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Abstract

Micro-electromechanical systems (MEMS) that rely on structural vibrations have many important 

applications, ranging from oscillators and actuators, to energy harvesters and vehicles for 

measurement of mechanical properties. Conventional MEMS, however, mostly utilize two-

dimensional (2D) vibrational modes, thereby imposing certain limitations that are not present in 

3D designs (e.g., multi-directional energy harvesting). 3D vibrational microplatforms assembled 

through the techniques of controlled compressive buckling are promising because of their complex 

3D architectures and the ability to tune their vibrational behaviour (e.g., natural frequencies and 

modes) by reversibly changing their dimensions by deforming their soft, elastomeric substrates. A 

clear understanding of such strain-dependent vibration behaviour is essential for their practical 

applications. Here, we present a study on the linear and nonlinear vibration of such 3D 

mesostructures through analytical modeling, finite element analysis (FEA) and experiment. An 

analytical solution is obtained for the vibration mode and linear natural frequency of a buckled 

ribbon, indicating a mode change as the static deflection amplitude increases. The model also 
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yields a scaling law for linear natural frequency that can be extended to general, complex 3D 

geometries, as validated by FEA and experiment. In the regime of nonlinear vibration, FEA 

suggests that an increase of amplitude of external loading represents an effective means to enhance 

the bandwidth. The results also uncover a reduced nonlinearity of vibration as the static deflection 

amplitude of the 3D structures increases. The developed analytical model can be used in the 

development of new 3D vibrational microplatforms, for example, to enable simultaneous 

measurement of diverse mechanical properties (density, modulus, viscosity etc.) of thin films and 

biomaterials.

Graphical Abstract

1. Introduction

Structural vibrations have been widely exploited in micro-electromechanical systems 

(MEMS) for many important applications including oscillators (Antonio et al., 2012; 

Antonio et al., 2015; Chen et al., 2016a; Chen et al., 2017), actuators (Roche et al., 2014; 

Polygerinos et al., 2015; Li et al., 2017a; Li et al., 2017b; Niu et al., 2017), mass 

measurement (Yan et al., 2017a), measurement of mechanical properties (Belmiloud et al., 

2008; Etchart et al., 2008; Park et al., 2010; Cakmak et al., 2015; Cermak et al., 2016; 

Corbin et al., 2016), energy harvesters (Chen et al., 2013; Park et al., 2013; Chen and Jiang, 

2015; Chen et al., 2016b; Jiang et al., 2016; Zi et al., 2016; Zou et al., 2016; Fang et al., 

2017; Jiang et al., 2017; Zou et al., 2017a; Zou et al., 2017b), micro robots (Diller et al., 

2014; Connolly et al., 2015) and acoustics (Nemat-Nasser et al., 2011; Nemat-Nasser and 

Srivastava, 2011; Bilal et al., 2017a; Bilal et al., 2017b). In most cases, such MEMS rely on 

two-dimensional (2D) vibrational modes, which are not well suited for multi-directional 

energy harvesting, anisotropic mechanical property measurement, simultaneous evaluation 

of multiple mechanical properties (density, modulus, viscosity etc.) and other applications 

where operation in a 3D space is required.

Recent advances in fabrication/assembly techniques such as those that use controlled 

mechanical buckling (Khang et al., 2006; Sun et al., 2006; Audoly and Boudaoud, 2008a; 

Audoly and Boudaoud, 2008b; Audoly and Boudaoud, 2008c; Dias and Audoly, 2014; Xu et 

al., 2015; Zhang et al., 2015; Chen et al., 2016c; Chen et al., 2016d; Lestringant et al., 

2017), self-folding induced by residual stress (Golod et al., 2001; Kong and Wang, 2003; 

Bell et al., 2007; Huang et al., 2012; Froeter et al., 2013; Huang et al., 2014; Chen et al., 

2016e; Bauhofer et al., 2017; Tian et al., 2017), surface instabilities (Yin et al., 2008; Wang 

and Zhao, 2015; Lin et al., 2016; Wang and Zhao, 2016; Liao et al., 2017; Lin et al., 2017; 

Ma et al., 2017), capillary forces (Py et al., 2007; Guo et al., 2009; Antkowiak et al., 2011; 

Wang et al. Page 2

J Mech Phys Solids. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hure and Audoly, 2013; Brubaker and Lega, 2016) and temperature changes (Stroganov et 

al., 2014; Cui et al., 2017) and 3D printing/writing processes (Therriault et al., 2003; 

Gratson et al., 2004; Lewis et al., 2006; Schaedler et al., 2011; Soukoulis and Wegener, 

2011; Fischer and Wegener, 2013; Jang et al., 2013; Farahani et al., 2014; Hong et al., 2015; 

Farahani et al., 2016; Matlack et al., 2016; Hirt et al., 2017), allow the construction of 

complex 3D structures and form the structural basis of 3D vibrations. Based on 3D 

polymers/silicon mesostructures assembled through the techniques of controlled 

compressive buckling (Xu et al., 2015; Zhang et al., 2015; Liu et al., 2016; Yan et al., 2016a; 

Yan et al., 2016b; Nan et al., 2017; Shi et al., 2017; Yan et al., 2017b; Zhang et al., 2017), 

Ning et al., (2017) realized structural vibrations with a broad set of 3D modes. An advantage 

of 3D vibrations realized by these mechanically assembled structures follows from their 

vibration behaviour (e.g., natural frequencies) that can be tuned by applying tensile strain to 

the soft, elastomeric assembly platform. Such tunability is attractive for applications in 

resonators, energy harvesters and others where continuous adaption of the resonant 

frequency is needed to follow changes in the operational environment. Therefore, a clear 

understanding of the strain-dependence of the vibration behaviour is essential for relevant 

applications. The development of a theoretical model to provide insights into the effect of 

diverse design parameters is important, in this context.

