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Abstract

Mass spectral data sets often contain experimental artefacts, and data filtering prior to statistical 

analysis is crucial to extract reliable information. This is particularly true in untargeted 

metabolomics analyses, where the analyte(s) of interest are not known a priori. It is often assumed 

that chemical interferents (i.e. solvent contaminants such as plasticizers) are consistent across 

samples, and can be removed by background subtraction from blank injections. On the contrary, it 

is shown here that chemical contaminants may vary in abundance across each injection, potentially 

leading to their misidentification as relevant sample components. With this metabolomics study, 

we demonstrate the effectiveness of hierarchical cluster analysis (HCA) of replicate injections 

(technical replicates) as a methodology to identify chemical interferents and reduce their 

contaminating contribution to metabolomics models. Pools of metabolites with varying complexity 

were prepared from the botanical Angelica keiskei Koidzumi and spiked with known metabolites. 

Each set of pools was analyzed in triplicate and at multiple concentrations using ultraperformance 

liquid chromatography coupled to mass spectrometry (UPLC-MS). Before filtering, HCA failed to 

cluster replicates in the data sets. To identify contaminant peaks, we developed a filtering process 

that evaluated the relative peak area variance of each variable within triplicate injections. These 

interferent peaks were found across all samples, but did not show consistent peak area from 

injection to injection, even when evaluating the same chemical sample. This filtering process 

identified 128 ions that appear to originate from the UPLC-MS system. Data sets collected for a 

high number of pools with comparatively simple chemical composition were highly influenced by 

these chemical interferents, as were samples that were analyzed at a low concentration. When 
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chemical interferent masses were removed, technical replicates clustered in all data sets. This work 

highlights the importance of technical replication in mass spectrometry-based studies, and presents 

a new application of HCA as a tool for evaluating the effectiveness of data filtering prior to 

statistical analysis.
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1. Introduction

Metabolomics is a growing field in which analysts seek to comprehensively analyze and 

compare quantities of metabolites (small molecules) in biological samples [1–6]. Creative 

applications of metabolomics span over a wide range of subjects, and this tool has been 

applied to facilitate the understanding of disease pathogenesis [3], to study the effects of diet 

and drug interactions [7], for biomarker identification [8–10], and for natural products drug 

discovery [1,11–12]. Mass spectrometry is often the analytical technology of choice for 

metabolomics research, due to its unparalleled ability to detect metabolites present at low 

levels [5]. The large data sets generated using untargeted mass spectrometry metabolomics 

can, however, be difficult to deconvolute.

Because metabolites are not directly coded in to an organism’s DNA and are often 

influenced by stage of life, source of material, and environmental conditions, it is quite 

difficult to define the number of metabolites in a given biological sample [14]. As such, a 

central challenge in the metabolomics field is data analysis [2,6,15,16]. The data sets 

generated from metabolomics analysis may contain tens of thousands of individually 

detected compounds, which may include many experimental artefacts [4,17]. The effective 

handling of such large data sets is a unique challenge [5], and investigation into these data 

sets requires advanced statistical tools capable of extracting relevant information from the 

vast quantity of data produced [15]. Unfortunately, these multivariate techniques are often 

used incorrectly and lack proper validation [15]. False positives are likely to occur when 

performing statistical analyses on these types of data sets [5] since the number of samples 

analyzed is typically much lower than the number of variables analyzed. As a consequence, 

overfitting the data is a serious concern [4,15]. The problem of false positives grows when 
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peaks not associated with the sample are included in the dataset, and effective filtering of 

contaminants is a critically important step to increase the accuracy of multivariate modeling 

[13].

Removing interferents prior to statistical analysis has numerous advantages. The filtering 

process allows for a more comprehensive annotation, and if artefacts are not removed, the 

relationships between samples may be distorted, potentially leading to a different biological 

interpretation [6,13,15]. Typically a two-step process is required to remove random 

analytical noise. First, chromatograms must be visually inspected to identify the signal 

intensity of the baseline. Following baseline signal assessment, any signals at or below the 

assigned baseline cutoff are then subtracted from the dataset. The remaining peaks should 

represent compounds associated with true chemical signals, although interpreting whether 

these signals originate from the sample or from background contamination remains a 

challenge [5].

