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Background

Structure determination with cryoEM involves reconstructing a 3D molecule from 2D 

projections. This process often requires tens to hundreds of thousands of experimental 

projections, or particles. Locating these particles in cryoEM micrographs, referred to as 

particle picking, is a major bottleneck in the current protein structure determination pipeline. 

This pipeline generally consists of sample and EM grid preparation, imaging, particle 

picking, and eventually structure determination. Labeling a sufficient number of particles to 

determine a high resolution structure can require months of effort – even with the use of 

existing methods designed to automate the process. Limitations of these tools include high 

false positive rates, requiring many hand-labeled training examples, and poor performance 

on non-globular proteins.

In order to better automate particle picking, and thus accelerate structure determination, we 

newly frame the particle picking problem as an instance of positive-unlabeled classification. 

In our framework, for a set of micrographs containing particles of interest with a small 

number labeled for training, we learn a convolutional neural network (CNN) to classify 

particles from background using a novel generalized-expectation criteria [1] to regularize the 

model’s posterior over the unlabeled micrograph regions. This advance allows us to achieve 

state-of-the-art particle detection results with minimal hand-labeling required.
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Methods

We develop Topaz, the first particle picking pipeline to use CNNs trained using only positive 

and unlabeled examples and GE-binomial, a general objective function for learning classifier 

parameters from positive and unlabeled data. The GE-binomial objective penalizes the 

negative log-likelihood of the labeled data points while regularizing the classifier’s posterior 

over the unlabeled data to match a binomial distribution prior on the number of unlabeled 

positives. Denoting the set of labeled positive data points by P, the probabilistic classifier as 

g, the classifier’s posterior over the number of unlabeled positives as q, and the binomial 

prior as p, the GE-binomial objective function is: − 𝔼
x ∈ P

[logg(x)] + KL(q | | p), where KL is the 

Kullback-Leibler divergence.

In the Topaz pipeline, CNN classifiers are fit to labeled particles and the remaining 

unlabeled micrograph regions using minibatched stochastic gradient descent to minimize the 

GE-binomial objective. Predicted particle coordinates are next extracted by scoring each 

micrograph region with the trained classifier and then using the non-maximum suppression 

algorithm to greedily select candidate particle coordinates.

Results

We show that the Topaz pipeline is able to accurately detect particles when trained with very 

few labeled example particles. On the EMPIAR-10096 cryoEM data set [2], Topaz achieves 

46% precision at 90% recall with only 1000 labeled particles. In contrast, at the same recall 

level, EMAN2’s byRef method [3] only reaches 33% precision with the same set of labeled 

particles – corresponding to 71% more false positives than Topaz. Remarkably, Topaz still 

achieves better precision than EMAN2 at 90% recall with 1/10th and even 1/100th the 

number of labeled particles. At all numbers of labeled particles tested, we improve 

substantially over EMAN2’s byRef method in area under the precision-recall curve. The 

relative improvement in particle detection provided by Topaz is even greater on a second, 

unpublished dataset provided by the Shapiro lab, containing stick-like particles with low 

signal-to-noise ratio. Furthermore, we show that combining a convolutional decoder with the 

convolutional feature extractor and classifier learned with GE-binomial to form a hybrid 

classifier+autoencoder can further improve generalization when very few labeled data points 

are available. Finally, we demonstrate that our GE-binomial objective function outperforms 

other positive-unlabeled learning methods never before applied to particle picking. Topaz 

runs efficiently, training in hours and predicting in seconds with a single consumer grade 

GPU. We expect Topaz to become an essential component of single particle cryoEM 

analysis and our GE-binomial objective function to be widely applicable to positive-

unlabeled classification problems.
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