-
gies) and Hoechst33342 (Dojindo Laboratories) for 1 h at
room temperature. After washing three times with PBS
and once with distilled water, samples were mounted on
slides and examined by using a LSM-710 confocal laser-
scanning microscope (Carl Zeiss). Images of single con-
focal planes are presented.

Single-cell intensity analysis
Neurospheres on day 18 were dissociated into single

cells and re-plated on coverslips for 5 h; then, they were
fixed, immunolabeled, and imaged as described above.
Randomly selected three representative images were an-
alyzed by ImageJ. First, the nuclear areas were identified
by Hoechst staining that was larger than 50 �m2 in sur-
face area and with intensity levels that were typical and
lower than the threshold brightness of pyknotic cells.
Next, the eight-bit grayscale intensity values of the in-
tended markers were measured in each nuclear area.

Cleaved CASPASE3 analysis
Stained coverslips were imaged on the high-content

cellular analysis system IN Cell Analyzer 6000 (GE Health
care). Analysis using IN Cell Developer Toolbox v1.9 (GE
Health care) began by identifying intact nuclei stained by
Hoechst dye, which were defined as traced nuclei that
were larger than 50 �m2 in surface area and with intensity
levels that were typical and lower than the threshold
brightness of pyknotic cells. Each traced nuclear region
was then expanded by 50% to mark the cell soma region
and cross-referenced with neuronal subtype markers (HB9,
CTIP2, OTX1, FOXP2, and SOX1). Using the traced images
for each cell, the number of the cleaved CASPASE3-positive
products within the specific marker-positive or -negative
cells was quantified; then, its ratio to the number of the
specific marker-positive or marker-negative cells was re-
ported.

Microarray analysis
Total RNA from neurospheres on day 18 was extracted

by RNeasy Micro kit (QIAGEN). A total of 20 ng of total
RNA was converted into amplified cDNA by using Ovation
Pico WTA System V2 (NuGEN) and labeled by using the
SureTag Complete DNA Labeling kit (Agilent). The labeled
cDNA was hybridized to SurePrint G3 Human GE v3 8 �
60K Microarrays (Agilent). The scanned images were an-
alyzed with Feature Extraction Software 12.0.3.1 (Agilent)
using default parameters to obtain background-subtracted
and spatially detrended processed signal intensities. Ex-
pression was quantile normalized, and corrected for chip
batch effect via ComBat (Johnson et al., 2007). Data were
log-transformed, and ANOVA with error variance averag-
ing was performed with the NIA Array Analysis Tool
(Sharov et al., 2005). We used the maximum of actual
error variance and error variance averaged across 500
genes with similar average expression as the denominator
of F-statistic. Probes with top 1% of error variances were
not used for the error variance averaging. F statistic is
then used to estimate the p value according to theoretical
F distribution.

The microarray dataset has been deposited in the NCBI
Gene Expression Omnibus and is accessible through
GEO series accession number GSE111106.

Correlation analysis between different gene
expression datasets

The microarray data for 9–11 post-conception weeks
(pcw) macro-dissected human fetal brains (Ip et al., 2010)
were downloaded from ArrayExpress (E-MEXP-2700),
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normalized using fRMA (McCall et al., 2010). The RNA-
seq data (FPM values) of 12 and 13 pcw micro-dissected
human fetal brains were obtained from the BrainSpan
database (BrainSpan, 2017) and quantile normalized. We
compared our microarray dataset with these datasets with
ExAtlas software (Sharov et al., 2015). First, data were
preprocessed by log-transformation and removing outli-
ers (z value � 8). We performed ANOVA in each dataset
with error variance averaging as described above. In the
case of our microarray dataset, all samples were analyzed
as individual factors, and the error variance is estimated
based on the half-normal probability plot method. The p
values were transformed to false discovery rate (FDR)
using the Benjamini–Hochberg method. We identified
genes with significant change of expression (FDR � 0.05,
fold change � 4) in each dataset, estimated gene expres-
sion change relative to median expression, and calculated
a z value of Pearson’s correlation for the subset of com-
mon significant genes. Clustering analysis was performed
using complete linkage clustering and Euclidean distance.

Experimental design and statistical analysis
All data were expressed as the mean � SEM. Statistical

analyses were performed using one-way ANOVA followed
by post hoc Dunnett’s or Tukey’s test for multiple com-
parisons. ANOVA with error variance averaging was per-
formed in the transcriptome analysis as described above.

Results
Expression change of R-C marker genes by
modulating FGF8 signaling

The gradient of FGF8 signaling along the R-C axis
establishes the areal identity in the developing cerebral
cortex in mice (Fukuchi-Shimogori and Grove, 2001). We
hypothesized that the R-C identity of neural progenitors
differentiated from PSCs can be controlled by regulating
FGF8 signaling, leading to the establishment of areal
identity across the frontal, parietal, temporal, and occipital
lobes (Fig. 1A).