Numerous types of chemical interferents can confound statistical analysis. Many interfering 

species are introduced as part of the sample preparation process itself, and may include 

solvent contaminants or polymeric interferents originating from sample vials, pipette tips or 

filter membranes. These contaminants will be consistent across samples, and are not the 

focus of this study. Some chemical interferents are not incorporated into the sample during 

sample preparation, but are introduced during the sample analysis step. These interferents 

originate from the analytical instrumentation, including silica capillaries, tubing, and HPLC 

column packing materials used for chromatographic separation [18–19]. We predict that 

chemical signals from these types of interferents may vary from sample to sample, and, 

consequently, will not be removable by blank subtraction [20].

Numerous approaches exist for identifying peaks exclusively associated with sample. One 

approach utilizes isotope-enriched nutrients in the growing media for mammalian cell 

culture [15,21], plant tissue culture [22], or fungal culture [23]. This approach produces 

labeling patterns that enable identification of which compounds are associated with the 

organism, and can highlight systematic changes in metabolic processes due to various 

factors including environmental stress, genetic mutations, and disease state [15]. Isotope 

labeling is an undeniably useful tool, but is only appropriate for applications assessing 

organisms grown in controlled environments.

Hierarchical cluster analysis (HCA) is a tool that uses an algorithm to produce a dendrogram 

that assembles variables or objects into a single tree, allowing users to visualize the 

similarity of the samples under analysis [5,24]. The HCA approach is usually used as a 

clustering tool to evaluate intra- and inter-group similarities and differences, similar to 

principal component analysis (PCA) [5,25]. In one study, HCA was used as a filtering tool to 

identify fragment ions associated with contaminant peaks [26]. This process was used to 

overcome a common problem in gas chromatography-mass spectrometry GC-MS analysis, 

which is the production of molecular fragments originating from background contaminants 

such as fiber material. Using HCA, the investigators clustered the fragments in their 

samples, and identified and subsequently removed a cluster of masses associated with non-

sample molecular fragments [26].
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Here we present a new application of HCA, that of identifying chemical interferents in LC-

MS analyses. We have chosen to use HCA over other clustering tools due to some distinct 

advantages for this application. First, HCA is a quantitative method to assess chemical 

similarity of different samples under analysis and the visualization in terms of a dendrogram 

makes it easy to assess if the removal of interferents has been successful. In other 

approaches, including K-Means clustering, density-based special clustering of applications 

with noise (DBSCAN), and PCA, the similarity of individual points is often difficult to 

determine by visual inspection. Furthermore, supervised analyses such as partial least 

squares-discriminant analysis (PLS-DA) require dependent variables that are able to separate 

contaminating interferents from discriminating compounds originating in the samples, and 

are not possible for this application. The goal of this study is to identify interferents that are 

introduced to the sample during the analysis process. This is achieved by comparing 

triplicate injections of the same sample (technical replicates) using HCA. Because the 

sample composition across replicate injections is identical, it is our expectation that 

chemical entities that vary across replicates will be interferents originating from analytical 

instrumentation, and that their removal will improve the quality of the data.

2. Experimental Section

2.1 Sample Preparation

The sample used for this study was produced as part of a separate project with the goal of 

optimizing the workflow for chemometric analysis in natural products research. These same 

samples were selected as a basis for the current study because they provided a good test case 

for evaluating chemical interference. To prepare the samples, a simplified extract of the 

botanical Angelica keiskei Koidzumi was spiked with four known compounds: alpha-

mangostin (1% of total extract mass), cryptotanshinone (2% of total extract mass), magnolol 

(7% of total extract mass), and berberine (15% of total extract mass). Details about the 

method of extract preparation and can be found under Supporting Information.

2.2 Fractionation Procedure

The spiked Angelica keiskei root extract was divided into three equal portions and subjected 

to reversed-phase HPLC separations. All three separations were conducted using the same 

gradient using a Gemini-NX reversed phase preparative HPLC column (5μm C18, 250 × 

21.20 mm; Phenomenex, Torrance, CA, USA) at a flow rate of 21.4 mL min−1. Starting 

conditions were 30:70 ACN:H2O, which was increased to 55:45 over 8 min. Over the next 

two min., conditions were increased to 75:25, after which they were increased to 100% ACN 

by 28 min. Finally, the solvent composition was held at 100% ACN for two min.