The existing fundamental studies on the vibrations of buckled structures mainly focus on 

straight ribbons in the regime of initial postbuckling (Tseng and Dugundji, 1971; Min and 

Eisley, 1972; Tang and Dowell, 1988; Nayfeh et al., 1995; Kreider and Nayfeh, 1998; 

Lacarbonara et al., 1998; Lestari and Hanagud, 2001; Emam and Nayfeh, 2004; Noijen et 

al., 2007; Emam, 2013; Shojaei et al., 2014). For example, Tseng and Dugundji (1971) 

derived a solution to the linear natural frequency of the first-order vibration mode for a 

buckled ribbon with fixed ends. This solution shows a proportional dependence on the static 

deflection amplitude, which, however, does not hold when the static deflection amplitude 

increases beyond several times of the ribbon thickness (Nayfeh et al., 1995; Kreider and 

Nayfeh, 1998). Nayfeh et al. (1995) proposed the use of a trial solution to describe the 

vibration mode, in which the five unknown coefficients were determined by solving an 

eigenvalue problem numerically. Although this approach can predict the linear natural 

frequency in both cases of small and large static deflection amplitudes, an explicit solution 

cannot be obtained due to the complicated form of the vibration mode, limiting its 

applicability to more complex 3D structures. According to dimensional analysis, Ning et al. 

(2017) introduced a simple scaling law of the linear natural frequencies for buckled 3D 

mesostructures with different geometries, but it does not capture the effect of static 

deflection amplitude, or equivalently, the prestrain used in the assembly. These existing 

theories cannot be extended directly to buckled ribbons with large deflection amplitudes, due 

to the strong nonlinear deformations associated with the postbuckling, which also 

complicates the vibrational analyses.

The present study aims at investigating the linear and nonlinear vibration of complex 3D 

mesostructures formed via controlled buckling, with a focus on the scenario where the static 

deflection amplitude is much larger than the structure thickness. An analytical model is 

developed to explicitly relate the linear natural frequency to the static deflection amplitude 

or the compressive strain of a buckled ribbon, showing excellent agreements with the results 
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of finite element analyses (FEA). By introducing two fitting parameters to account for the 

complex geometries and vibrations, this analytical model can be extended to 3D structures 

with complex topologies. As validated by FEA and experiment measurements, the 

generalized model predicts reasonably well the relationship between the linear natural 

frequency and the compressive strain for a broad range of structural vibrations. Furthermore, 

the analyses of the nonlinear vibration shed light on the influences of vibration amplitude on 

the natural frequency under free vibrations, as well as effects of load amplitude on the 

bandwidth under forced vibrations.

2. An analytical model of linear vibration in buckled ribbons

Figure 1 illustrates the geometries of the buckled ribbon and the vibration modes when the 

structure is subject to the out-of-plane and in-plane vibrations, respectively. The wavy ribbon 

is formed by compressive buckling of a straight 2D ribbon selectively bonded to a 

prestrained elastomer at two ends. Release of the prestrain induces compressive forces that 

are sufficiently large to trigger buckling of the ribbon into an arch shape, as shown in Fig. 

1a. Figure 1b shows an experimental image of the mesostructure fabricated by this 

controlled compressive buckling technique, taken from Sun et al. (2006). Techniques 

reported recently by Yan et al. (2017c) allow physical transfer of the buckled ribbon onto a 

vibration stage that can excite both the out-of-plane and in-plane vibrations, as schematically 

illustrated in Figs. 1c and 1d, respectively. Since the vibration stage is usually much more 

rigid than the buckled ribbon, the deformations of the stage can be neglected. Consider a 

slender ribbon whose thickness h is much smaller than the length L, such that it can be 

modelled as an Euler beam (i.e., with no shear deformation). An analytical model can be 

then developed to predict the linear vibration of the first-order out-of-plane mode and the 

first-order in-plane mode at different levels of static deflection amplitude A(0), as elaborated 

below.

2.1. Governing equations

According to the finite-deformation beam theory (Su et al., 2012; Fan et al., 2016; Fan et al., 

2017), the deformations of a planar ribbon during compressive postbuckling can be 

characterized by the displacement of its central axis u = uiEi and the twist angle, where Ei is 

the unit vector before deformation in the Cartesian coordinates (X, Y, Z). In this section, we 

focus on the postbuckling of a straight ribbon as shown in Fig. 1a, such that only the 

displacement components in the X-Z plane are involved.

For a moderate level of compressive strain (e.g., < 30%), an energetic approach (Ko et al., 

2009; Wang et al., 2010; Zhu and Chen, 2017) can be exploited to determine the 

displacements of the ribbon during the postbuckling as

u1 0 = A 0 cos 2π
L Z + 1 , u3 0 =

πA 0
2

4L sin 4π
L Z − εcompreZ, (1)

Wang et al. Page 4

J Mech Phys Solids. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where the compressive strain εcompre = L − l
L  is the relative dimensional change between the 

two bonding sites, with l being the distance after compression; εc = π2h2/(3L2) is the critical 

strain; and A 0 = 3L2εcompre − π2h2 /3π2 = L
π εcompre − εc is the static deflection amplitude 

of the buckled ribbon. Here, fixed boundary conditions are assumed at the two ends of the 

beam, namely

u1 ±L/2 = 0, u3 ±L/2 = 0,
du1
dZ ±L/2 = 0. (2)

To solve the linear natural frequency and the vibration mode of the buckled ribbon, a 

harmonic vibration displacement Δui, (Z,t) = ΔAUi(Z) sin(ωt) is superimposed on ui(0)(Z) to 

give the total displacement as

ui v Z, t = ui 0 Z + Δui Z, t = ui 0 Z + ΔAUi Z sin ωt , (3)

where Ui (Z) is the vibration mode and ω is the angular frequency. Similar to the works of 

Tseng and Dugundji (1971) and Tang and Dowell (1988), we expand ΔAUi (Z) in the 

following series form,

ΔAU1(Z) = ∑
k = 1

n
ΔA(k)φ(k)(Z), ΔAU3(Z) = ∑

k = 1

n
ΔA(k)ϕ(k)(Z), (4)

where φ(k) and ϕ(k) are characteristic base functions. Neglecting the displacements of the 

rigid vibration stage, the fixed boundary condition should be satisfied for the buckled ribbon, 

i.e.

