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Abstract

Neuroimaging has evolved into a widely used method to investigate the functional neuroanatomy, 

brain-behaviour relationships, and pathophysiology of brain disorders, yielding a literature of 

more than 30,000 papers. With such an explosion of data, it is increasingly difficult to sift through 

the literature and distinguish spurious from replicable findings. Furthermore, due to the large 

number of studies, it is challenging to keep track of the wealth of findings. A variety of meta-

analytical methods (coordinate-based and image-based) have been developed to help summarise 

and integrate the vast amount of data arising from neuroimaging studies. However, the field lacks 

specific guidelines for the conduct of such meta-analyses. Based on our combined experience, we 

propose best-practice recommendations that researchers from multiple disciplines may find 

helpful. In addition, we provide specific guidelines and a checklist that will hopefully improve the 

transparency, traceability, replicability and reporting of meta-analytical results of neuroimaging 

data.
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Introduction

Over the last two decades, neuroimaging has evolved into a widely used method to 

investigate functional neuroanatomy, brain-behavior relationships, and pathophysiology of 

brain disorders. However, single imaging studies usually rely on underpowered studies with 

small sample sizes, which leads to many missed results (Button et al., 2013) and pushes 

researchers towards analyses and thresholding procedures that increase false positives 

(Eklund et al., 2016; Wager et al., 2007; Wager et al., 2009; Woo et al., 2014). In addition, 

results are strongly influenced by experimental and analyses procedures (Carp, 2012) and 

replication studies are rare. Thus, it is increasingly difficult to sift through the enormous 

neuroimaging literature and distinguish spurious from replicable findings, and even harder to 

gauge whether effects in individual studies can be generalized to a task or patient group in a 

way that is robust to variation in the specific task and details of analysis choices performed. 

Furthermore, due to the large number of studies, it is challenging to keep track of the wealth 

of findings (Radua and Mataix-Cols, 2012). Thus, there is a need to quantitatively 

consolidate effects across individual studies in order to overcome problems associated with 

individual neuroimaging studies.

One potent approach to synthesizing the multitude of results in an unbiased fashion is to 

perform a meta-analysis. There are two general approaches to neuroimaging meta-analyses: 

image-based and coordinate-based meta-analyses. Image-based meta-analyses are based on 

the full statistical images of the original studies, whereas coordinate-based meta-analyses 

only use the x,y,z-coordinates (and in some cases their z-statistic) of each peak location 

reported in the respective publication. Image-based meta-analyses allow for the use of 

hierarchical mixed effects models that account for intra-study variance and random inter-

study variation (Salimi-Khorshidi et al., 2009) as the full information required for this is 

provided in image form. However, due to the fact that whole-brain statistical images are 
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rarely shared (but see Gorgolewski et al., 2015; http://neurovault.org, for recent approaches 

of sharing unthresholded statistical images in an online database), most meta-analytic 

research questions cannot yet be addressed with image-based meta-analysis. In contrast, 

while coordinate-based meta-analyses use a sparser representation of findings, almost all 

individual neuroimaging studies provide their results as coordinates in standardized 

anatomical space (either MNI (Collins et al., 1994) or Talairach (Talairach and Tournoux, 

1988) space). Thus, coordinate-based meta-analyses allow us to capitalize on much of the 

published neuroimaging literature, and provide a quantitative summary of these results to 

answer a specific research question. There are different approaches to coordinate based 

meta-analysis, including (multilevel) kernel density analysis (KDA, MKDA; e.g., Wager et 

al., 2004; Wager et al., 2007; Pauli et al. 2016), gaussian-process regression (GPR; Salimi-

Khorshidi et al., 2011), activation likelihood estimation (ALE; Eickhoff et al., 2012; 

Eickhoff et al., 2009; Turkeltaub et al., 2002; Turkeltaub et al., 2012), parametric voxel-

based meta-analysis (PVM; Costafreda et al., 2009), signed differential mapping (SDM; 

Radua and Mataix-Cols, 2009). A revised version of SDM, termed effect-size SDM (ES-

SDM), also allows for the combination of coordinate-based results and statistical images 

(Radua et al., 2012).

Despite the increasing use of meta-analytic approaches in the last few years, there is a lack 

of concrete recommendations regarding how to perform neuroimaging-based meta-analyses, 

report findings, or make results available for the whole neuroimaging community to foster 

reproducibility of neuroimaging meta-analytic results. For individual MRI experiments, such 

guidelines have already been developed (COBIDAS; Nichols, 2015). However, best 

practices for neuroimaging meta-analyses differ from those of individual imaging studies 

(and also from those of effect-size based meta-analyses of behavioral studies, (e.g., MARS; 

(American Psychological Association, 2010)). Thus, the aim of this paper is twofold. First, 

we provide best-practice recommendations that should be considered carefully when 

performing neuroimaging meta-analyses and help researchers to make informed and 

traceable decisions. Second, we set standards regarding which information should be 

reported when publishing meta-analyses to enable other researchers to replicate the study. 

While these recommendations are primarily relevant to coordinate-based meta-analyses, 

most of them also hold true for image-based meta-analyses.

1. Be specific about your research question

The critical first step of any meta-analysis is to specify as precisely as possible the research 

question and the approach towards investigating it. For most functional neuroimaging meta-

analyses (this decision is not relevant for structural imaging studies), the researcher must 

first decide which paradigms to include in the meta-analysis. For example, a researcher 

interested in cognitive action control may want to know which regions are consistently 

found activated or deactivated across experiments that required participants to inhibit a 

prepotent response in favor of a non-routine one. For this example, the question arises if one 

should include all experiments that test cognitive action control, no matter what paradigm 

was used (e.g., Stop-signal, Go/No-Go, Stroop, Flanker tasks…), or limit the analysis to a 

specific paradigm (e.g., Stop-signal task). Considering the consequences for interpretation, 

the latter case would be specific to the cancelling of an already initiated action, while a 
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meta-analysis across all paradigms would focus on the higher order supervisory control 

processes necessary in all paradigm types. Importantly, if one decides to include different 

paradigms, it may be helpful to ensure that the distribution of experiments is relatively 

balanced across tasks. However, in this context, it should be noted, that if there is enough 

literature available, there is the possibility to not only calculate one main meta-analysis, but 

rather also sub-analyses which may focus on more specialized processes (e.g., different 

paradigm classes) or groups (e.g. different patient samples). For example, one could plan to 

calculate a general meta-analysis across Stop-signal, Go/No-Go, Stroop and Flanker tasks 

and then also individual sub-analyses for each paradigm. Convergence across paradigms 

could be then tested by overlapping the results of the different sub-analyses, or quantitatively 

using an omnibus test of difference in reported activation pattern (Tench et al., 2014). 