Chromatographic separation was completed three times, with each separation yielding 90 

test tubes. To evaluate the effect of sample complexity on hierarchical clustering analysis 

and data filtering approaches, we varied the number of pools in which the resulting tubes 

were combined. A “pool” is defined as a set of chromatographic fractions (in this case, 

multiple individual test tubes) that are combined together following chromatographic 

separation. The first set of 90 tubes was combined into three pools containing 30 tubes each, 

representing our most chemically complex samples. The second set of 90 tubes was 
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combined into five pools consisting of 18 tubes each, and the final set of 90 tubes was 

combined into ten pools, each containing 9 tubes (Scheme 1). Each pool was dried under 

nitrogen and resuspended prior to LC-MS analysis.

2.3 Mass Spectral Analysis

Full scan ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) analysis 

was conducted on each pool using a Thermo-Fisher Q-Exactive Plus Orbitrap mass 

spectrometer (ThermoFisher Scientific, MA, USA) connected to an Acquity UPLC system 

(Waters, Milford, MA, USA) with reversed phase UPLC column (BEH C18, 1.7 μm, 2.1 × 

50 mm, Waters Corporation, Milford, MA, USA). All pools were analyzed in triplicate at 

two different concentrations (0.1 mg mL−1 and 0.01 mg mL−1 in methanol, where 

concentration is expressed as mass of pool per volume of solvent), with 3 μL injections. The 

gradient was comprised of solvent A (water with 0.1% formic acid) and solvent B 

(acetonitrile with 0.1% formic acid). The gradient began with 90:10 (A:B) from 0–0.5 min, 

and increased to 0:100 (A:B) from 0.5–8.0 min. The gradient was held at 100% B for 0.5 

min, before returning to starting conditions over 0.5 min and held from 9.0–10.0 min. Mass 

analysis was performed separately in both positive and negative ion modes over a m/z range 

of 150–1500 with the following settings: capillary voltage at −0.7 V, capillary temperature at 

310°C, S-lens RF level at 80.00, spray voltage at 3.7 kV, sheath gas flow at 50.15, and 

auxiliary gas flow at 15.16. The top four most intense ions were fragmented with CID of 

35.0.

2.4 Baseline Correction and Hierarchical Cluster Analysis

2.4.1. Baseline Correction/MZMine Parameters—UPLC-MS data collected in both 

negative and positive modes were individually analyzed, aligned, and filtered utilizing 

MZmine 2.21.2 software (http://mzmine.sourceforge.net/) [27]. Raw mass spectral data from 

triplicate injections of each pool within the three sets were uploaded for peak picking into 

MZmine. Chromatograms were constructed for all m/z values with peak widths greater than 

0.1 minute, after which they were simplified using algorithms applied to recognize 

individual peaks. The peak detection parameters were set as follows: noise level (absolute 

value) at 2.0 × 106 (positive mode, 0.1 mg mL−1 samples), 1.0 × 107 (positive mode, 0.01 

mg mL−1 samples), and 1.0 × 106 (negative mode, both 0.1 mg mL−1 and 0.01 mg mL−1 

samples), m/z tolerance of 0.0001 Da or 5 ppm, and an intensity variation tolerance at 20%. 

Peaks were aligned if their masses were within 5 ppm and their retention times differed by 

less than 0.2 min from one another. Peak list filtering and retention time alignment were 

completed to produce an aligned peak list. The resulting data matrix, consisting of m/z, 

retention time, and peak area, was imported into Excel (Microsoft, Redmond, WA, USA). 

Peak lists for positive and negative ions were combined, and separate data sets were 

generated for high and low concentration samples. No further pre-processing of data sets 

was completed before hierarchical cluster analysis and data filtering.

2.4.2. Hierarchical Cluster Analysis and Chromatogram Visualization—
Hierarchical clustering analysis and resulting filtering protocols were completed using Sirius 

version 10.0 statistical software (Pattern Recognition Systems AS, Bergen, Norway) [28–

29]. For this analysis, an average-linkage algorithm [30] was used to cluster objects. 
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Euclidean distance was used as a metric to evaluate object similarity. There are numerous 

other metrics and similarity measures that could potentially be effective for this purpose, but 

the method selected here has the advantage of being transparent and easy to understand even 

for a user who is not mathematically inclined.