U1 ±L/2 = 0, U3 ±L/2 = 0 and
dU1
dZ ±L/2 = 0, (5)

which require that φ(k)(Z) and ϕ(k)(Z) should satisfy

φ k ±L/2 = 0, ϕ k ±L/2 = 0 and
dφ k
dZ ±L/2 = 0. (6)

The harmonic vibration displacement is given by
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Δu1 Z, t = ∑
k = 1

n
Δa k t φ k Z , Δu3 Z, t = ∑

k = 1

n
Δa k t ϕ k Z , (7)

where Δa(k)(t) = ΔA(k) sin(ωt) can be determined from the Lagrange’s equation of motion. 

Specifically, the potential energy Ws consists of the membrane energy (W membrane) and the 

bending energy (W bending) of the ribbon, as given by

Ws = Wmembrane + Wbending = 1
2∫−L/2

L/2
Ebh λ − 1 2dZ + 1

24∫−L/2

L/2
Ebh3κ2dZ, (8)

where λ is the stretch ratio, κ is the curvature, b is the ribbon width, and E is the elastic 

modulus of the ribbon material. By neglecting the terms of the 3rd and higher order power of 

Δa in Eq. (8), the potential energy can be also written as Ws = 1
2ΔaTKΔa, in which Δa is a 

n×1 vector {Δa(1), Δa(2),…, Δa(n)}T, and K is an n×n stiffness matrix. Similarly, the kinetic 

energy can be given as

T Δa. = 1
2∫−L/2

L/2
ρbh

∂u1(v)
∂t

2
+

∂u3(v)
∂t

2
dZ = 1

2Δa. TMΔa. , (9)

where Δȧ = {Δȧ(1), Δȧ(2),…, Δȧ(n)}T, is the time derivative of Δa , i.e. Δȧ = d(Δa)/dt , ρ is the 

density of the ribbon material, and M is an n×n mass matrix. The Lagrange’s equation of 

motion requires that

d
dt

∂ T − Ws
∂Δa. =

∂ T − Ws
∂Δa , (10)

which leads to the governing equation

MΔä + KΔa = 0. (11)

Substitution of Δa=ΔAsin(ωt) into Eq. (11) gives

K − ω2M ΔA = 0, (12)
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where ΔA = {ΔA(1), ΔA(2),…, ΔA(n)}T. The linear natural frequency can be then determined 

by solving the eigenvalue problem, corresponding to the solution of

K − ω2M = 0, (13)

where |K–ω2M| denotes the determinant of K–ω2M.

2.2. Solution to the linear natural frequency of the first-order out-of-plane mode

To derive a solution to the linear natural frequency and the vibration mode, an analytical 

form of the vibration displacement ΔAUi (Z) should be constructed using Eq. (4). For the 

first-order out-of-plane mode, FEA results show that the vibration displacement can be well 

characterized by the superposition of the following base functions, with two terms (i.e. n=2) 

in Eq. (4),

φ 1 Z = 1 + cos 2πZ
L , φ 2 Z = 1 − cos 4πZ

L , (14)

ϕ 1 Z =
πA 0

2L sin 4πZ
L , ϕ 2 Z =

πA 0
3L 6 sin 2πZ

L − 2 sin 6πZ
L . (15)

The potential energy of the vibration is then derived as

Ws = Ebh3

L3 k11Δa 1
2 + k22Δa 2

2 , (16)

where

k11 = −
5π6A 0

2

3L2 +
2π4A 0

2

h2 and k22 =
28π6A 0

2

3L2 + 4π4 . (17)

The kinetic energy is then written as

T = ρbhL m11Δa. 1
2 + m22Δa. 2

2 + m12Δa. 1 Δa. 2 , (18)

where
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m11 =
π2A 0

3

16L2 + 3
4, m22 =

10π2A 0
2

9L2 + 3
4 and m12 = 1. (19)

Substitution of Eqs. (16)–(19) into Eq. (10) gives the governing equations to determine Δa(1) 

and Δa(2) , i.e.,

2ρbhLm11Δä 1 + ρbhLm12Δä 2 +
2k11Ebh3Δa 1

L3 = 0, (20)

2ρbhLm22Δä 2 + ρbhLm12Δä 1 +
2k22Ebh3Δa 2

L3 = 0. (21)

Referring to Eq. (11), the stiffness matrix and the mass matrix are given by

K =

2k11Ebh3

L3 0

0
2k22Ebh3

L3

and M =
2ρbhLm11 ρbhLm12
ρbhLm12 2ρbhLm22

. (22)

According to Eqs. (12) and (13), the linear natural frequency and vibration mode are solved 

as

f I = h
L2

E
ρ f I

A 0
h ,

A 0
L , (23)

ΔA 1
ΔA 2

= h2

L2
12L2 8π2A 0

2 + 3L2

A 0
2 40π2A 0

2 + 27L2 + h4

L4 R4
A 0
L + h6

L6 R6
A 0
L + …, (24)

where f̂I is the normalized linear natural frequency, whose explicit form is given in 

Appendix A; the coefficients of Taylor’s expansion, R4(A(0)/L) and R6(A(0)/L), are 

nonlinear functions of A(0)/L as presented in Appendix B. Noticing that the ribbon thickness 

is far smaller than its length, i.e. h ≪ L , all the terms except the first one in Eq. (24) can be 

neglected such that it reduces to
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ΔA 1
ΔA 2

=
12h2 8π2A 0

2 + 3L2

A 0
2 40π2A 0

2 + 27L2 . (25)

In general, the normalized linear natural frequency f̂1 in Eq. (23) depends on two 

dimensionless parameters, A(0)/h and A(0)/L, but it can reduce to a single-variable function 

in certain conditions as we show below.