However, these choices of sub-analyses should have a rationale and be made beforehand and 

not after inspecting the data (see below). Importantly, brain processes may not always be 

organized by named task type and minor variations in paradigms can produce large changes 

in cognitive strategies. As an example, Gilbert et al. (2006) showed that across diverse 

cognitive domains differences in reaction times between experimental and control conditions 

are differentially associated with the lateral versus medial rostral prefrontal cortex. That is, 

when performing a meta-analysis the researcher should carefully select the respective 

experiments, focusing not only on the paradigm name but also check if the process involved 

in the respective contrast really reflects the critical cognitive process.

In addition to specifying the paradigms for the analysis, inclusion and exclusion criteria 

need to be specified. There are general criteria that should be applied. These general criteria 

refer to only including whole brain experiments (see details below) and only including 

experiments from which coordinates or statistical images in standard anatomical space can 

be obtained (see details below). For ES-SDM, another general criteria is to only include 

experiments that report activations and deactivations (or increases and decreases when 

comparing groups). Additionally, specific criteria that depend on the particular research 

question must be specified. Beyond included tasks and paradigms, these specific criteria can 

relate to analyses and methods. For example, the question might arise if one should only 

include functional imaging (fMRI) studies (e.g., Kurkela and Dennis, 2016) or studies using 

either fMRI or positron emission tomography (PET) (e.g., Langner and Eickhoff, 2013; zu 

Eulenburg et al., 2012).

Examples of other specific inclusion and exclusion criteria relate to aspects of the analysis 

(e.g. inclusion of only main effects or also of interactions, restricting the meta-analysis to 

only experiments reporting results on a certain statistical threshold) or to characteristics of 

the subject group (for example including only healthy subjects or only group comparisons, 

inclusion of only a specific age range of subjects). Importantly, it should always be kept in 

mind that the criteria one applies have an impact on how heterogeneous (or homogeneous) 

the sample of experiments is. Moreover, inclusion and exclusion criteria influence whether 

or not the sample of experiments is representative for the entire neuroimaging literature 

available for a specific topic and thus the quality of inclusion. In general, quality of inclusion 

is given when doing a systematic literature search. However, under certain circumstances it 

might be limited. For example, when the process investigated and the corresponding 

inclusion criteria and terminology are defined based on the work of one specific author 
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doing a lot of experiments in this field. This could lead to including only the work of this 

specific author while concurrently excluding work defining the process a bit different. This 

emphasizes the need for detailed reporting which experiments are excluded from the meta-

analysis and the reasons for doing so.

For research questions regarding group effects there are additional considerations, which 

have to be taken into account. First of all, there is the question if the focus is on within- (e.g. 

a specific patient group) or between-group effects (e.g. comparison between patients and 

controls). When the focus is on between-group effects there are two ways to plan the project: 

on the one hand, there is the possibility to calculate a meta-analysis across all experiments 

comparing the groups of interest (e.g. schizophrenia versus controls). On the other hand, two 

meta-analyses can be calculated, one across experiments in one group (e.g. schizophrenia) 

and one across experiments of the other group (e.g. controls). In this case, one should make 

sure that there are no systematic thresholding differences in the original experiments (such 

as e.g. the results coming from the controls are all corrected, while results from patients are 

all uncorrected) as this will bias the meta-analytic results. Afterwards a group comparison 

can be done by doing a contrast analysis between the two meta-analyses (see Spreng et al., 

2010). While the former approach is most common, the latter might be an option especially 

when there are only few experiments reporting between group effects. Importantly, 

depending on whether the group comparison is done on the experimental or meta-analytic 

level, interpretation of results changes. That is, while results of meta-analyses across 

experiments of group comparisons reflect “convergence of differences in brain activation 

between groups”, a meta-analytic contrast analyses reveals “differences in convergence of 

brain activation between groups”.

Once a set of papers has been selected, there is also the question of which specific contrasts 

to include. That is, a paper (which refers to a published item) often reports different analyses 

or contrasts (which are in the terminology of meta-analyses most frequently called 

experiments). For example, a paper uses the Go/No-Go (with 75% Go and 25% No-Go 

trials) task and reports three different contrasts: Go>Rest, No-Go>Rest, No-Go>Go. While 

the first contrast does not reflect cognitive action control processes necessary to suppress a 

dominant action plan, the latter two do test for regions involved in these supervisory control 

processes. Thus, the question arises, if one should include both relevant contrasts or rather 

only one of the two (see rule 5 for recommendations regarding multiple contrasts per paper).

Additionally, it is also important to decide across which processes and modalities the meta-

analysis should be calculated. For example, does it make sense to pool across task fMRI and 

connectivity experiments? Technically, everything is possible. However, the interpretation of 

the meta-analytic results crucially depends on the inclusion/exclusion criteria and the 

experiments on which the analysis is based.

In summary, the first step of a neuroimaging meta-analysis is to specify the research 

question as precisely as possible, which includes the definition of the process investigated, 

specification of paradigms and contrasts included as well as the general and specific 

inclusion and exclusion criteria.
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2. Consider the power of the meta-analysis

An important aspect when planning a meta-analysis is the question of how many 

experiments are necessary in order to be able to perform a robust analysis. Obviously the 

higher the sample size, the better the power. However, meta-analyses always face a trade-off 

between number of included experiments (power) and their quality and heterogeneity 

(Müller et al., 2016). That is, in order to increase the number of experiments an investigator 

might include experiments that are more heterogeneous in task and design (e.g., include all 

possible paradigms investigating cognitive action control) or feature lower quality. Thus, 

when planning a meta-analysis, there is always the challenge to find a balance between 

homogeneity and power. However, there are conceptual limitations for power, as 

consolidation of the literature about a specific research field only makes sense if there is 

enough literature. Thus, when specifying the research question, the literature should always 

be screened beforehand in order to estimate if there is a reasonable number of experiments 

to include. This is particularly important for coordinate-based meta-analyses; for image-

based analyses, where a random effects approach is generally used, an insufficient number 

of studies will likewise hamper power due to limited degrees of freedom to estimate 

between-study variability. For both approaches the generalization of results is questionable 

when including only a small number of experiments. The key problem with a low number of 

experiments, at least in ALE based meta-analyses, is that results can be strongly driven by 

only a few experiments (Eickhoff et al., 2016b). Thus, when pooling across different 

analytical and experimental approaches (e.g., Go-No-Go and Stop-Signal), this fact can lead 

to a problem of generalization as only specific types of experiments could drive the results. 