Six data sets were produced (three high-concentration and three low-concentration data sets 

containing 3-, 5-, or 10-pools and their triplicate injections) and inspected using HCA. A 

dataset was considered correctly clustered only when all triplicate injections were linked to 

each other before being linked to other samples in the dendrogram. If triplicate injections did 

not cluster, spectral variables (mass/retention time pairs) were inspected for each set of 

triplicates. Since highly abundant or highly ionizable compounds inherently have higher 

count variance, the contaminant masses were identified by examining relative variance 

within each set of technical replicates, defined by Equation 1. Variance (sk
2) represents the 

sum of the squared differences of each compound’s peak area (xk) from the mean of its peak 

area within replicate injections (x̄k), divided by the number of replicates (Nr). Relative 

variance of peak k in sample i (RVk,i) was calculated by dividing the variance within 

replicates by the mean.

RVk, i = sk
2/xk, where sk

2 =
∑(xk − xk)2

Nr
(Equation 1)

Notably, it is possible that a non-interferent peak may show high variability in peak area 

from injection to injection, particularly if it co-elutes with another sample component that 

impacts its ionization. To minimize the risk of removing false positives, we chose to sort 

variables from high to low RV based on their average relative variance values ( RV), defined 

by Equation 2. Even if in one sample the ionization of a given sample component was 

affected by matrix effects, it is unlikely that this response would be consistent across 

samples with different chemical constituents. Average relative variance for the peak k (RVk)

was calculated by dividing the sum of the relative variances (calculated within each pool’s 

set of replicate injections: RVk,1, RVk,2, … RVk,p) by the number of pools (Np).

RVk = RVk, 1 + RVk, 2 + ⋯ + RVk, p)/N p (Equation 2)

Using Equation 2, the variables with the highest average relative variance were identified 

and removed, and intermittent hierarchical cluster analysis was conducted. To assist the 

analysis, spectral variable plots were utilized to visualize mass/retention time pairs identified 

using the selected relative variance cutoff as contaminants as well as their corresponding 

ions. The ions that demonstrated peak area variability within triplicate sets higher than the 

selected threshold, as well as their associated isotopes, in-source clusters, or fragments were 

removed from analysis. HCA was repeated to visualize how well samples clustered once the 

contaminants were removed. This process was repeated until triplicate injections of each 

sample were linked to one another before being linked to other samples in all data sets.
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3. Results and Discussion

3.1 Hierarchical Cluster Analysis and Data Filtering

The goal of this study was to identify and remove chemical contaminants from mass spectral 

data sets. Towards this goal, HCA was conducted on six sets of pools, where each pool was 

injected in triplicate (technical replicates) into the UPLC-MS system. Each dataset was 

analyzed by HCA after baseline correction and peak alignment.5 It was expected that the 

replicates would show high chemical similarity and cluster together in the dendrogram. 

Before filtering out chemical interferents with high peak area variability within technical 

replicates, however, triplicate injections clustered together in only one of the six data sets—

the three-pool subset analyzed at 0.1 mg mL−1 (Table 1, Figure 1).

On inspecting the data sets, it was determined that certain masses were present in all 

samples but did not display consistent peak area across triplicates. We hypothesized that 

these masses were chemical interferents, and not truly components of the sample. Thus, 

removing these masses from the data sets should result in the expected clustering of 

replicates. To identify the variables representing chemical interference, we inspected 

triplicate injections in two ways. First, the relative variance of each variable was calculated 

for each set of triplicate injections as defined in Equations 1 and 2. The relative variance 

cutoff was determined reducing the threshold until the dendrograms showed the expected 

classification of replicate injections. The dataset was considered filtered when replicates 

clustered together before clustering to additional samples. Using this method, contaminant 

peaks were assigned as those that had an average relative variance ratio (across all pools) 

greater than 1.0 × 107 for low concentration data sets, and 4.1× 107 for high concentration 

data sets. The same interferents were identified in both subsets, though more interferents 

were identified using the low concentration data subsets.