As shown by Eq. (25), ΔA(1) is much larger than ΔA(2) when the static deflection amplitude 

of the buckled ribbon is much smaller than the ribbon thickness, i.e. A(0) ≪ h . This means 

φ(1)(Z) and ϕ(1)(Z) in Eq. (14) and Eq. (15) dominate the vibration mode. In the limit of 

A(0)/h→0, the normalized linear natural frequency f̂I (Eq. (A1)) approaches

f I = 6π
3

A 0
h . (26)

In this condition, the linear natural frequency scales with A(0)/h. When the static deflection 

amplitude of the buckled ribbon is much larger than the ribbon thickness, i.e. A(0) ≫ h, A(2) 

is then much larger than A(1), and therefore, ϕ(2)(Z) and ϕ(2)(Z) in Eq. (14) and Eq. (15) 

dominate the vibration mode. In the limit of A(0)/h→∞ , the normalized linear natural 

frequency f̂I (Eq. (A1)) approaches

f I = 2 3π
3 + 8π2 A 0

2 /L2

27 + 40π2 A 0
2 /L2 . (27)

In this condition, the linear natural frequency is independent of A(0)/h. Together with the 

simplified relationship between the compressive strain (εcompre) and A(0)/L , i.e., 

εcompre =
π2A 0

2

L2 1 + h2

3A 0
2 ≈

π2A 0
2

L2 , Equation (27) can be re-written as

f I = 2 3π
3 + 8εcompre

27 + 40εcompre
. (28)

The above analysis suggests a distinct dependence of the first-order out-of-plane natural 

frequency at two different limit conditions of A(1) ≫ h . The vibration mode and the linear 

natural frequency of the buckled ribbon for different levels of static deflection amplitude are 

summarized in Table 1, including both the precise and simplified forms (for A(1) ≪ h and 

A(0) ≫ h).
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2.3. Solution to the linear natural frequency of the first-order in-plane mode

For the first-order in-plane mode, a set of functions that can both satisfy the boundary 

conditions and fit well the FEA results are adopted, with simply one term (n=1) in Eq. (4), 

as given by

φ 1 Z = sin 2πZ
L − πZ

L + 4πZ3

L3 , (29)

ϕ 1 Z =
12πA 0 Z2

L3 +
12A 0

πL +
6πA 0

L −
24πA 0 Z2

L3 cos2 πZ
L +

12A 0 Z

L2 sin 2πZ
L

−
4πA 0

L cos4 πZ
L .

(30)

The corresponding potential energy of the vibration is

Ws =
k11Ebh3Δa 1

2

L3 , (31)

where

k11 = − 2π4

15 + 2π2 + π6

3 − 16π4

9 + 3π2 A 0
2

L2 , (32)

and the kinetic energy is

T = m11ρbhLΔa. 1
2 , (33)

where

m11 = π2

105 + 1
4 − 3

π2 + 111
80 π2 − 121

6 + 567
8π2

A 0
2

L2 . (34)

The governing equations of the vibration displacements can be then derived as
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2ρbhLm11Δä 1 +
2k11Ebh3Δa 1

L4 = 0. (35)

The linear natural frequency is solved as

f II = h
L2

E
ρ f II

A 0
L , (36)

where the normalized linear natural frequency f̂II is given by

f II = 2 21π
3

−6π4 + 90π2 + 15π4 − 80π2 + 135 π2 A 0
2 /L2

16π6 + 420π4 − 5040π2 + 2331π4 − 33880π2 + 119070 π2 A 0
2 /L2 . (37)

The corresponding vibration mode is

U1 = 0.0905φ 1 , U3 = 0.0905ϕ 1 . (38)

When the static deflection amplitude of the buckled ribbon is much larger than its thickness, 

f̂II can also be expressed as a single-variable function of the compressive strain, i.e.

f II = 2 21π
3

−6π4 + 90π2 + 15π4 − 80π2 + 135 εcompre
16π6 + 420π4 − 5040π2 + 2331π4 − 33880π2 + 119070 εcompre

. (39)

3. Model validation and parametric study of vibration in the buckled ribbon

This section presents validation of the above analytical model by FEA, as well as parametric 

study of vibration in the buckled ribbon. The FEA were performed using the commercial 

software ABAQUS. The shape and stress of the buckled ribbon determined from the 

postbuckling analysis was imported into the modal analysis to calculate the natural 

frequencies and modes of the linear vibration. Four-node finite-strain shell elements (S4) 

were used, with at least 20 elements were along the width direction of the ribbon to 

guarantee the convergence. The material was assumed to be a photopatternable epoxy (SU8), 

a typical polymer used in 3D assembly. The Young’s modulus, Poisson’s ratio and density of 

SU8 are E=4.02 GPa, ν=0.22 and ρ=1.2 g/cm3.
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3.1. First-order out-of-plane mode for A(0) ≫ h

According to the analytical model in Section 2.2, the first-order out-of-plane vibration 

exhibits different features at different levels of static deflection amplitude (A(0)) of the 

buckled ribbon, or equivalently, the compressive strain εcompre. We first focus on the case of 

A(0) ≫ h. The natural frequencies predicted by the simplified form of the analytical model 

and FEA are compared in Figs. 2a and 2b for the first-order out-of-plane vibration. The FEA 

results confirmed the independence of the linear natural frequency on A(0)/h, consistent with 

the analytical model. The analytical results are also in quantitative agreement with FEA 

results. The analytical and FEA results of vibration mode are presented in Fig. 2b ~ d. In the 

condition of A(0) ≫ h, the out-of-plane vibration mode predicted by the analytical model 

agrees well with that of FEA, for the compressive strain varying from 0.05 to 0.30.