In general, a meta-analysis aims to pool across different approaches and tasks in order to 

investigate effects consistent across strategies (Radua and Mataix-Cols, 2012). However, in 

the event that results can be driven by only a few experiments as is the case for small 

samples, the generalizability of effects is more questionable.

Based on a recent simulation study (Eickhoff et al., 2016b), a recommendation was made to 

include at least 17–20 experiments in ALE meta-analyses in order to have sufficient power 

to detect smaller effects and to also make sure that results are not driven by single 

experiments. Of course, this can only been seen as rough recommendation as the required 

number of experiments of a meta-analyses is strongly dependent on the expected effect size. 

Thus, in cases where a strong effect is expected, smaller sample sizes may be sufficient to 

perform reliable meta-analyses. However, analyses with expected small and medium effect 

sizes (which is often the case) that include a lower number of experiments should be treated 

with caution.

That said, the experiments must fully meet the inclusion criteria. Thus, a sound meta-

analysis aims to include many experiments but it may have to discard large numbers of them 

in order to meet the inclusion criteria.

Thus, a crucial consideration when planning and performing a (coordinate-based) meta-

analysis is whether there are enough experiments available that meet all inclusion criteria to 

ensure that the meta-analysis has adequate sensitivity to detect effects of the expected 

magnitude, while maximizing ability to generalize to as broad a population of studies of 

interest as possible.
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3. Collect and organize your data

After the research question has been specified, data collection can start. Usually it begins 

with a thorough literature search, using different search engines. For neuroimaging the most 

commonly used ones are Pubmed (https://www.ncbi.nlm.nih.gov/pubmed), Web of Science 

(https://webofknowledge.com), and Google Scholar (https://scholar.google.com/). By using 

combinations of different keywords restricting the search to specific experiments (e.g. 

“Go/No-Go”), study types (e.g. “fMRI”) or/and populations (e.g. “human”), potential 

studies for the meta-analysis can be identified (one can also potentially use less conventional 

selection strategies; e.g., the Neurosynth or Brainmap database allow researchers to identify 

papers of, for example, a specific topic). Furthermore, reference tracing in already identified 

articles as well as in review articles usually helps to complete the literature search. 

Importantly, everything that is done should be tracked. That is, search engines, keywords 

and date boundaries should be recorded, along with how many papers were identified by the 

search, how many of them were excluded, and the reasons for rejection. Any resultant 

manuscript should provide this information in the methods section. In fact, many journals 

require “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA) 

workflow charts for publications of meta-analyses, which graphically illustrate exactly this 

information. Keeping detailed records during search and selection of experiments eliminates 

the need to repeat the literature search later.

After identification of all potential papers, the data need to be organized, and all necessary 

information for the analysis must be extracted. First, the selected experiments should be 

examined for fulfillment of all inclusion criteria. Thus, each publication must provide a 

minimum of information required to determine eligibility for inclusion in the meta-analysis. 

This information refers to coordinates, sample size, and inference/acquisition space. In 

coordinate-based meta-analyses an experiment can only be included when it reports its 

results as x/y/z coordinates in standard space (i.e. MNI or TAL), provides the number of 

included subjects, results are based on whole-brain analysis without small volume 

corrections, and both increases and decreases are reported (for ES-SDM). Z-statistics (or 

equivalents such as t-statistics or uncorrected p-values) are needed for GPR and are strongly 

suggested for ES-SDM. This should always be taken into account when choosing a meta-

analytic approach: While GSP and ES-SDM use the z-statistics of the reported results in 

each experiment; the remaining methods treat all foci equally.

In cases where it is difficult to identify the standard space used or if a whole-brain analysis 

was conducted, contacting the authors and asking for further information can help to provide 

this specific information.

It can be very useful to create a table that details all the information that has been extracted 

from each included experiment. This gives a good overview of the experiments and can help 

to identify on which criteria to aggregate the experiments (e.g., an overall analysis across all 

experiments of cognitive action control) and for performing specific sub-analyses (e.g. only 

No-Go vs. Go experiments, only corrected results, etc.). Furthermore, this table can later be 

helpful when writing the manuscript as each included experiment should be described and 

reported in detail.
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In summary, for every neuroimaging meta-analysis data collection and organization should 

be carried out in a precise and conscientious fashion, which includes tracking all steps of the 

literature search and data selection.

4. Ensure that all included experiments use the same search coverage and identify and 
adjust differences in reference space

An important aspect for coordinate-based meta-analyses is that convergence across 

experiments is tested against a null-hypothesis of random spatial associations across the 

entire brain under the assumption that each voxel has a priori the same chance of being 

activated (Eickhoff et al., 2012; Radua and Mataix-Cols, 2009; Wager et al., 2007). 

Therefore, it is a prerequisite that all experiments that are included in a meta-analysis come 

from the same original search coverage (most commonly the whole brain). Inclusion of 

heterogeneous region-of-interest (ROI) or small volume corrected (SVC) analyses would 

violate this assumption and lead to inflated significance for those regions that come from 

overrepresented ROI/SVC analyses. For example, let’s assume that all of the included 

experiments of the cognitive control meta-analysis performed a ROI/SVC analysis on the 

anterior cingulate cortex (ACC) and most of them reported activation in this structure. 

Significant convergence is almost guaranteed when testing against a null-hypothesis of 

random spatial convergence across the entire brain. However, this result would only be a 

confirmation of the bias of investigating activity during cognitive action control solely in the 

ACC. Thus, in general ROI /SVC analyses should not be included in a meta-analysis.

Importantly, excluding all experiments that used ROI analyses may itself lead to a bias as a 

critical amount of studies may not be considered in the meta-analysis. To avoid neglecting 

the importance of e.g. small regions that are commonly used as ROIs the researcher should 

report how many experiments using ROI analyses were excluded from the meta-analysis and 

acknowledge those regions that are commonly used as ROIs in their introduction and 

discussion section.

However, it should be noted that inclusion of ROI analyses may be valid if the whole meta-

analysis focuses on just a specific region of interest. Importantly, in this case the null-space 

has to be adapted to the ROI, i.e. testing against random spatial association across the ROI 

only. For example, one could ask if and where in the ACC experiments of cognitive action 

control converge, include also ROI-based experiments and model the null space accordingly 

with a mask of the ACC. This approach, however, may not be a reasonable solution for small 

regions as here due to spatial uncertainty of the fMRI signal compared to the size of the 

region it may not be meaningful to ask where exactly in the ROI the signal converges. 

