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Introduction

The global market of synthetic peptides is based mainly on 
such sectors as pharmaceutical, cosmetic or food industry 
and in these fields peptides are thought to be primary tar-
gets of new, modified compounds. Generally, peptides are 
considered to be poor candidates for drugs due to their low 
bioavailability and their rapid metabolism (Marx 2005). 
However, since new synthetic strategies as well as alter-
native routes of administration have been developed, a 
large number of peptide-based drugs are now being mer-
chandised (Vlieghe et  al. 2010). Cosmetic and cosmeceu-
tic industry also relies on the use of synthetic peptides and 
lipopeptides as dermatologically active molecules or car-
rier agents for skin applications (Goebel and Neubert 2008; 
Silva et  al. 2008). For example a palmitoyl derivative of 
polypeptide interferon α exhibits greater skin penetration 
than a single polypeptide, while palmitoyl signal peptide 
from a pro-collagen I fragment (palmitoyl pentapeptide-4, 
Pal-KTTKS) enhances the skin regeneration (Foldvari et al. 
1998; Robinson et al. 2005; Lupo and Cole 2007; Gorouhi 
and Maibach 2009).

In industry as well as in academic laboratories peptide, 
synthesis is performed on a solid support. Solid-phase pep-
tide synthesis (SPPS), particularly with Fmoc chemistry, is 
directly related to the use of trifluoroacetic acid (TFA). It 
is used as a cleavage reagent—to release peptide from the 
resin. Additionally, crude peptides are usually purified with 
reverse-phase high-performance liquid chromatography 
(RP-HPLC) and TFA is used as a component of the mobile 
phase. Considering all these facts it is not surprising that 
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the final product contains significant amounts of trifluoro-
acetate ions (TFA−). In general, anions interact with cati-
onic peptide moieties such as the amino group (lysine and 
N-terminus), and the guanidine group (arginine), and imi-
dazole (histidine) owing to electrostatic forces.

The presence of TFA− both adsorbed in lyophilizate and 
directly bound to peptide molecule can affect biological 
and physicochemical properties. There are several reports 
on the high toxicity of TFA− towards cells, i.e. by inhibi-
tion of proliferation (Cornish et al. 1999). Moreover, TFA 
in excess can interact with molecules by pH change and 
modification of peptides conformation (Shen et  al. 1994; 
Wada et al. 2003; Nick Pace et al. 2004). It should also be 
taken into account that TFA− may influence structural anal-
ysis, i.e. by interfering with amide band in IR absorption 
spectra or by alternating conformation in CD experiments 
(Andrushchenko et al. 2007). Due to those effects, the type 
of counter-ion should be considered both in the in vitro and 
in vivo studies, and commercial use (Pini et al. 2012).

To avoid those problems, TFA− should be exchanged for 
a biocompatible ion, for example, chloride or acetate. Vari-
ous procedures of counter-ion exchange are described in 
the literature, for instance dissolution of the peptide in acid 
solution and usually 0.1 M HClaq lyophilization (Andrush-
chenko et al. 2007); RP-HPLC with acetic acid or HCl as 
an ion-pairing agent; ion-exchange resin with proper coun-
ter-ion; washing peptides in dialysis membranes and depro-
tonation/reprotonation of basic amino acid residues (Roux 
et al. 2008). However, most of techniques are time-consum-
ing and substantially reduce the peptide yields. Moreover, 
to characterize synthetized peptides, there is a need for ana-
lytical procedures to determine the level of TFA− and other 
ions in samples. Different techniques are applied such as 
ion chromatography (IC), capillary electrophoresis, IR and 
NMR spectroscopy (Kaiser and Rohrer 2004; Roux et  al. 
2008).

Dissociation and acid–base reactions are strongly influ-
enced by external factors, including the type of solution 
and temperature. Moreover, diverse solvents may act differ-
ently on basic moieties and acid molecules by changing the 
protonation state and therefore influencing the ion exchange 
process (Porras et al. 2001; Psurek and Scriba 2003). Fac-
tors that should be considered are: solvent dielectric con-
stant and the ability to form hydrogen bonds (Sarmini and 
Kenndler 1999). There are significant changes in dissocia-
tion equilibrium and pKa values, for instance, acetic acid 
in water has a pKa of 4.73 while in methanol and acetoni-
trile the values are 9.7 and 22.3 respectively (Sarmini and 
Kenndler 1999). Similar change in the pKa is observed for 
other acids, i.e. for TFA which in water has a pKa of 0.2, 
while 12.65 in acetonitrile (Eckert et al. 2009). Those fact 
suggest that anion exchange reaction may be improved in a 
non-aqueous environment.