3.2. First-order out-of-plane mode for A(0) ≪ h

When the static deflection amplitude (A(0)) of the buckled ribbon is much smaller than the 

ribbon thickness h, the FEA results in Fig. 2e verified the independence of the linear natural 

frequency on A(0)/L. When A(0)/h<0.5, the normalized linear natural frequency f̂ based on 

FEA falls exactly on the straight line predicted by the simplified form of the analytical 

model for A(0) ≪ h. Beyond A(0)/h=0.9, the FEA results deviate the linear dependence 

evidently. Fig. 2f shows that the vibration mode based on the analytical prediction also 

agrees very well with FEA results, with both differing significantly from the condition of 

A(0) ≫ h.

3.3. Mode change for A(0)/h varying in a wide range

Figure 3a ~ d shows the gradual change of the first-order out-of-plane mode as the static 

deflection amplitude A(0) increases from a small value relative to the ribbon thickness h. As 

indicated by Eq. (25), the vibration mode depends on A(0)/h, when A(0) is much smaller than 

or of the same order as h. In this condition, the in-plane displacement U3 of the vibration 

mode is typically much smaller than the out-of-plane displacement U1, such that we focus 

only on U1 in this subsection. As A(0)/h increases from 0.25 to 2.5 in Fig. 3a ~ d,, the precise 

form of the analytical solution coincides with the results of simplified model for A(0) ≪ h in 

Fig. 3a (with A(0)/h=0.25), then deviates from it in Figs. 3b and 3c (with A(0)/h=0.5 and 

A(0)/h=1.0) and finally approaches the results of the simplified model for A(0) ≫ h in Fig. 3d 

(with A(0)/h=2.5). In all of the above cases, the predictions of precise analytical solution 

agree with the FEA results.

3.4. In-plane mode

The analytical model in Section 2.3 indicates that the normalized linear natural frequency of 

the first-order in-plane mode depends on A(0)/L, and is independent of A(0)/h when h is 

much smaller than L. This is verified by FEA results in Fig. 4a, in which the f π2A 0
2 /L2

curves are the same when A(0)/h is fixed to be 20, 50 and 100 respectively. For typical values 

of π2A 0
2 /L2, e.g., < 0.2, the analytical predictions of the normalized linear natural frequency 

and vibration mode agree reasonably well with the FEA results, as shown by Figs. 4 a ~ d.
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4. Mechanically-tunable natural frequency in general 3D structures formed 

through controlled buckling

In this Section, we study the linear natural frequency of vibrations in complex 3D structures 

formed through controlled buckling of 2D precursors. As the static deflection amplitude of 

such structures is usually much larger than its thickness, we extend the analytical model 

developed in Section 2.2 (Eq. (28)) and Section 2.3 (Eq. (39)) to general 3D structures.

4.1. Extension of the analytical model to general 3D structures

The analytical model in Section 2.2 and 2.3 shows that the linear natural frequency f scales 

with a combination of material/geometry parameters by

f = f h
L2

E
ρ . (40)

This scaling is consistent with the experimental observations in Ning et al. (2017) for 

general complex 3D structures, where f is also proportional to E1/2ρ−1/2hL−2. Inspired by the 

structure of the analytical solutions (Eqs. (28) and (39)), f̂ can be expressed by a single-

variable function of the compressive strain as

f = α
1 + β1εcompre
1 + β2εcompre

, (41)

where α, β1 and β2 are three unknown parameters that depend on the layout of the 2D 

precursor. For β2εcompre comparatively smaller than 1, Eq. (41) can be further simplified as

f ≈ α 1 + β1εcompre 1 − β2εcompre ≈ α 1 + βεcompre, (42)

where β = β1−β2 and α can be determined by fitting the FEA results of the f̂ ~ εcompre curve. 

As we show in Section 4.2, this scaling law Eq. (42) applies to a plenty number of 3D 

structural vibrations. In addition, the parameter β measures the sensitivity of the linear 

natural frequency to the compressive strain.

4.2. Dependence of normalized linear natural frequency on the compressive strain

4.2.1. 3D helical structures on a rigid substrate—3D helical structures are attractive 

for their potentials in replacing 2D structures in a broad range of microsystems (Farahani et 

al., 2014). This type of structures can be formed from the controlled buckling of 2D 

serpentine ribbons (Liu et al., 2016). The top angle of the 2D serpentine ribbons (θ in Fig. 

5a) and the compressive strain play a crucial role in determining the 3D shape after 

buckling, as well as the linear natural frequency. Figure 5b ~ e presents the FEA results of 
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the normalized linear natural frequency f̂ of the first-order in-plane mode and the first-order 

out-of-plane mode for the top angle θ ranging from 0° to 180° and the compressive strain 

εcompre from 0.05 to 0.3. The scaling law in Eq. (42) agrees remarkably well with FEA for 

all of the different parameter combinations, as shown in Fig. 5b ~ e. Figure 5f gives the two 

parameters α and β determined from the FEA results (i.e., the f̂ ~ εcompre curve), for 

different top angles. These results suggest that the normalized linear natural frequency 

decreases as θ increases. The sensitivity of the normalized linear natural frequency to the 

compressive strain strongly depends on the top angle θ, as evidenced by the β ~ θ curves in 

Fig. 5f.

4.2.2. Other representative 3D structures on a rigid substrate—Figure 6 

demonstrates the results of vibration in some other representative 3D structures, including 

those with membrane shapes (Fig. 6a and Fig. 6b), ribbon shapes (Fig. 6c and Fig. 6d), and a 

hybrid of them (Fig. 6e and Fig. 6f). For each of the example, the first-order in-plane mode 

and the first-order out-of-plane mode are studied. The linear natural frequency according to 

the scaling law with two fitting parameters agrees very well with the FEA. These results 

suggest the applicability of the scaling law Eq. (42) to a broad set of vibrations in 3D 

structures formed by the controlled buckling.