Furthermore, in their standard implementation, only few available software tools for 

neuroimaging meta-analysis offer such ROI meta-analysis (e.g. ES-SDM). Moreover, all 

included experiments need to fulfill the criteria of having used a mask that includes the same 

ROI. For some cases this is conceivable; for example, the amygdala where most experiments 

use standard masks. However, other regions such as the DLPFC are less suitable as they are 

anatomically less well defined with different authors using different masks.

SVC analyses may be potentially included if peaks in the regions liberally thresholded are 

discarded unless they meet the statistical threshold used in the rest of the brain. For example, 
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if an experiment applies a threshold of t > 2 in regions with SVC and t > 4 in the rest of the 

brain, peaks of the SVC could also be included if they reach a t > 4. In other words, one 

would simulate that the more conservative threshold used in the rest of the brain was also 

applied to the regions with SVC. If this is done, this should definitely be reported in the 

publication of the meta-analysis by indicating for each experiment which coordinates 

exactly have been discarded.

Importantly, potential experiments should not only be checked for classical (explicit) ROI 

analyses but also for so-called “hidden” ones. That is, sometimes the inference space is also 

reduced by, for example, partial brain coverage during image acquisition. While exclusion of 

explicit ROI analyses is most of the time applied in meta-analyses, hidden ROI analyses are 

often included. However, strictly speaking, those hidden ROI analyses act in the same way 

as explicit ones. Some papers report partial brain coverage by for example stating that 

acquisition of slices “started at the temporal pole up to the hand motor area” or make clear 

that the whole brain was covered. However, in other cases only minimal information on 

image acquisition is given and it is up to the investigator to decide if the whole brain was 

covered or not. In general, if a paper does provide in detail the scanner parameters one can 

easily see if the requirement of whole brain coverage is met or not. What is needed is slice 

thickness, number of slices, gap as well as the field of view (alternatively to FOV: matrix 

and voxel size). As an approximation, the average brain has a width of 140 mm (right-left), a 

length of 167 mm (posterior-anterior) and a height of 93 mm (inferior-superior NOT 

including the cerebellum) (Carter, 2014). Thus, by using the scanner parameters provided in 

the method section of the papers it can be estimated if the whole brain was covered during 

image acquisition or not. For example, ten slices of 4 mm each does not cover the whole 

brain. In other cases it is trickier and there are also a lot of experiments that scan almost the 

entire brain (i.e. missing only one or two slices). These experiments might be considered for 

inclusion, but should be reported as experiments with “almost complete brain coverage”. 

One potential solution for this problem can also be to use a reduced null space, thus raising 

the statistical threshold. In the KDA approach such a restrictive null space is implemented 

by using a gray matter mask with border (e.g. Kober and Wager, 2010).

In contrast to ROI and partial brain coverage, more debatable cases are functional 

neuroimaging studies that use masking or conjunctions. For example, a comparison of brain 

activity between a No-Go and Go condition could be masked by the positive main effect of 

the No-Go condition in order to mask out deactivations. These masking procedures are 

particularly applied when interactions are investigated (e.g., Remijnse et al., 2009). In 

general, for individual fMRI studies masking and conjunctions are perfectly reasonable and 

important. However, in the strict sense, inclusion of these analyses is also questionable as 

they do reduce the inference space to only regions of the masking contrast. This may be less 

critical if the original contrast used for masking was whole brain. Depending on the specific 

research question researchers should carefully consider if experiments using masking 

contrasts or those scanning almost the entire brain are included, and transparently report 

which experiments used an inference space that is restricted.

In addition to using the same search coverage all included experiments should also be in the 

same reference space. As mentioned above, one of the general inclusion criteria is to only 
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include experiments reporting their results in a standard reference space. This is usually the 

case for all experiments investigating effects in a group of (and not individual) subjects. That 

is, for every fMRI and PET group-analysis, imaging data is normalized into a standard space 

in order to be able to investigate effects across subjects. There are two standard spaces used 

in neuroimaging, the Talairach and Tournoux (TAL; Talairach and Tournoux, 1988) and the 

Montreal Neurological Institute (MNI; Collins et al., 1994) space. Importantly, coordinates 

in MNI space differ from those in TAL (Brett et al., 2001), with brains in MNI being larger 

than those in TAL space (Lancaster et al., 2007). Thus, to perform a meta-analysis across 

different experiments it is useful and recommended to convert all results into the same 

space. There are different approaches to transformation--for example, the (older) Brett 

transformation (Brett et al., 2001; Brett et al., 2002) or the one introduced by Lancaster et al. 

(2007). However, before adjusting for differences in space, the standard space that was used 

for normalization has to be determined for each and every included experiment. Usually this 

information can be found in the method section. However, sometimes it is not explicitly 

stated, or authors give inconsistent information.

So, how can one determine in which space the coordinates were reported? This information 

can be derived from i) specifications of the space by the authors (e.g. stating in the method 

section: “All coordinates are reported in MNI space”) ii) the template (e.g. MNI152 

template) and/or iii) the software (i.e. SPM, FSL, AFNI, BrainVoyager, Freesurfer) used for 

normalization and iv) descriptions of transformations (e.g. for example stating “resulting 

MNI coordinates were transformed into TAL using the Brett transformation”). For example, 

an experiment reporting MNI coordinates that used FSL and an MNI template for 

normalization and not saying anything about transformation into TAL is clearly in MNI 

space. However, sometimes it is a little bit trickier, when for example the software and/or 

template used do not fit the author’s statement. A common example would be a paper 

reporting TAL coordinates in the tables but using SPM with the standard SPM template 

(which is in MNI space) for normalization without reporting a transformation of coordinates. 

A rule of thumb is that coordinates of experiments where authors used SPM (version SPM99 

and later) or FSL with normalization to the software’s standard template and do not report 

any transformation should be treated as being in MNI as these software packages use MNI 

as standard space. When AFNI, Brainvoyager or Freesurfer was used, there is unfortunately 

no such general rule of thumb and one must rely on the author’s description. This is because 

these software packages either specifically ask into what space the data should be 

normalized to or do not document the standard space well. Additionally, in cases of 

uncertainty, the anatomical space can also be confirmed by contacting the corresponding 

author.