We previously demonstrated that PSCs acquire cere-
bral cortical identity by inhibiting Wnt signaling during

neural induction (Imaizumi et al., 2015). We used this
protocol and generated neurospheres with the cerebral
cortical identity derived from ESCs by treatment with the
Wnt inhibitor IWR1e. FGF8 signaling was then modulated
by applying recombinant FGF8 protein or soluble FGF re-
ceptor 3 (sFGFR3), which sequesters endogenous FGF8
(Fig. 1B).

The treatment with FGF8 or sFGFR3 maintained FOXG1
expression, indicating that fluctuations in FGF8 signaling
levels did not alter the cortical identity; rather, FGF8 slightly
upregulated FOXG1 expression, as has previously been
shown in mouse embryos (Shimamura and Rubenstein,
1997; Fig. 2A). As FGF8 signaling was activated, the
rostral markers SP8 and PEA3 (Fukuchi-Shimogori and
Grove, 2003; Sahara et al., 2007) were highly expressed,
whereas the caudal markers COUP-TFI and FGFR3 (Zhou
et al., 2001; Hébert et al., 2003) were downregulated (Fig.
2A). These gene expression changes were also confirmed
by immunocytochemical analysis for the SP8 and COUP-
TFI proteins (Fig. 2B,C). It should be noted that untreated
and FGF8-treated cells expressed low levels of SP8 and
COUP-TFI, respectively. This result is consistent with the
fact that the cortical regional marker genes are expressed
in a graded manner, which is different from the clearly
delineated, distinct expression pattern in other brain re-
gions (Sansom and Livesey, 2009). Overall, our results
suggest that R-C marker expression can be controlled by
modulating FGF8 signaling during neurosphere formation
from human PSCs.

Transcriptome profiling and comparison with human
fetal brains

To further investigate R-C identity, we performed gene
expression profiling by microarray analysis. The rostral and
caudal markers were enriched in FGF8-treated and un-
treated cells, respectively (Fig. 3A). A comparison of these
data with those from human fetal brains dissected as
5-mm coronal slices along the R-C axis (Ip et al., 2010)
showed that FGF8-treated cells more closely matched the
rostral areas while showing less similarity to the middle and
caudal areas (Fig. 3B). To characterize the areal identity in

Figure 1. Strategy for controlling the areal identity of PSC-derived neurons. A, Schematic diagram of areal patterning in the cerebral
cortex. The R-C gradient of FGF8 signaling determines areal identity. B, Overview of the culture protocol. FGF8 modulators (FGF8 and
sFGFR3) were added at the secondary neurosphere stage.
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more detail, our microarray data were next compared with
the RNA-seq data from micro-dissected brains of human
embryos from the BrainSpan database (BrainSpan, 2017).
This analysis demonstrated that untreated cells were best
correlated with the temporal lobe, while FGF8-treated
cells most closely resembled the sensorimotor cortex
(Fig. 3C). Collectively, these data indicate that the global
gene expression patterns of PSC-derived neural progen-
itors were shifted toward a rostral fate by the activation of
FGF8 signaling.

Cortical neurons with rostral identity exhibited ALS
phenotypes

ALS affects both UMNs and LMNs (Fig. 4A); however,
PSC-based disease modeling has been successfully
achieved only in LMN phenotypes because UMN deriva-
tion protocols have never been established (Sances et al.,
2016). As our data indicated that FGF8-treated cells cor-
respond to the primary motor cortex, we hypothesized
that these cells can elucidate UMN phenotypes. To test
this hypothesis, we used iPSC lines from two kinds of
familial ALS: ALS2 and ALS6, carrying ALS2 or FUS mu-
tations, respectively (Shirakawa et al., 2009; Akiyama
et al., 2016). These cells were differentiated into neurons
by adapting the above protocol or an LMN derivation
method as previously described (Imaizumi et al., 2015;
Fig. 4B). We observed increased cleaved CASPASE3 ac-
tivity in HB9-expressing LMNs derived from FUS-mutated
iPSCs compared with those from healthy control ESC/
iPSC lines, as was shown in a previous study (Ichiyanagi
et al., 2016); however, such phenotypes were absent in
ALS2-mutated cells (Fig. 4C,D). On the other hand, FGF8-