4.2.3. Buckled ribbon structure on a soft substrate—In the above study, we 

investigated the vibration of 3D structures transferred onto a rigid substrate. In other 

application circumstances, e.g., for integration with biological tissues, the 3D structures 

simply reside on the original elastomer substrate. Here, the deformation of the substrate may 

have some influence on the structural vibration, depending on the substrate modulus (Es) 

and thickness (hs). Although the scaling law Eq. (42) is developed without consideration of 

the substrate deformation, FEA and experimental results on wide-ranging parameters and 

geometries, to be shown in Figs. 7 and 8, illustrate the utility of this scaling law in the 

structural vibration on a soft substrate. The FEA performed in Section 4.2.3 and Section 

4.2.4 assumed a perfect bonding between the bonding site and the substrate.

We consider a buckled ribbon on the substrate whose modulus ranges from 166 kPa to 10 

GPa, thickness ranges from 500 um to 2000 um and compressive strain ranges from 0.05 to 

0.35. The natural frequency of first-order out-of-plane mode based on the scaling law 

matches well with the FEA results (Fig. 7), for all of the different cases. For the same 

compressive strain εcompre and substrate thickness, the linear natural frequency increases as 

the substrate modulus, as shown by Fig. 7b ~ f. When the substrate modulus is 10 GPa, the 

fitted parameters in the scaling law Eq. (42) are α =3.43 and β =0.60 respectively, very close 

to the values (α =3.47 and β =0.61) for ideal rigid substrate. In the controlled buckling 

process, the substrate usually has a small modulus, e.g. dragon skin (166 kPa) and PDMS (~ 

2 MPa). As the substrate modulus reduces from 10 GPa to 166 kPa, the fitted parameter α 
decreases by about 20% (from 3.43 to 2.80), while β remains almost the same. The above 

results indicate that the substrate modulus has a negligible influence on the sensitivity of the 

linear natural frequency to the compressive strain.
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Figure 7g ~ i presents a range of f̂ ~ εcompre curves for different substrate thickness (from 

500 um to 2000 um) and fixed substrate modulus (166 kPa), indicating very minor effect of 

substrate thickness on the linear natural frequency in the range of interest.

4.2.4. General 3D structures on a soft substrate—Figure 8 illustrates the utility of 

the scaling law to general 3D structures on a soft substrate, with experimental validations. 

Five representative 3D structures, including the cage, table, triangle membrane, arch with a 

disk and two-layer flower, were taken into account, with all residing on a soft substrate 

(Dragon skin, modulus 166 kPa). In the experiments, each of the 3D structures is formed via 

controlling buckling under three different strains (Xu et al., 2015; Zhang et al., 2015), and 

then activated to induce natural vibration. The vibrational behavior was investigated by an 

automatic apparatus that consisted of a laser sensing component and an actuation 

component. The structures were attached on a 3D-printed stage with high-performance 

commercial piezoelectric actuators, which excited the vibrations of the structures. A laser 

beam was focused on the structure and the scattered beam was collected and redirected to a 

photodetector (Thorlabs, DET 110). The vibrating structure resulted in the fluctuation in the 

intensity of the scattered laser collected by the photodetector. A high-precision lock-in 

amplifier was used to measure the amplitude of the fluctuating photocurrent. The maximum 

amplitude of photocurrent measured in this way corresponded to the resonance of the 

structures. The vibration was automatically controlled by a signal generator. A Labview 

program was developed to sweep the desired range of frequency, record data from the lock-

in amplifier, and control the signal generator. This apparatus enabled an accurate and 

automatic way to study the vibration behavior of the microscale 3D structures.

The natural frequency obtained from experiment matches well with the prediction of the 

scaling law, for all of the different examples. Note that the two parameters α and β 
associated with the scaling law were determined from FEA, without referring to the 

experiment results. In general, the scaling law slightly overestimates the natural frequency 

compared to the experimental results, especially at relative high compressive strains. This 

trend can be explained by the simplified boundary conditions in the modeling. In specific, 

the FEA assume a perfect bonding of 3D structures with the substrate without any 

delamination, but in experiments, a slight level of partial delamination might occur due to 

the finite interfacial strength, especially at relative large compression. Therefore, the 

boundary condition assumed in the model is a bit more rigid than that in experiments, 

resulting in a slightly overestimated natural frequency.

The 3D geometry plays an important role on the sensitivity of the linear natural frequency to 

the compressive strain. For example, the linear natural frequency of cage (Fig. 8a) depends 

highly on the compressive strain (β = 1.52), while that of the flower (Fig. 8e) is almost 

independent on the compressive strain (β = 0.32).

Due to the assumption that the
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5. Nonlinear vibration

In the above analysis, we assume that the vibration amplitude is much smaller than the 

structure thickness such that the vibration is linear. In this section, we study the nonlinear 

vibration of the buckled ribbon and complex 3D structures formed through controlled 

buckling, focusing on two important quantities (natural frequency and bandwidth).

5.1. Nonlinear natural frequency

To calculate the nonlinear natural frequency by FEA, a time-harmonic displacement is 

applied to the bonding site to activate the vibration, and then removed after several cycles to 

allow free vibration of the structure. After a sufficiently long time of free vibration (>500 

periods), the displacement as a function of time is sampled and the Fourier transformation 

then gives the amplitude-frequency spectrum, from which the natural frequency can be 

obtained. As shown by Fig. 9a, for the first-order out-of-plane mode of a buckled ribbon 

whose static deflection amplitude is on the same order of amplitude as the ribbon thickness, 

the nonlinear natural frequency is smaller than the linear natural frequency and decreases as 

the vibration amplitude increases (see the black, red and blue curves for the case A(0) = 0.5h, 

1.5h and 2.5h respectively). This trend is consistent with the predictions by the subspace 

projection method reported in literature (Tseng and Dugundji, 1971). However for a buckled 

ribbon whose static deflection amplitude is much larger than the ribbon thickness (e.g., by ≥ 

40 times), the nonlinear natural frequency is almost the same as the linear natural frequency, 

even when the vibration amplitude is 1.4 times of the ribbon thickness, indicating a very 

weak nonlinear effect.