In summary, classical ROI analyses and small volume corrected results as well as 

experiments with only partial brain coverage should ideally be excluded from meta-analyses 

in order to avoid biased results. In addition, inclusion of results using masking or 

conjunctions is also questionable and should potentially be considered for exclusion from 

the meta-analysis depending on the specific research question. Moreover, in order to adjust 

for differences in reference spaces between experiments, for each experiment included in the 

meta-analysis, the standard space in which the results are reported has to be determined.
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5. Adjust for multiple contrasts

When selecting which contrast to include in the meta-analysis, it is important to note that 

inclusion of multiple experiments (or contrasts) from the same set of subjects (either within 

or between papers) can create dependence across experiment maps that negatively impacts 

the validity of meta-analytic results (Turkeltaub et al., 2012). This is problematic, as 

multiple experiments from one subject group that reflect similar cognitive processes (like in 

our example cognitive action control delineated by the No-Go>Rest and No-Go>Go 

experiment) are not independent (Turkeltaub et al., 2012). Thus, when planning a meta-

analysis, one needs to clarify how multiple experiments reflecting a similar process from the 

same sample are dealt with. One approach would be to adjust for within-group effects by, 

e.g. pooling the coordinates from all relevant contrasts (in this case No-Go>Go and No-

Go>Rest) into one experiment (Turkeltaub et al., 2012), averaging the contrast maps of a 

sample and adjusting the variance (Rubia et al., 2014; Alegria et al., 2016), or combining the 

contrast maps of a sample using a weighted mean depending on the amount of information 

of each contrast in each voxel (Alústiza et al., 2016).

If the adjustment for multiple contrasts is not an option, one may prefer to include only one 

experiment per subject group. This could be to only include the contrast that most strongly 

reflects the process that the meta-analysis aims to investigate (e.g. Cieslik et al., 2015). For 

example, this would be including only the No-Go>Go and excluding the No-Go>Rest (as it 

reflects more than just supervisory control processing) contrast from the meta-analysis. 

Alternatively, based on the research question one could also decide to include the more lax 

contrast (e.g. No-Go>Rest). However, in this case the researcher should be aware about the 

interpretation of the results as such a meta-analysis will not only reveal regions associated 

with the process of interest (e.g. supervisory control) but also other more general functions 

(e.g. visual processing).

Thus, when multiple experiments from the same subject group are included in the meta-

analysis a crucial consideration is how to adjust for repeated measures.

6. Double check your data and report how you did it

Most authors that plan and perform a meta-analysis do the literature search as well as the 

extraction of relevant coordinates and meta-data manually and non-automatically. On the 

one hand, this leads to very detailed and flexible literature search and extraction of relevant 

information, but on the other hand also makes the process error-prone. For example, 

mistakes can happen when transferring coordinates and their signs, or a statement about a 

transformation from MNI to TAL might be missed. Therefore, to avoid errors in the data, 

any manual data extraction should be double-checked (or duplicated), ideally by a second 

investigator. Having two investigators ensures that different people agree on which 

experiments meet the general and specific inclusion and exclusion criteria as well as about 

the quality of inclusion (i.e. a selection bias is less likely with two investigators). In addition, 

duplication or double-checking of the recorded data either by the same or different 

investigators ensures the correctness of the space (MNI or TAL) and the correctness of the 

coordinates (e.g., in some older publications left and right is switched which can easily be 

missed). A helpful way for double-checking the coordinates is to either read them backwards 
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or doing the coding horizontally but check them vertically. However, in any case, copy-paste 

from a PDF into an excel file is prone to errors and should be avoided.

If ES-SDM is done and a map is recreated for each experiment, one can check that the map 

and their peaks approximate the reports and figures of the paper. In this context, for all 

neuroimaging meta-analyses it might be helpful to view the included coordinates on the used 

template space. Importantly, most analyses tools exclude coordinates which are outside the 

template mask. For analyses across a small amount of experiments this might be undesired 

and have an effect on the results. In this case, one might decide to adjust the foci so that they 

still fall into the template space (see Fox et al., 2015 for an example of adjustment). 

However, all adjustments have to be reported and described in detail as well as the rationale 

for doing so should be specified. Another option for performing quality control would be to 

use automated experiment diagnostics. For example, Tench et al. (2013) identified outliers 

among included experiments by determining the overlap of foci between experiments. 

However, this automated approach does not fully replace manual quality control as it 

typically only detects extreme outliers and misses errors like incorrect space specifications 

or sign mistakes. In contrast to manual extraction of data, there is also the option of 

collecting data in an automated fashion (e.g., Daniel et al., 2016; Yang et al., 2015; Laird et 

al., 2015). That is, databases like BrainMap (https://www.brainmap.org/) (Fox and 

Lancaster, 2002; Laird et al., 2005) or Neurosynth (http://neurosynth.org/) (Yarkoni et al., 

2011) that synthesize neuroimaging literature can be used to automatically extract meta-data. 

This approach comes with the advantage of faster and less error-prone coordinate extraction, 

but with the downside that experiment selection is less specific and that application of some 

inclusion/exclusion criteria is not possible. In addition, these databases include only a 

sample of the available neuroimaging literature. While a fully automated meta-analysis may 

be viable in situations where there are hundreds or thousands of applicable experiments (and 

the high error rate in individual experiments may be more than offset by a huge increase in 

signal), the vast majority of applications require that the data derived from automated data 

extraction be carefully inspected and corrected.

In summary, in order to avoid errors and to increase the replicability of the meta-analysis, 

the eligibility of all experiments based on the pre-specified inclusion and exclusion criteria, 

as well as the correctness of all data used in the final meta-analysis must be double-checked.

7. Plan the analyses beforehand and consider registering your study protocol

As in other neuroimaging studies, a researcher performing a meta-analysis has a lot of 

“degrees of freedom”. This refers to choices of the statistical tests, number of analyses 

performed but also to the inclusion and exclusion of experiments (Simmons et al., 2011). 

Thus, standard concerns about p-hacking also apply to coordinate-based meta-analyses. 

Therefore, all choices and analyses should be planned beforehand and inclusion and 

exclusion criteria not be modified based on the observed results (e.g., repeat the analysis 

after excluding specific paradigms until significant findings are found). Such practices 

would result in p-values that don’t have their nominal value anymore and that are thus 

meaningless.
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To increase transparency and traceability, we strongly recommend that study aims, 

hypotheses and all analytic details are registered on a publicly available website or database, 

such as PROSPERO (https://www.crd.york.ac.uk/PROSPERO/) prior to start of the literature 

search. Any deviations from the registered protocol, or any non-planned analyses, must be 

clearly marked as post-hoc or non-prespecified in the resulting manuscript.