treated forebrain neurons derived from ALS2-mutated iP-
SCs showed increased apoptosis, while there were no
changes in untreated cells (Fig. 4E,F). FUS-mutated fore-
brain neurons did not exhibit such phenotypes in either
untreated or FGF8-treated cultures. These data suggest
that an ALS2 mutation enhances apoptosis only in fore-
brain neurons with rostral identity. Importantly, this phe-
notype was observed only in cells labeled with CTIP2, a
marker for Layer V subcerebral projection neurons, indic-
ative of UMN-specific vulnerability (Molyneaux et al.,
2007). The UMN selectivity of this phenotype is also
supported by the fact that cells positive for OTX1, another
Layer V maker, showed increased apoptosis, whereas
FOXP2-positive Layer VI corticothalamic neurons did not
(Molyneaux et al., 2007; Fig. 4G,H). Finally, to assess
whether this cell death vulnerability is also observed in the
developmental stage, SOX1-positive neural progenitors in
neurospheres were analyzed for apoptosis. FGF8-treated
and untreated neural progenitors displayed no changes in
apoptosis (Fig. 4I,J). Overall, selective cell death was
observed in Layer V cortical neurons with the rostral
identity derived from ALS2-mutated iPSCs, suggesting
that UMN phenotypes of ALS were recapitulated.

Discussion
In this study, we established a culture system to control

the R-C identity of PSC-derived cortical neurons by reg-
ulating FGF8 signaling. FGF8 activation converted the cell
fate from caudal (the temporal lobe) to rostral (the senso-
rimotor cortex). Moreover, the area-specific forebrain
phenotypes of ALS2-associated ALS were reproduced in
vitro by using this system.

Figure 2. Effect of FGF8 on R-C marker expression. A, qRT-PCR analysis of ESC-derived neurospheres for R-C marker expression
(n � 3; mean � SEM; ���p � 0.001; ��p � 0.01; �p � 0.05; ANOVA with Dunnett’s test). The concentration (ng/ml) of FGF8 is
presented as a superscript. B, Representative immunofluorescent images for R-C markers (scale bar � 50 �m). C, Histogram showing
the distribution of the immunofluorescent intensity of SP8 and COUP-TFI measured at the single-cell level.
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The gradient of morphogens, such as FGFs, Wnts, and
BMPs, determines the areal identity during neural devel-
opment (O’Leary et al., 2007). Of these signaling mole-
cules, FGF8 has been most studied as a central regulator
of cortical area patterning. FGF8 is secreted from ANR,
which is located in the rostral-most part of the neural tube,
establishes a gradient along the R-C axis, and modulates
the expression of transcription factors that specify the areal
identity (Fukuchi-Shimogori and Grove, 2003; Toyoda et al.,
2010). Our primary aim was in vitro recapitulation of this
mechanism by using PSCs. In fact, it has previously been
reported that FGF8 treatment changes the R-C marker
expression in mouse and human PSC-derived neurons
(Eiraku et al., 2008; Kadoshima et al., 2013); however,
these studies examined the expression of only a few
markers. In contrast, we investigated the areal identity in
more detail by comparing the global gene expression
profile with that of fetal brains in the existing databases.
Our data confirm and extend these previous reports and
suggest that the areal patterning can be precisely con-
trolled in human PSC cultures.

The protocols to produce subcerebral projection neu-
rons in the primary motor cortex, or UMNs, from PSCs
have not yet been established, hindering the prospect of
modeling the pathogenesis of ALS in vitro (Sances et al.,
2016). We challenged this problem by using our culture
protocol. In these experiments, we chose ALS2-mutated
iPSCs as a source because the mutation of ALS2 that we
used results in UMN-dominant symptoms (Shirakawa
et al., 2009) and ALS2 is also known to be a causative
gene for other UMN diseases, such as primary lateral
sclerosis (PLS) and hereditary spastic paraplegia (HSP;
Chandran et al., 2007; Otomo et al., 2012). It is noteworthy
that the observed phenotypes were both area-specific
and layer specific. This double selectivity increased the
reliability of our claim that UMN phenotypes can be reca-
pitulated in our culture system. On the other hand, FUS-
mutated cells showed only LMN phenotypes in our culture
system, consistent with the fact that this patient exhibited
LMN symptoms at onset, preceding that of UMN, and that
these are not complicated by other forebrain-associated
symptoms, such as frontotemporal dementia (FTD; Akiyama