In the following study new approach for 
TFA− exchange to chlorides is presented. Organic sol-
vents saturated with HCl were applied. The model pep-
tide, citropin 1.1 was synthetised by SPPS using Fmoc 
strategy. The TFA− exchange to chlorides was followed 
by IC.

Materials and Methods

Peptide Synthesis

Citropin 1.1 (GLFDVIKKVASVIGGL-NH2), CAMEL 
(KWKLFKKIGAVLKVL-NH2), LL-37 (LLGDFFRK-
SKEKIGKEFKRIVQRIKDFLRNLVPRTES), pexiganan 
(GIGKFLKKAKKFGKAFVKILKK-NH2), and temporin 
A (FLPLIGRVLSGILNH2) were synthesized on the solid 
support (Rink Amide or Wang resin) with Fmoc/tBu meth-
odology. All reactions were run using a CEM microwave 
synthesizer (Liberty Blue) to provide higher efficiency 
compared to conventional methodology (Rizzolo et  al. 
2011). Coupling reactions were carried out by activation 
with DIC (N,N′-diisopropylcarbodiimide) in DMF (N,N-
dimethylformamide). OxymaPure was applied to suppress 
racemization instead of HOBt due to superior coupling 
efficiencies (Subirós-Funosas et al. 2009). Single deprotec-
tion step was accomplished in a 20% piperidine solution 
in DMF. Deprotection was performed at 75 °C using 30 W 
for 3  min, whereas the coupling steps were performed at 
75 °C, using 30 W for 5 min. The reagents were used in a 
fourfold excess according to the substitution level of the 
resin. A mixture of TFA, TIS (triisopropylsilane) and water 
(96:2:2, v/v) was used to cleave a peptide from the resin. 
This reaction was performed for 90 min under stirring. The 
crude peptides were lyophilized and subsequently purified 
by RP–HPLC. Acetonitrile and water both containing 0.1% 
of TFA were used as a mobile phase.

LC–MS Analysis

The purity and identity of the peptides was confirmed by 
LC–MS analysis. RP–HPLC system was used—Waters 
Alliance e2695 system with Waters 2998 PDA and Acquity 
QDA detectors (software—Empower®3). All analyses 
were carried out on a Waters XBridge™ Shield RP-18 
column (4.6 × 150  mm, 3.5  µm particle size, 130  Å pore 
size). Samples (10 µL) were analyzed with a linear 10–90% 
acetonitrile gradient in deionized water over 15  min at 
25.0 ± 0.1 °C. The mobile phase flow rate was 0.5 mL/min. 
Both eluents contained 0.1% (v/v) of formic acid. Mass 
analysis and UV detection at 214 nm were used.
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Counter‑Ion Exchange

Exchange of the TFA− ion in 0.1 M HCl solution of was 
used as a reference method. This approach is based on 
a few steps, as follows—dissolution of the peptide in a 
0.365% (w/w) HCl solution, incubation for 5  min, and 
further lyophilization. Exchange procedure was repeated 
four times, and after each step a sample was collected for 
IC and LC–MS analysis. Finally, peptide samples were 
lyophilized from water to remove excess of chlorides.

The method with organic solvents was different, i.e. 
evaporation under reduced pressure using a rotary evap-
orator at 40 °C after the incubation step. Before use, 
all organic solvents were dried using molecular sieves. 
Subsequently, the solvents were saturated with gaseous 
HCl produced in appropriate apparatus through reaction 
of sulphuric acid with sodium chloride. Saturation level 
was determined by weight. Organic solvents used in this 
study were acetonitrile, dichloromethane, ethyl acetate, 
2-propanol, methanol, n-butanol, and tert-butanol.

During exchange peptide concentration in each solu-
tion was 1 mg/mL. Counter-ion exchange was performed 
four times for all solvents. After each exchange sample 
of peptide was collected and analyzed. Both procedures 
are presented in Fig. 1.