8. Find a balance between sensitivity and susceptibility to false positives

As in most neuroimaging studies, multiple statistical tests are performed in a neuroimaging 

meta-analysis (e.g. for all voxels of the brain), and the researcher performing it must balance 

between sensitivity and susceptibility to false positives. On the one hand, by not correcting 

for multiple comparisons, one is certainly more sensitive to discover meaningful (smaller) 

effects (Lieberman and Cunningham, 2009). Thus, a meta-analysis that aims to maximize 

sensitivity might show unthresholded whole brain maps if the fact that false positives are not 

controlled for is clearly indicated and the explorative nature of the results highlighted. 

However, a lack of control for multiple comparisons also comes with the concurrent 

downside of a potential contamination of the meta-analytic results (which in turn may 

strongly influence the future literature) by chance discoveries. Hence, in the majority of 

cases meta-analytic results should be reported following correction for multiple 

comparisons. There are different options to account for multiple comparisons in meta-

analyses, like controlling for the family-wise error (FWE) or the false discovery rate (FDR), 

on the voxel- or cluster-level. Voxel-wise FDR correction has become the most widely used 

correction approach for neuroimaging meta-analysis. However, it has been argued that this 

correction approach is not adequate for topographic inference on smooth data (Chumbley 

and Friston, 2009), which also includes neuroimaging meta-analysis data. In addition, for 

ALE a previous simulation study demonstrated that voxel-wise FDR correction features low 

sensitivity as well as an increased risk of finding spurious clusters (Eickhoff et al., 2016b). 

Regarding FWE, its use in current neuroimaging meta-analytic methods is in some way 

limited by the fact that meta-analytic p-values are not reflecting the probability that a voxel 

shows an effect by chance. Thus, even if these p-values would be corrected for multiple 

comparisons, the researcher wouldn’t know if the probability of detecting an effect by 

chance is small or large. Therefore, the use of FWE in current voxelwise meta-analyses 

should be considered an informal control of the false positive rate, unless results are 

exclusively interpreted in terms of spatial convergence in the specific null space (see later).

In general, for ALE meta-analyses (and possibly also other coordinate-based meta-analyses) 

cluster-level FWE correction seems to be the most reasonable approach, as it entails low 

susceptibility to false positives in terms of convergence (Eickhoff et al., 2016b). Importantly, 

on the voxel-level a cluster forming threshold of p<0.001 and a cluster-level threshold of 

p<0.05 is recommended.

For ES-SDM, a previous simulation showed that an uncorrected threshold of p=0.005 with a 

cluster extent of 10 voxels and SDM-Z>1 adequately controlled the probability of detecting 

an effect by chance, and it is thus recommended (Radua et al., 2012). However, this is again 

an informal control of the false positive rate and could be too conservative or too liberal in 

other datasets, it must be understood as an approximation to corrected results.
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In summary, when doing a meta-analysis a researcher should aim to achieve high sensitivity 

but additionally also low susceptibility to false positives. To avoid problems such as p-

hacking, control of error rates should be specified a priori as part of the design of the study, 

and could be liberal or conservative to emphasize sensitivity or specificity respectively. A 

lack of control of the false positive rate might be acceptable providing that a post-hoc 

estimate of a relevant error rate is given to enable the reader to judge the strength of 

evidence of a true effect.

9. Show diagnostics

Another important part of meta-analytic studies are diagnostics, i.e. post-hoc analyses 

providing more detailed information on the revealed clusters of convergence or effect. This 

can be done by, for example, showing the experiments contributing to a cluster, creating 

funnel plots or additional heterogeneity analyses using I2 and meta-regressions (usually done 

for ES-SDM). Importantly, these additional diagnostics can reveal valuable information on 

the clusters found in the meta-analysis.

There are different ways to determine the contribution of experiments. One is to identify and 

count all experiments that report foci directly lying in a specific cluster or within a specific 

localization uncertainty range (for example 2 standard deviations; cf. Purcell et al., 2011; 

Turkeltaub et al., 2011). Alternatively, contributions can also be estimated by determining 

for each included experiment, how much it contributes to the summarized test-value (e.g. 

ALE, density) of a specific cluster (this method was for example used in Cieslik et al., 2016 

and a similar approach in Etkin and Wager, 2007). This is done by computing the ratio of the 

summarized test-values of all voxels of a specific cluster with and without the experiment in 

question, thus estimating how much the summarized test-value of this cluster would 

decrease when removing the experiment in question. Another alternative for evaluating the 

contribution would be to test for robustness of results by using jackknife analyses (e.g., 

Radua and Mataix-Cols, 2009; Radua et al., 2012). This approach tests how stable results are 

when iteratively repeating the meta-analysis, always leaving one experiment out.

Yet another way is to create a funnel plot, i.e. a scatterplot of the effect sizes and their 

variances (or the sample size of the studies). With this plot, one can observe how many 

studies found a relevant effect-size in that voxel, or whether a meta-analytic finding is 

mostly driven by small studies, which could be an indicator of potential publication bias. To 

note, interpretation of these plots must be appropriate to the context of CBMA, e.g. many 

studies may have an effect size of zero if they reported no peaks in the proximity of the 

voxel.

Examining contributions can also help to identify if results might be driven by experiments 

featuring specific characteristics, which would allow more specific interpretation of the 

results. For example, let’s assume that an overall meta-analysis across different tasks of 

cognitive action control (Go/No-Go, Stop-Signal, Stroop) reveals a widespread fronto-

parietal network. When checking the contribution of each cluster of this network the 

researcher discovers that only experiments that used a Stop-Signal task contributed to the 

finding in the left anterior insula. This would imply a more specific interpretation for the 

role of the left anterior insula, by linking it more to the specific process of cancellation of an 
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already initiated action, rather than a general role in supervisory control. Of course, it is 

important to remember that post-hoc analysis choices made only after inspecting one’s data 

or results (e.g., analyzing subsets of studies separately, on the basis of apparent 

heterogeneity) are more likely to be spurious (Gelman & Loken, 2013, Forstmeier et al., 

2016). Consequently, such post-hoc conclusions should be explicitly treated as exploratory 

in one’s manuscript, pending confirmation of the new hypotheses in independent datasets.

In summary, diagnostics provided by contributions, funnel plots and heterogeneity analysis 

provide important information about the interpretation of results.

10. Be transparent in reporting

As replication of study results becomes more and more important in the field of 

neuroimaging, and data science in general (Diggle, 2015), it is also crucial for meta-analysts 

to describe and report their specific research question as well as methods and results with 

sufficient detail and transparency to allow replication by an independent researcher. 