The above results can be understood based on the dimensional analysis of the potential 

energy of vibration. For the first-order out-of-plane mode of a buckled ribbon, the potential 

energy consists of the membrane energy (Wm) and the bending energy (Wb) as discussed in 

Section 2.1. In linear vibration, the potential energy (Ws) is proportional to the square of the 

vibration amplitude (Δa), i.e.

Ws = k Ebh3

L3 Δa2 . (43)

When the vibration amplitude Δa increases to the same order of amplitude as the ribbon 

thickness h, the membrane energy may contribute a nonlinear term to the potential energy, 

i.e. Wm(Nonlinear) = kN
Ebh

L3 Δa4. For a ribbon in the regime of initial postbuckling, a large 

membrane energy may arise during vibration as the overall length of the ribbon inevitably 

changes. Therefore, when the vibration amplitude Δa increases to the same order as h, the 

nonlinear term Wm(Nonlinear) can be significant. However, for a buckled ribbon with large 

static deflection amplitude, the membrane energy becomes negligible because a curved 

ribbon can easily deform to accommodate the vibrational deformations without changing its 

length. This mechanism prohibits the nonlinear term Wm(Nonlinear). Meanwhile, for the 

bending energy to contribute a nonlinear term to the potential energy, the vibration 
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amplitude needs to on the same order as the ribbon length, noticing that Wb ∝ h3. The above 

qualitative analysis is consistent with the reports in literature that a straight ribbon with two 

fixed-ends can exhibit strong nonlinear vibration (Tseng and Dugundji 1970; Yamaki and 

Mori 1980; Yamaki et al., 1980).

A similar trend is also observed in 3D helical (with two different top angles, 30° and 90°, in 

the 2D precursors) and triangular membrane structures, as shown by Fig. 9b ~ d for the out-

of-plane vibration mode. In these general 3D vibrations, the nonlinear effect also becomes 

weaker as the static deflection amplitude increases, and is negligible for A(0)/h≥40.

5.2. Bandwidth

Bandwidth is an important characteristic of the nonlinear vibration. As shown in Fig 10a, the 

bandwidth is defined according to the vibration amplitude-frequency spectrum in forced 

vibration. For the linear vibration with infinitesimal amplitude, a sharp peak occurs at the 

natural frequency, yielding a zero bandwidth if the dissipations are ignored. When the 

nonlinear effect is taken into account, the bandwidth becomes non-zero and increases with 

increasing the vibration amplitude. As discussed in Section 5.1., the nonlinearity of vibration 

becomes weak for buckled ribbons with the static deflection amplitude much larger than its 

thickness. As such, we can anticipate that the resulting vibration has a small bandwidth 

compared to the case of small static deflection amplitude. This conclusion is supported by 

FEA, as shown in Fig. 10b ~ f. In the cases of A(0) = 1.5h and 2.5h, the amplitude-frequency 

spectrum has a broad band around the peak when the vibration amplitude equals to the 

ribbon thickness, while in the case of A(0) = 80h, the peak is still quite sharp even if the 

vibration amplitude is five times of the ribbon thickness. Figure 10f shows the bandwidth 

quantitatively as a function of the amplitude of the external loading for a buckled ribbon 

with wide-ranging static deflection amplitudes. In all of the different cases, the bandwidth 

can always be enhanced by more than 4 times through increasing the amplitude of the 

external loading.

6. Conclusions and discussions

This paper presents a systematic study of the linear and nonlinear vibrations of mechanically 

assembled 3D structures through analytical modeling, FEA and experiment. An explicit 

analytical solution is derived for the vibration mode and the linear natural frequency of a 

buckled ribbon. Both the analytical solution and FEA reveal a change of vibration mode as 

the static deflection amplitude of the buckled ribbon increases from a very small value 

compared to the ribbon thickness. The vibration mode of the buckled ribbon at large static 

deflection amplitude is found to be distinct from that of a straight ribbon (Tseng and 

Dugundji, 1970). In the condition of relative large static deflection amplitudes, the solution 

of the linear natural frequency can be well extended to general, complex 3D structures, 

either on rigid or soft substrates, as validated by both FEA and experiments. The developed 

scaling law Eq. (42) can serve as a tool for the experimentalists to measure the sensitivity of 

the linear natural frequency to the compressive strain, noting that the measurement of linear 

natural frequencies at two different compressive strains provides enough data to determine 

the parameter β. In the meanwhile, the parameter β can also be determined from FEA with 
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sufficient accuracy without referring to the experiment results, as suggested by the five cases 

shown in Figure 8. For some of 3D structures studied herein, the linear natural frequency is 

very sensitive to the compressive strain, as evidenced by the large magnitude of parameter β 
in the developed scaling law. The change of the linear natural frequency (f) indicates the 

change of the equivalent stiffness (K) or the equivalent mass (M) of the structural vibration, 

as f ∝ K
M . Therefore, these 3D structures can be potentially utilized as tunable resonators to 

measure, simultaneously, the stiffness and mass of other coupling media. In the regime of 

nonlinear vibration, FEA calculations suggest that the increase of amplitude of external 

loading represents an effective means to enhance the bandwidth. The results also indicate a 

reduced nonlinearity of vibration as the static deflection amplitude of the 3D structures 

increases. This study can serve as design guidelines for the development of new 3D 

vibrational micro-platforms or efficient energy harvesters.
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Appendix A. Explicit form of f ̂ I in Eq. (23)