Ion‑Chromatography

Each time the counter-ion content was determined using 
ion chromatography (Dionex ICS5000+). Analyses were 
performed with isocratic elution (4.5  mM Na2CO3 and 

1.4  mM NaHCO3 in water), a flow rate of 1.2  mL/min, 
and injection volume of 20 µL. All of the tested samples 
were dissolved in water to obtain concentration of 0.5 mg/
mL. Ions were detected by suppressed conductivity with 
ASRS 300—anion self-regenerating suppressor and sup-
pressor current −31 mA. Column characteristics—Dionex 
IonPac AS22, dimensions 4.0 × 250 mm. Column compart-
ment temperature was set at 30 °C and conductivity detec-
tor temperature at 35 °C. The validation of the method was 
performed in accordance with the ICH guidelines Q2(R1) 
(ICH 2005).

Results and Discussion

In the following study, citropin 1.1 was used as a model 
peptide. The compound was selected as it contains a vari-
ety of side chains characteristics: hydrophobic, hydrophilic, 
basic (primary amine), acidic, and aromatic. Moreover, 
it possesses a positive net charge (+2). After synthesis 
and purification, identity and purity of the compound was 
determined by LC–MS analysis. Subsequently, the counter-
ion content (TFA−) was determined using ion chromatog-
raphy (IC). The examined peptide contained 189.94 µg of 
TFA− per 1  mg of lyophilizate. TFA− counter-ions were 
exchanged for Cl− using two different methods: in aque-
ous environment and in organic solvents. The method was 
tested on citropin 1.1; however, selected solutions were also 
successfully applied for other peptides (unpublished data).

As a reference method, the exchange by multiple lyo-
philizations of peptide dissolved in 0.1 M HCl (A, Table 1) 
were performed. After each step, samples were analyzed 
using LC–MS and IC. By this method, a gradual increase in 
Cl− and simultaneous decrease in TFA− in peptide samples 
were observed. First exchange resulted in the 87 mol% of 
chlorides and after four repetitions a 96 mol% was achieved 
(Table  1). According to LC–MS no peptide degradation 
was observed. Interestingly, similar results were obtained 
for other peptides (pexiganan and temporin A) in previous 
works (Mrozik et al. 2012).

In contrast to the reference method, the exchange per-
formed using organic solvents provided almost complete 
substitution of TFA− to Cl− after first repetition. Results of 
IC analysis are summarized in Table 1. Satisfactory results 
of exchange were obtained for solutions, as follows: (B) 
acetonitrile, (E) 2-propanol, (F) methanol, (G) n-butanol 
and (H) tert-butanol. Among those solutions a single rep-
etition of the procedure provides 97–98 mol% of chlorides. 
Considering no difference between samples obtained after 
treatment with solution B, a single repetition seems to be 
an optimal choice (98  mol%). In the case of solutions H 
and F, two repetitions of the procedure provided success-
ful exchange (99  mol%). The same result was achieved Fig. 1   Schematic diagram of counter-ion exchange



268	 Int J Pept Res Ther (2018) 24:265–270

1 3

after a third repetition with solutions G and E. The low-
est exchange rate was observed for the ethyl acetate (D) 
and dichloromethane (C) solutions. Repetition of the pro-
cedure allowed to reach 98  mol% of Cl− and 96  mol%, 
respectively. The procedure with methanol (F) was associ-
ated with serious side reaction such as peptide esterifica-
tion and the LC–MS analyses confirmed esterification of 
citropin 1.1 in our study. It is well known that esterifica-
tion may occur in the presence of a strong acid, alcohol 
and a peptide carboxyl moiety. Presumably, the side-chain 
of aspartic acid was esterified. The measured mass was 
1629.02 Da and the calculated, respectively monoisotopic 
and average—1628.00, 1629.00  Da. Furthermore, a side-
product with a mass of 1643.66 Da was identified in metha-
nolic sample what indicated the C-terminal amide metha-
nolysis (calculated mass—monoisotopic 1643.00  Da, and 
average 1644.01 Da). No esterification was observed when 
the counter-ion exchange was performed in the remaining 
alcohols (2-propanol, n-butanol, tert-butanol). Important 
issue of counter-ion exchange is also peptide solubility. 
Although citropin 1.1 exhibited good solubility in applied 
solvents; this aspect should always be considered. A wide 
range of organic solvents with different properties (dielec-
tric constant, proton acceptor or donor character, and dipole 
moment) may provide possibility to dissolve a variety of 
peptides.