Providing such detailed reports is sometimes difficult as many journals have word-limits. 

However, in these cases all necessary information should be provided in the supplementary 

material.

Reporting of the research question and the specification of the process investigated should 

be precise. This also implies a detailed and in depth report of all of the inclusion and 

exclusion criteria as well as the motivation for selecting these criteria.

Also, all steps of the meta-analytic study should be reported, ideally in a flow-chart, 

including literature search, selection process, experiment classifications into different 

subgroups, different meta-analyses conducted and potential further calculations of 

conjunctions, meta-analytic contrasts or other analyses. In this context, the number of papers 

and experiments (which are often different) included in total, as well as in each sub-analysis, 

should be reported.

Importantly, not only the papers that were included in the meta-analysis must be reported but 

also the specific contrasts (experiments) included. A paper often reports more than one 

experiment. If only the papers are listed, the list of specific experiments included in the 

analysis cannot be replicated. For example, let’s again take the example of a paper that 

reports 4 different experiments; two of a Go/No-Go task (No-Go>Rest and No-Go>Go) and 

two of a Stop-Signal task (Stop>Rest, Stop>No-Stop). Let’s assume that, based on the 

specification of the research question, both tasks are included, but only contrasts that test 

against a control condition. Thus, inclusion of this paper should be reported, as well as the 

more specific information that the coordinates resulted from the No-Go>Go and Stop>No-

Stop contrasts were considered. The best way of reporting this is a table.

In this context the publication of the meta-analysis should also provide details on how 

multiple contrasts from the same subject group were handled (see rule 5). When again taking 

the same example, one must report if the two contrasts of the same paper (Go/No-Go and 

Stop-Signal) were treated as one or as two separate experiments and which adjustment was 

conducted if treated as one.
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In general, in order that every reader can easily retrace fulfillment of the inclusion/exclusion 

criteria, detailed information of each included experiment should be provided. This can be in 

the form of a table in the supplement material (cf. Müller et al., 2016). In particular, this 

table should list the following information (some of them were already mentioned before): 

number of subjects, specific characteristics of the subjects, task description, stimuli used, 

coordinate space as well as contrast calculated including source of coordinates (e.g. table 

number from the original paper).

Furthermore, if any additional information from authors of an included experiment was 

received, which is not part of the original publication (for example, a paper where only 

results of ROI analyses are reported and where one received the whole brain results from the 

author), it is essential to report this information in the method section. In the following there 

is a summary and checklist with all the information that should be reported:

• Research question

• Detailed inclusion and exclusion criteria and the motivation why they were 

applied

• All steps of the meta-analytic study ideally in a flow-chart

• Number of experiments included in each analysis

• All experiments (not only the reference of the publications) incorporated

• Handling of multiple experiments from the same subject group

• Detailed information on each included experiment (number of subjects, specific 

characteristics of the subjects, task description, stimuli used, coordinate space, 

contrast calculated including source of coordinates)

• Any additional data received from the authors which is not reported in their 

publication

Besides detailed description in the method section, the reporting of results should also be 

standardized. Thus, also for meta-analytic approaches test statistics and descriptive statistics 

should be reported.

Furthermore, it is desirable that results are made available for the neuroscience community. 

In particular, sharing the meta-analytic results, e.g. on an open source platform such as 

ANIMA (http://anima.fz-juelich.de/) (Reid et al., 2016) or Neurovault (http://

neurovault.org/) (Gorgolewski et al., 2015), allows other authors to compare their own 

results with meta-analytic clusters. In addition, not only sharing of meta-analytic results but 

also sharing of all the extracted data is very useful for the neuroimaging community. For 

example, it is not only possible to extract data from the BrainMap database but also to 

submit data to it. Thus, data manually gathered for the purpose of a meta-analysis can be 

contributed to the database. In summary, publication of meta-analysis should be detailed and 

transparent including all the information necessary to allow replication of the study.

How to discuss the results of coordinate-based meta-analysis in terms of 
convergence—Finally, we want to raise the issue of how coordinate-based meta-analytic 
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results can be interpreted. In general, neuroimaging meta-analyses consolidate the findings 

of different experiments that report activation (in task-based fMRI meta-analysis) or gray 

matter (in VBM meta-analysis) differences between conditions or groups. However, this 

specific difference information, that is the sign of the effect, of individual neuroimaging 

experiments is, strictly speaking, lost in a coordinate-based meta-analysis. Importantly, for 

image-based meta-analyses and ES-SDM, information about activation/deactivation is still 

preserved. Thus, results of image-based approaches can still be interpreted as strength of 

decrease/increase of activation or gray matter. In contrast, coordinate-based meta-analytic 

approaches always test for spatial convergence of neuroimaging findings across experiments 

in the specific null space. This implies that significant effects can only be interpreted as 

convergence but not as strength or decrease/increase of activation or gray matter. For 

example, let’s assume that the meta-analysis across experiments reporting greater activation 

in a No-Go compared to a Go condition reveals a significant convergence in the right 

anterior insula. From this result one can conclude that experiments testing for greater 

activation in a No-Go compared to a Go condition converge in the right anterior insula, or in 

other words, that greater activation for No-Go compared to Go conditions is more frequently 

reported in the right anterior insula than in the remaining gray matter +/− white matter and 

cerebrospinal fluid. Nevertheless, results are often discussed as increased or decreased 

activations/gray matter, which is conceptually incorrect.

Similarly, when calculating contrasts between coordinate-based meta-analyses, the results 

can only be interpreted in terms of stronger convergence and not as activation/gray matter 

differences (again, this does not apply to image-based meta-analyses or ES-SDM). Let’s 

again take an example where two meta-analyses are performed, one across Go/No-Go 

experiments and one across Stop-Signal experiments and then a contrast between those two 

meta-analyses is performed. From this contrast analysis one cannot derive brain regions 

showing stronger activity in the Go/No-Go compared to the Stop-Signal task, but rather 

regions where there is significantly stronger convergence of experiments of the one 

compared to the other task. It is very likely that a meta-analytic contrast very well reflects 

results of contrasts of individual neuroimaging experiments. However, a coordinate-based 

meta-analytic contrast-analysis is only testing for differences in convergence and should be 

interpreted in this way.

Therefore, as many coordinate-based neuroimaging meta-analysis approaches look for 

convergence of neuroimaging findings across experiments, results should be interpreted in 

terms of convergence or as regions that are consistently found to be associated to a specific 

process or group across experiments in the null space. Image-based meta-analyses do not 

suffer from this limitation, which provides yet another incentive for researchers to adopt 

such procedures whenever possible.