The explicit form of the normalized linear natural frequency in Eq. (23) is
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Appendix B. Expressions of the functions R4 and R6 in Eq. (24)

The vibration mode in Eq. (24) can be derived as
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Appendix C. Expression of coefficient C(ΔA(2)ΔA(1)) in Table 1

The function C
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 in Table 1 is

C
ΔA 2
ΔA 1

=

1
2

ΔA 2
ΔA 1

≤ 1
4

8
ΔA 2
ΔA 1

4
ΔA 2
ΔA 1

+ 1
2

ΔA 2
ΔA 1

> 1
4

. (C1)

Wang et al. Page 25

J Mech Phys Solids. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Analytic solution of vibration modes & linear natural frequency of a buckled 

ribbon

• Mode change as the static deflection amplitude of buckled ribbon increases

• Scaling law of linear natural frequency for general, complex 3D structures

• Reduced vibration nonlinearity as deflection amplitudes of 3D structures 

increase
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Figure 1. 
(a) Schematic of the compressive postbuckling in a straight ribbon induced by the 

contraction of a pre-strained substrate. (b) an experimental image of the mesostructure 

formed through the controlled compressive buckling. Reprinted by permission from 

Macmillan Publishers Ltd: [Nature Nanotechnology] (Sun et al., 2006), copyright (2006). 

Illustration of (c) the out-of-plane vibration and (d) the in-plane vibration. To illustrate the 

vibration mode, two phases corresponding to the largest amplitudes during vibration are 

shown, i.e. green: phase 0°, gray: phase 180°.
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Figure 2. 
Validation of the analytical model by FEA for the first-order out-of-plane mode: (a) 

normalized linear natural frequency as a function of the compressive strain when the static 

deflection amplitude A(0) is much larger than the ribbon thickness h; (b–d) vibration modes 

for three different compressive strains (0.05, 0.20 and 0.30); (e) normalized linear natural 

frequency as a function of the A(0)/h when A(0) is smaller than h; (f) vibration mode for A(0)/

h=0.25. The solids lines and dots represent the analytical predictions and FEA results, 

respectively.
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Figure 3. 
Change of the first-order out-of-plane vibration mode for A(0)/h varying in a wide range: (a–

d) vibration modes for A(0)/h=0.25, 0.5, 1.0 and 2.5, respectively. Both the results of precise 

and simplified models are presented for comparison. To illustrate the vibration mode, two 

phases corresponding to the largest amplitudes during vibration are shown, i.e. green: phase 

0°, gray: phase 180°.
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Figure 4. 
Validation of the analytical model by FEA for the first-order in-plane mode: (a) normalized 

linear natural frequency as a function of π2A 0
2 /L2; (b–d) vibration modes for 

π2A 0
2 /L2 = 0.05, 0.10 and 0.20, respectively (green: phase 0°, gray: phase 180°).
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Figure 5. 
Extension of the analytical model to 3D helical structures, with validations by FEA: (a) 

illustration of the 2D precursors and geometric parameters; (b–e) Illustration of the first-

order in-plane mode and the first-order out-of-plane mode (green: phase 0°, gray: phase 

180°), and the corresponding normalized linear natural frequencies as a function of the 

compressive strain, for different top angles (30°, 90°, 135° and 180°) of the 2D structure; the 

solid lines and the dots represent the results based on the scaling law and the FEA, 

respectively; (f) Parameters α and β that characterize the scaling law of linear natural 

frequency, as a function of the top angle.
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Figure 6. 
Extension of the analytical model to other representative 3D structures, with validations by 

FEA: (a) and (b) membrane-shaped structures; (c) and (d) ribbon-shaped structures; (e) and 

(f) structures with a hybrid of membrane and ribbon shapes; the solid lines and the dots 

represent the results based on the scaling law and the FEA, respectively
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Figure 7. 
Extension of the analytical model to a buckled ribbon on a soft substrate, with validations by 

FEA, highlighting the effects of the substrate modulus and substrate thickness on the linear 

natural frequency: (a) Schematic illustration of the model; (b–f) normalized linear natural 

frequency as a function of the compressive strain for a fixed substrate thickness (500 um) 

and a wide range of substrate modulus (166 kPa, 1 MPa, 10 Mpa, 100 MPa and 10 GPa); (g–

i) normalized linear natural frequency as a function of the compressive strain for a fixed 

substrate modulus (166 kPa) and three different substrate thicknesses (500 um, 1000 um and 

2000 um). The solid lines and the dots represent the results based on the scaling law and the 

FEA, respectively.
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Figure 8. 
Experimental validation of the scaling law for five representative 3D structures: (a) cage; (b) 

table; (c) triangular membrane; (d) ribbon and (e) flower, in an order of decreasing 

sensitivity (β) of the linear natural frequency to the compressive strain. The solid lines and 

the dots represent the results based on the scaling law and the experiment, respectively.
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Figure 9. 
Nonlinear natural frequency of four mechanically-assembled structures as a function of 

vibration amplitude (ΔA/h) for four different static deflection amplitudes (A(0)/h): (a) 

buckled ribbon; (b) and (c) helical structures with top angles of 30° and 90°; and (d) 

triangular membrane.
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Figure 10. 
Bandwidth of the amplitude-frequency spectrum under forced nonlinear vibration of a 

buckled ribbon for a wide range of static deflection amplitude (A(0)/h) and amplitude 

(Aext/h) of external loading: (a) schematic illustration of the FEA model and the definition 

of the bandwidth; (b–e) frequency spectrum of the vibration amplitude for A(0)/h = 2.5, 2.5, 

6.0 and 80, respectively; (f) bandwidth as a function of Aext/h for five different A(0)/h (1.5, 

2.5, 6.0, 20 and 80).
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