During prolonged storage in acidic media some seri-
ous side reactions can occur, including peptide bond 
hydrolysis, oxidation or isomerization (Oliyai and Bor-
chardt 1993; Reubsaet et al. 1998). Factors such as: time, 
temperature, and pH of solution should be taken into 
account. It is well known that considerable amount of 
D-isomers, as high as 10%, are formed during hydrolysis 
when 6  M HCl is used for amino acid analysis (Kaiser 

and Benner 2005). In our study no side reactions were 
observed, except esterification in methanol solution. Rel-
atively low temperature, short incubation time, and fast 
removal of acidic solution in proposed procedure mini-
mized the risk of side reactions. We did not observe any 
products of peptide bond hydrolysis (LC–MS analysis). 
Furthermore, no epimerization was noticed, as it can be 
monitored by HPLC analysis (Huang et  al. 2014)(Reub-
saet et al. 1998).

We have also tried to apply this method for exchange 
TFA− for acetate anions. Mixtures of acetic acid with 
water and organic solvents were used. All procedures 
were carried out analogously to that described above. We 
did not observe any peptide degradation. In contrast to 
chlorides, exchange level to acetate anions was far from 
satisfactory for all solvents. Presumably, the reason is the 
fact that acetic acid is weaker than trifluoroacetic acid 
with pKa values 4.76 and 0.2 in water in normal condi-
tions, respectively (Sarmini and Kenndler 1999; Eckert 
et  al. 2009). Moreover, organic solvents did not provide 
any improvement in counter-ion exchange.

The presented method of TFA salts exchange to 
hydrochlorides is routinely used in our laboratory for a 
variety of peptides for a period of time. Among others, 
the successful exchange of counter-ions was carried for 
other peptides, such as: pexiganan, CAMEL, temporin 
A, LL-37 and lipopeptides (i.e. Pal-KKK-NH2). In our 
practice, a saturated acetonitrile is used preferably, but 
alcohols (tert-butanol and n-butanol) are also applicable. 
Results of counter-ion exchange using 0.5% HCl in ace-
tonitrile are presented in Table 2. Almost in all cases, two 
repetitions resulted in successful exchange of TFA− for 
Cl−. Moreover, no side reactions were observed.

Table 1   Counter-ion content 
after each exchange

Bold values  indicate efficiency of proposed method after just one repetition

Solution Counter-ion [mol%]

Repetition

1 2 3 4

Cl− TFA− Cl− TFA− Cl− TFA− Cl− TFA−

A 0.1 M HCl (0.365%) 87 13 93 7 94 6 96 4
B 0.5% HCl in acetonitrile 98 2 98 2 98 2 98 2
C 2.0% HCl in dichloromethane 90 10 92 8 94 6 96 4
D 1.4% HCl in ethyl acetate 77 23 85 15 86 14 98 2
E 1.5% HCl in 2-propanol 97 3 98 2 99 1 99 1
F 2.5% HCl in methanol 98 2 99 1 99 1 99 1
G 1.5% HCl in n-butanol 97 3 98 2 99 1 99 1
H 1.5% HCl in tert-butanol 98 2 99 1 99 1 99 1
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Conclusions

In this study, the method of peptide counter-ion exchange 
was modified and improved. The method is based on the 
use of organic solvents, saturated with gaseous HCl. Pro-
posed procedure is less time-consuming compared to 
the classic, reference method (a single repetition, approx. 
48 vs. 24  h). In contrast to the aqueous environment, the 
repetition of the procedure in organic solvent takes only 
30  min and is characterized by exchange a higher rate. 
Although organic solvent solutions have been found to be 
an excellent alternative, it seems that exchange reactions 
conducted in acetonitrile (B) and tert-butanol (H) solu-
tions gave slightly superior results. The applied organic 
solutions allowed to obtain satisfactory levels of exchange, 
provided good peptide solubility, and additionally, could 
be readily evaporated. Further studies should consider the 
use of organic HCl solutions and wide-range of acid con-
centration in order to optimize the methods and to compare 
the exchange using particular solvents. This approach may 
shed light on the particular impact of environment on the 
peptide counter-ion exchange.
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