In addition, each chromatogram was visually inspected using a spectral variable plot, in 

which the mass/retention time of each unique spectral variable was plotted on the x-axis, and 

corresponding peak area of that variable was plotted on the y-axis (Figure 2A). Ions that 

were part of the sample, including the known compounds spiked into the mixture, showed 

consistent peak area across triplicate injections (Figure 2B), whereas purported contaminants 

typically did not (Figure 2C). Spectral variable visualization also enabled the identification 

of peaks associated with the contaminant masses, such as 13C isotopes and in source clusters 

and fragments, which were not identified based solely on the mathematical approach. For 

example, two mass/retention time pairs were identified at m/z 744.201 and 744.211 using 

the relative variance cutoff. Upon spectral variable inspection, additional isotope peaks and 

mass spectral artefacts associated with this contaminant were identified (e.g. m/z 746.188, 

746.198, and 746.208, Table S-1), despite their low relative variance (Figure 2C). Removing 

these ions improved clustering, allowing for a more complete representation of 

contaminants. Background contaminants with high peak area variation between triplicate 

injections, as well as their associated masses, were removed from the peak list, and HCA 

was repeated. Following the removal of these compounds, triplicates clustered in all six 

sample subsets and the average dissimilarity score of technical replicates decreased (Table 

1). An example dendrogram before and after filtering is shown in Figure 1. It is important to 
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note that there is the possibility that true sample components may share the same m/z and 

retention times as isotopes and mass spectral artefacts and be accidentally removed during 

this process. In some cases, fragmentation patterns can be evaluated to assess whether or not 

these masses are truly associated with contaminant peaks showing high relative variance. 

This may not always be possible, however, so users familiar with the analytical 

instrumentation and the biological sample under analysis should conduct this part of the 

filtering process carefully, with the goals of the project in mind.

3.2 Sources of Contamination

3.2.1. Source of Chemical Interferents with High Peak Area Variability—As 

analytical instruments have become more sensitive and more high throughput, the list of 

potential interferents detected grows [31]. During chromatographic separation and mass 

spectral analysis, the sample comes into contact with a variety of surfaces that could lead to 

chemical contamination not associated with the sample, such as polymeric interferences 

from plasticware and tubing [31]. We hypothesized that ions demonstrating high peak area 

variation between triplicate injections were due to chemical interferents coming from 

sources such as these. These contaminants (Table S-1) were consistent in their identity 

(although not peak area) across data sets. Of the 128 contaminant peaks removed from 

analysis, 22 were tentatively identified (using accurate mass data) as associated with 

polysiloxanes as reported by Keller et al. [31]. Indeed, polysiloxanes are found in silica 

capillary tubes such as those used for UPLC-MS analysis as well as in column packing 

materials [18–19].

To investigate our hypothesis that these contaminants originated from the analytical 

instrumentation, the accurate masses and retention times of common interferents were 

compared to blank injections containing methanol with no sample. Methanol blanks were 

included throughout the run. Of the 128 contaminants identified, 121 were present in at least 

one of the blanks. Interestingly, forty-four of the chemical interferent features were not 

found in every blank. Thus, it appears that the interferents originate from the UPLC-MS 

system itself, and not from the solvent alone (although it is possible that both the solvent and 

the UPLC-MS system might contain some of the same contaminants).

It is common practice in metabolomics analysis to subtract peaks contained within the blank 

from the data sets under study [20]. However, our results (Figure 2) show that ion abundance 

of chemical contaminants can vary from injection to injection, so the list of contaminants 

removed will likely not be comprehensive using a simple blank subtraction. Indeed, when 

we produced a dendrogram of the 0.01 mg mL−1, ten-pool set after subtracting peaks 

contained within one of the blanks, the triplicate injections only clustered together for two 

out of ten pools (Figure 3). Additionally, in cases where carryover occurs between sample 

and blank injections, it is possible that ions contained in the sample can be inadvertently 

removed by blank subtraction. The method proposed here in which replicate injections are 

compared to identify potential contaminants circumvents the problems associated with 

subtracting the peaks from a single blank injection.
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3.2.2. The Potential for False Positives—We have illustrated that an important type of 

chemical interference originates from the LC-MS equipment itself, and have developed a 

method to minimize its contribution to metabolomics datasets. However, there is the 

potential for this approach to remove actual sample components that show high variability 

among replicate injections. Peak area variance can occur for a number of reasons, including 

matrix ionization effects, injection errors, and sample carryover from previous injections 