Figure 3. Transcriptome comparison between PSC-derived neural progenitors and human fetal brains. A, Volcano plot of the
expression profile of FGF8-treated cells relative to control, with differentially expressed genes (p � 0.05; Student’s t test) highlighted
(dark gray). The rostral (red) and caudal (blue) markers were enriched in FGF8-treated and untreated cells, respectively. B, C, Correlation
matrix of the global gene expression with macro-dissected (B) and micro-dissected (C) human fetal brains. FGF8-treated cells well
correlated with the rostral portions of macro-dissected brains and with the sensorimotor cortex of micro-dissected brains. OFC,
orbital prefrontal cortex; MFC, mediolateral prefrontal cortex; DFC, dorsolateral prefrontal cortex; VFC, ventrolateral prefrontal cortex;
M1C, primary motor cortex; S1C, primary sensory cortex; IPC, inferior parietal cortex; A1C, primary auditory cortex; STC, superior
temporal cortex; ITC, inferolateral temporal cortex; V1C, primary visual cortex.
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Figure 4. Recapitulation of ALS phenotypes in FUS- and ALS2-mutated cells. A, Schematic diagram of motor neurons affected in
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et al., 2016). These results indicate that our culture system
recapitulated well the clinical manifestation of ALS2- and
FUS-associated ALS. The difference in the observed phe-
notypes between these two types of ALS suggests that
ALS pathogenesis can be divided into two groups: one
predominantly affects UMNs, and the other preferentially
disturbs LMNs. Although the mechanism of the selectivity
of ALS phenotypes is still unclear, our system now offers
new opportunities to clarify this mechanism.

Before perfect control of the areal identity of PSC-derived
neurons can be demonstrated, there are some remaining
issues to be resolved: (1) hodological characterization in
transplantation experiments and (2) the requirement for
signaling cues in addition to FGF8. The areal identity is
characterized not only by gene expression patterns but
also by hodological properties. In previous studies, when
grafted into the mouse cortex, mouse and human PSC-
derived neurons displayed specific patterns of axonal
projections corresponding to the visual cortex, which in-
dicates that these cells retain the identity of this cortical
area (Gaspard et al., 2008; Espuny-Camacho et al., 2013).
Such transplantation experiments will reinforce our data
on areal identity.

In addition to FGF8, Wnts and BMPs also regulate areal
patterning. These morphogens are secreted from the cor-
tical hem, positioned at the medial edge of the cortex, and
define areal identity (Caronia-Brown et al., 2014). A pre-
vious study showed that PSCs can be specified to differ-
entiate into hippocampal neurons by activating Wnt and
BMP signaling (Sakaguchi et al., 2015). In another study,
inhibition of Wnt signaling induced rostral marker expres-
sion (Motono et al., 2016). The modulation of these sig-
naling pathways, along with that of FGF8, will enable finer
control of areal identity in PSC cultures. Additionally, other,
currently unknown, signaling pathways may have an ef-
fect on areal patterning. FGF8-treated cells in our culture
system acquired a rostral identity but showed similarity to
the sensorimotor cortex, rather than the prefrontal cortex.
Although it is probable that a higher concentration of
FGF8 is necessary for the specification of the prefrontal
cortex, another possibility is that additional signaling mol-
ecules are required. As the prefrontal cortex has markedly
expanded through evolution, it is worth considering the
hypothesis that a novel morphogen for prefrontal area

patterning has emerged in human evolution. Our culture
system using human PSCs will allow for the study of such
human-specific neurodevelopmental processes.
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ALS. B, Overview of the LMN derivation protocol. C, Representative immunofluorescent images of apoptotic LMNs at day 42 [scale
bar � 50 �m (upper) and 10 �m (lower)]. Arrowheads indicate the cleaved CASPASE3-positive cells. D, Quantification of the cleaved
CASPASE3-positive products in LMNs at day 42 (n � 3; mean � SEM; ���p � 0.001; ��p � 0.01; ANOVA with Tukey’s test).
HB9-positive LMNs derived from FUS-mutated cells selectively showed increased apoptosis. E, Representative immunofluorescent
images of apoptotic cortical cells at day 48 [scale bar � 50 �m (upper) and 10 �m (lower)]. Arrowheads indicate the cleaved
CASPASE3-positive cells. F, Quantification of the cleaved CASPASE3-positive products in untreated and FGF8-treated cortical cells
at day 48 (n � 3–5; mean � SEM; ���p � 0.001; ANOVA with Tukey’s test). CTIP2-positive cortical cells derived from FGF8-treated
ALS2-mutated neurospheres selectively showed increased apoptosis. G, Representative immunofluorescent images of apoptotic
cortical cells at day 48 (scale bar � 10 �m). Arrowheads indicate the cleaved CASPASE3-positive cells. H, Quantification of the
cleaved CASPASE3-positive products in untreated and FGF8-treated cortical cells at day 48 (n � 4–5; mean � SEM; ���p � 0.001;
ANOVA with Tukey’s test). OTX1-positive cortical cells, but not FOXP2-positive cells, derived from FGF8-treated ALS2-mutated
neurospheres selectively showed increased apoptosis. I, Representative immunofluorescent images of SOX1/cleaved CASPASE3 in
neural progenitors in neurospheres at day 18 (scale bar � 10 �m). J, Quantification of the cleaved CASPASE3-positive products in
untreated and FGF8-treated SOX1-positive neural progenitors in neurospheres at day 18 (n � 3; mean � SEM). Selective cell death
was not observed in neural progenitors.
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