Open issues

Even though there are general best-practice recommendations we can give for neuroimaging 

meta-analyses, there are still some aspects that need to be further discussed.
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First, there is the problem of publication bias that should be addressed. That is, there is in 

general in science a bias to publish mainly significant results while experiments failing to 

reject the null-hypothesis are often not reported (Ioannidis et al., 2014; Rosenthal, 1979). 

For conventional effect-size meta-analyses this file-drawer problem can be detected and has 

major implications and should always be considered when interpreting results (Ahmed et al., 

2012; Kicinski, 2014). However, coordinate-based neuroimaging meta-analyses are 

conceptually different, testing for spatial convergence of effects across experiments with the 

null-hypothesis of random spatial convergence (Rottschy et al., 2012). Thus, a limitation of 

most coordinate-based algorithms (not for ES-SDM) is that they are insensitive to non-

significant results and publication bias may go unnoticed. It is therefore particularly 

important to be transparent in reporting. Additionally, in neuroimaging meta-analyses the 

publication bias may derive rather from the pressure that every (expensive) imaging study 

must always yield “something to publish”. That is, due to the high analytical flexibility in 

neuroimaging (Carp, 2012), different ways of data-analysis, inference and thresholding 

might be used until a (desired) significant result is found. This might lead to a publication 

bias of less relevant and possibly random results, which, unfortunately, also affect the 

outcome of meta-analyses, leading to more heterogeneity and thus less likelihood to find 

significant convergence. In this context, the confirmation bias might also play a role. That is, 

the (unconscious) habit to search, interpret and publish data in a way that it is in line with 

existing theories and hypotheses (Forstmeier et al., 2016). That is, results may be more 

likely to be published if they conform with brain regions that are thought to be involved in a 

specific process. Thus, in neuroimaging meta-analyses, besides the classical publication 

bias, the confirmation bias as well as analytical flexibility play a crucial role which may lead 

to publication of more random results.

Another aspect to consider is the handling and inclusion of so-called “grey literature”. When 

conducting a meta-analysis, especially with research questions where only a few 

experiments exist, one may consider contacting authors to get additional results and 

coordinates. On the one hand, there is the possibility to decide to only consolidate results 

that are published (e.g., Cieslik et al., 2016) and thus to only include experiments that have 

passed a peer-review process. However, on the other hand, there is also the legitimate 

decision to include also unpublished data (e.g., Langner and Eickhoff, 2013) in order to 

increase the number of experiments and to get more appropriate contrasts. There is no 

general rule or recommendation we can give with regard to this decision. However, no 

matter the decision, one should always be transparent, i.e. report in the method section of the 

publication all information that was additionally included but not provided in the original 

publication.

Summary

Conducting a meta-analysis at first glance seems straightforward. However, when reviewing 

the literature and coding the experiments problems may arise which authors may handle 

different. This can lead to diversity between different meta-analyses investigating the same 

topic (see also Müller et al., 2016). Thus, meta-analyses require a consistent approach if they 

are to be interpretable. We here tried to formulate some best practice rules that should be 

applied when conducting a neuroimaging meta-analysis. However, meta-analyses will 
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always involve to some extent subjective decisions, which may account for the diversity of 

included experiments and results. It is essential that these subjective decisions and their 

motivation are transparently reported in the publication of the meta-analysis. Therefore, in 

order to be able to fully reconstruct a meta-analysis, detailed description of inclusion/

exclusion criteria and their motivation as well precise reporting of included papers and 

contrasts and of analyses conducted are needed. Prior registration of the study protocol in a 

public database, such as PROSPERO, allows for maximum transparency and traceability. 

Figure 1 illustrates the important steps when conducting a meta-analysis, while Table 1 

provides a formal checklist of all the aspects a researcher performing a meta-analysis should 

consider. We recommend all authors of neuroimaging meta-analyses to fill out this checklist 

and provide as supplemental material in their papers.
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Highlights

• Meta-analyses require a consistent approach but specific guidelines are 

lacking

• Best-practice recommendations for conducting neuroimaging meta-analyses 

are proposed

• We set standards regarding which information should be reported for meta-

analyses

• The guidelines should improve transparency and replicability of meta-analytic 

results
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Figure 1. 
Flow-chart illustrating the important steps of a meta-analysis
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Table 1

Checklist for neuroimaging meta-analyses

The research 
question is 
specifically 
defined

YES, and it includes the following contrasts:

_____________________ vs ______________________

_____________________ vs ______________________

_____________________ vs ______________________

_____________________ vs ______________________

_____________________ vs ______________________

_____________________ vs ______________________

The literature 
search was 
systematic

YES, it included the following keywords in the following databases: ______________________________________

Detailed 
inclusion and 
exclusion 
criteria are 
included

YES, and reasons of non-standard criterion were: ______________________________________

Sample 
overlap was 
taken into 
account

YES, using the following method: ______________________________________

All 
experiments 
use the same 
search 
coverage (state 
how brain 
coverage is 
assessed and 
how small 
volume 
corrections 
and 
conjunctions 
are taken into 
account)

YES, the search coverage is the following: ______________________________________ 
__________________________________________________________________________________________________________________

Studies are 
converted to a 
common 
reference 
space

YES, using the following conversion(s): ______________________________________

Data 
extraction 
have been 
conducted by 
two 
investigators 
(ideal case) or 
double 
checked by the 
same 
investigator 
(state how 
double-
checking was 
performed)

YES, the following authors:

_______ checked inclusion criteria

_______ extracted coordinates

_______ extracted other info: _____________

_______ double-ckecked the following data:____
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The paper 
includes a 
table with at 
least the 
references, 
basic study 
description 
(e.g. for fMRI 
tasks, stimuli), 
contrasts and 
basic sample 
descriptions 
(e.g. size, 
mean age and 
gender 
distribution, 
specific 
characteristics) 
of the included 
studies, source 
of information 
(e.g. contact 
with authors), 
reference 
space

YES, and also the following data: ______________________________________

The study 
protocol was 
previously 
registered and 
all analyses 
planned 
beforehand, 
including the 
methods and 
parameters 
used for 
inference, 
correction for 
multiple 
testing, etc

YES:

1) The meta-analysis was registered before starting the search at ___________________________ (registration number 
______________ )

2) Any non-planned analyses are clearly stated as post-hoc or non-prespecified in the paper.

3) The meta-analysis used the default methods and parameters of the software, with the following exceptions 
______________________

The meta-
analysis 
includes 
diagnostics

YES, the following: ______________________________________
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