[32]. Matrix effects leading to changes in compound ionization efficiency or mobility can 

result from interactions with other components of the sample. If a particular compound co-

elutes with another sample component that impacts its ionization, for example, it may not 

show consistent peak area from injection to injection and could be identified as a false 

positive. Similarly, injection errors, in which the actual sample volume analyzed via LC-MS 

is different than expected, can lead to large differences in peak area across injections, even 

for true sample components [32].

Although there is a risk for removing false positives with the method proposed herein, the 

use of average relative variance as a metric to define contaminants (Equation 2) reduces this 

risk. It is likely, for example, that in at least one set of triplicate injections a real sample 

component may be affected by matrix effects and consequently show a high relative 

variance. It is unlikely, however, for this matrix effect to be consistent across all samples 

under analysis, and the high relative variance value from one sample should be normalized 

by averaging with low relative variance values from other samples. The same is true for 

injection errors and sample carryover.

It is of course possible that even when using average relative variance, we may 

unintentionally remove important sample components from our datasets. To reduce this risk 

further, we recommend the use of internal standards. These internal standards should consist 

of compounds possessing diverse properties and should not be found in the biological 

sample under analysis [32]. Differences in peak areas of these internal standards can allow 

researchers to identify samples that may have been compromised by sample injection errors 

or matrix effects.

3.2.3. Complementary Quality Control Practices to Improve Metabolomics 
Datasets—It is important to note that the types of chemical contaminants identified using 

the approach presented here are only those contaminants that vary distinctly from replicate 

injection to injection. Interferents that originate from the sample preparation process will be 

consistent across technical replicates and not identified with the HCA approach 

demonstrated here. Complex calibrants such as process blanks, which do not contain 

biological material but have undergone the same chemical treatment as biological samples 

[32] should be included in LC-MS analyses to identify interferents resulting from sample 

preparation. Compounds found in process blanks may represent some of the same 

contaminants identified using this HCA approach (if the sample had gone through some sort 

of chromatographic separation step before LC-MS analysis, for example), but will likely 

contain additional chemical contaminants including pipette tip contaminants and extraction 

solvent impurities [32–33]. Although we have illustrated that the inclusion of solvent blanks 

is not sufficient to remove all contaminants from analysis, blank runs are still undeniably 
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important, as they allow researchers to define an appropriate baseline cutoff, estimate 

background noise, and evaluate carryover effects [20, 32].

3.3 Effects of Sample Number and Concentration on Dendrogram Analysis

To evaluate the effect of sample number and concentration on filtering analysis, we 

compared sets containing three-, five-, or ten-pools at concentrations of 0.1 mg mL−1 and 

0.01 mg mL−1 (expressed as mass of the mixture per volume solvent). Because the three-, 

five-, and ten-pool subsets all originated from the same starting mixture, the resulting pools 

will be the most complex with the lowest number of pools (Scheme 1).

Data sets containing greater numbers of samples were more impacted by chemical 

interferents, as were samples injected at the lower concentration of 0.01 mg mL−1 (Table 1). 

For example, the average dissimilarity scores, calculated by averaging scores from the 0.1 

mg mL−1 subsets and the 0.01 mg mL−1 subsets, respectively, were higher in low-

concentration groups when compared to their high-concentration counterparts (6.67 × 109 

versus 4.82 × 109, respectively). Following filtering analysis, high-concentration groups 

showed greater dissimilarity scores than the low- concentration subsets (2.71 × 109 and 8.39 

× 108, respectively). After filtering, both high- and low-concentration subsets displayed 

lower dissimilarity scores than they did preceding data filtering, indicating that the 

contaminant peaks contributed to the high dissimilarity between triplicate injections.

The results of these comparisons are illuminating, and suggest that metabolomics studies of 

simpler samples may be more impacted by chemical interferents. Indeed, the three-pool 

dataset, regardless of injection concentration, consistently showed the highest number of 

correct clusters before filtering analysis. Because they contain more compounds that are 

consistent between triplicate injections, the varying concentrations of contaminants have less 

effect on the overall clustering of more complex pools. With the simpler pools in the ten-

pool dataset, the effect of high variability in peak area of contaminant peaks has a greater 

influence on the overall model. Similarly, the effect of contaminant interference appears to 

be greater with low-concentration injections, presumably because the contaminant peaks 

have larger relative peak areas in these subsets. This is an important point, because 

metabolomics analysis is often focused on identifying very low-abundant peaks from highly 

complicated samples. As such, filtering analysis to remove interferents may be critical for 

success.

3.4 PCA Scores and Loadings

Principal Component Analysis (PCA) is one of the most commonly employed tools in 

metabolomics data analysis and is used to group objects by chemical similarity [11]. 

Groupings of objects can be visualized in a PCA scores plot, and the variables contributing 

to the groupings can be assessed using a PCA loadings plot. PCA was used here as an 

alternative technique to HCA to assess the similarity of triplicate injections.

As an example, the ten-pool, low-concentration dataset was subjected to PCA before and 

after removal of the chemical interference ions. Before filtering, untargeted metabolomics 

analysis of these pools yielded 467 marker ions with unique retention time-m/z pairs. The 

resulting PCA model comparing the pools was comprised of two components explaining 
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81.8% of the variance (component 1: 53.1%, component 2: 28.7%). The technical replicates 

of each pool did not cluster on the resulting scores plot, indicating that chemical interferents 

have a severe impact on clustering analysis (Figure 4A). Following spectral variable 

inspection and removal of contaminant masses, a new PCA model was produced, this time 

containing 339 ions. The two-component model explained 92.29% of the variance 

(component 1: 82.19%, component 2: 10.10%). With this model, triplicate injections are 

overlaid on the plot, indicating that statistical analysis was virtually unaffected by chemical 

interferents (Figure 4B). If chemical interferents that varied from injection to injection were 

still impacting the analysis, we would expect that triplicates would not cluster in the scores 

plot, as evidenced with Figure 4A. Any contaminants that remain in the dataset after the 

filtering and contaminant removal display consistent peak area across all samples under 

analysis, and will consequently have little or no effect on the clustering of samples observed 

in principal component analysis.

The PCA loadings plot before analysis is also revealing (Figure 5). It shows that many of the 

loadings resulting in separation of pools are associated with chemical interferents. 

Hypothetically, it would be possible to utilize PCA loadings plots of triplicate injections to 

visualize which compounds contribute to separation of chemical replicates (Figure 6). 

Because this loadings plot is comprised solely of a set of triplicate injections, all variables 

should be clustered together. However, this is clearly not the case, and any variables that lead 

to group separation are due to chemical interference introduced after sample injection. From 

Figure 6B, it is apparent that variables associated with contaminants are responsible for the 

separation between triplicate injections. However, blue contaminant variables and orange 

sample variables do begin to overlap in the center of the plot, making visual interpretation 

virtually impossible without a priori knowledge of the sample mixture components. For 

example, the loadings plot of one set of triplicate injections (first pool of the ten-pool set, 

0.01 mg mL−1) is very difficult to interpret, and contaminant peaks can only be arbitrarily 

identified (Figure 6). This example is representative of a common problem identified across 

all data sets under analysis in the current study.

4. Conclusions

Robust data pretreatment is necessary to extract reliable information from mass 

spectrometry data sets. The results presented here demonstrate that HCA of technical 

replicates is a valuable tool for data pretreatment by enabling the identification and removal 

of certain interferents. In its current form, however, there is still a considerable amount of 

user-intervention required. Further developments should focus on automating this approach 

as much as possible so that users do not have to iteratively filter their data by hand and 

define the relative variance cutoff. However, identifying peaks that are associated with 

interferents yet do not show high relative peak area variance will still require identification 

by the user, and this application will vary from experiment to experiment and depend on the 

goals of the project itself.

It is often assumed that chemical interference in mass spectral data is consistent across 

samples, and should, therefore, be removable by blank subtraction. On the contrary, here we 

show that certain chemical interferents can vary in signal intensity across technical 
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replicates. Such interferents can be identified and removed with the approach presented here. 

It is particularly important to identify and remove these types of interferents, given that the 

very premise of metabolomics experiments is that the compounds that vary among samples 

are likely to be chemically or biologically relevant. Many studies are conducted without 

technical replicates, and the results of the current study show the potential limitation of such 

an experimental design and demonstrate a straight-forward alternative strategy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights for Review

• We develop a method to remove interferents in mass spectrometry 

metabolomics

• Interferents are identified when abundance varies among technical replicates

• We show that blank subtraction does not remove this type of interference

• Hierarchical clustering analysis confirms that filtering has been sufficient

• This approach could be used for data pretreatment in other analytical studies
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Figure 1. Euclidean dendrograms of the ten-pool, 0.01 mg mL−1 data subset before (A) and after 
(B) filtering analysis *
* Samples have been identified first by their pool number followed by the injection number. 

For example, 1-1 is the first pool, and first injection of three technical replicates.
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Figure 2. Spectral variable inspection of triplicate injections from the second pool from the five-
pool, 0.01 mg mL−1 data subset
2A. Overlaid spectral variable plots of triplicate injections in which peak areas of each 

variable are plotted for comparison. 2B. Spectral variables associated with the sample under 

analysis. Overlapping traces are consistent from injection to injection. 2C. Spectral region 

associated with chemical contamination showing a variance/mean peak area ratio greater 

than 1.0 × 107.
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Figure 3. Euclidean dendrogram of the ten-pool, 0.01 mg mL−1 data subset following subtraction 
of masses contained in one blank from analysis
This example illustrates that blank subtraction was insufficient since replicates do not cluster 

correctly.
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Figure 4. PCA Scores plots before (A) and after (B) data filtering of the ten-pool, 0.01 mg mL−1 

data subset
4A. Technical replicates are not overlaid on the plot, and clustering of groups is difficult to 

visualize. 4B. Technical replicates are overlaid as expected, and there is distinct separation 

between groups.
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Figure 5. PCA loadings plot of the ten-pool, 0.01 mg mL−1 data subset before filtering of 
chemical interferents
Most of the variables contributing to group separation are contaminant peaks.
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Figure 6. PCA loadings plot of triplicate technical replicates from pool one of the ten-pool, 0.01 
mg mL−1 data subset
6A. Loadings plot illustrating all variables contributing to group separation. 6B. Color-coded 

loadings plot allowing visualization of contaminant and sample peak influence on group 

separation. Many of the chemical contaminants are close to the center cluster, and would not 

be reliably identified using PCA loadings alone.
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Scheme 1. Workflow for subset preparation and subsequent analysis
A botanical mixture spiked with the known compounds berberine, magnolol, 

cryptotanshinone, and alpha-mangostin was fractionated three times and separated into equal 

sample sets containing 3, 5, or 10 final pools. The resulting pools were suspended at 0.1 or 

0.01 mg mL−1 (reported as mass of dry extract per volume solvent) in methanol for UPLC-

MS analysis. Each data subset was analyzed using hierarchical cluster analysis (HCA) 

before and after filtering to remove chemical interferents.
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Table 1

Summary of hierarchical clustering analysis results before and after data filtering.

Sample Set
Percentage of Correct Triplicate 
Clusters Before & After 
Filtering Analysis (Before, After)

Average Dissimilarity Score* Before & After Filtering Analysis 
(Before, After)

Three pool set, 0.1 mg mL−1 100%, 100% 5.23 × 109, 3.23 × 109

Three pool set, 0.01 mg mL−1 33%, 100% 6.17 × 109, 8.62 × 108

Five pool set, 0.1 mg mL−1 60%, 100% 6.18 × 109, 2.34 × 109

Five pool set, 0.01 mg mL−1 20%, 100% 5.71 × 109, 4.54× 108

Ten pool set, 0.1 mg mL−1 40%, 100% 3.05 × 109, 1.36 × 109

Ten pool set, 0.01 mg mL−1 0%, 100% 8.13 × 109, 3.72 × 108

*
Average dissimilarity scores were computed in Sirius 10.0 [28–29] and represent n-dimensional Euclidean distance values.
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