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Abstract

Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and 

decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed 

to limited knowledge of the underlying biology, although large-scale genomic studies have begun 

to provide insights. We report a new genome-wide association study of schizophrenia (11,260 

cases and 24,542 controls), and through meta-analysis with existing data we identify 50 novel 

associated loci and 145 loci in total. Through integrating genomic fine-mapping with brain 

expression and chromosome conformation data, we identify candidate causal genes within 33 loci. 

We also show for the first time that the common variant association signal is highly enriched 

among genes that are under strong selective pressures. These findings provide new insights into 

the biology and genetic architecture of schizophrenia, highlight the importance of mutation-

intolerant genes and suggest a mechanism by which common risk variants persist in the 

population.
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Schizophrenia is characterized by psychosis and negative symptoms such as social and 

emotional withdrawal. While onset of psychosis typically does not occur until late 

adolescence or early adulthood, there is strong evidence from clinical and epidemiological 

studies that schizophrenia reflects a disturbance of neurodevelopment1. It confers substantial 

mortality and morbidity, with a mean reduction in life expectancy of 15-30 years2,3. 

Although recovery is possible, most patients have poor social and functional outcomes4. No 

substantial improvements in outcomes have emerged since the advent of antipsychotic 

medication in the mid-twentieth century, a fact that has been attributed to a lack of 

knowledge of pathophysiology1.

Schizophrenia is both highly heritable and polygenic, with risk ascribed to variants spanning 

the full spectrum of population frequencies5–7. The relative contributions of alleles of 

various frequencies are not fully resolved, but recent studies estimate that common alleles, 

captured by genome-wide association study (GWAS) arrays, explain between one-third and 

one-half of the genetic variance in liability8. There has been a long-standing debate, from an 

evolutionary standpoint, as to how common risk alleles persist in the population, particularly 

given the early mortality and decreased fecundity associated with schizophrenia9. Various 

hypotheses have been proposed, including compensatory advantage (balancing selection), 

whereby schizophrenia-associated alleles confer reproductive advantages in particular 

contexts10,11; hitchhiking, whereby risk-associated alleles are maintained by their linkage to 

positively selected alleles12; and contrasting theories that attribute these effects to rare 

variants and gene-environment interaction13. Addressing these competing hypotheses is now 

tractable given advances from recent studies of common genetic variation in schizophrenia.

The largest published schizophrenia GWAS, that from the Schizophrenia Working Group of 

the Psychiatric Genomics Consortium (PGC), identified 108 genome-wide significant loci 

and unequivocally demonstrated the value of increasing sample sizes for discovery in 

schizophrenia genetics research5. Here we report a large, phenotypically homogeneous 

GWAS of schizophrenia that, when combined with previously published data, identifies new 

facets of genetic architecture and biology and demonstrates that the evolutionary process of 

background selection contributes to the persistence of common risk alleles in the population.

Results

GWAS and meta-analysis

We obtained genome-wide genotype information for schizophrenia cases from the UK (the 

CLOZUK sample), which we combined with control datasets obtained from public 

repositories or through collaboration. The final sample size was 11,260 cases and 24,542 

controls (5,220 cases and 18,823 controls not in previous schizophrenia GWAS; Methods 

and Supplementary Figs. 1 and 2). At a genome-wide level, the association statistics 

indicated that the common variant architecture in the CLOZUK sample was highly 

correlated with that in an independent sample of 29,415 cases and 40,101 controls from the 

PGC (genetic correlation = 0.954± 0.030; P = 6.63 × 10−227), and this was further confirmed 

by polygenic risk score and trend test analyses across the datasets at a range of association 

P-value thresholds (Methods and Supplementary Tables 1 and 2).
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Meta-analysis of the CLOZUK and independent PGC datasets, excluding related and 

overlapping samples (total of 40,675 cases and 64,643 controls; Supplementary Fig. 3) 

identified 179 independent genome-wide significant SNPs (P < 5 × 108; Supplementary 

Table 3) mapping to 145 independent loci (Fig. 1, Methods and Supplementary Table 4). The 

145 associated loci included 93 of those that were genome-wide significant in the study of 

the PGC, the majority of which showed a strengthened association (Supplementary Fig. 4 

and Supplementary Table 5). This does not imply that the remaining 15 PGC loci were false 

positives; rather, this reflects the expected inflation of effect sizes for genome-wide 

significant SNPs in incompletely powered studies and, as we demonstrate, is consistent with 

all 108 PGC loci representing true positives (Supplementary Note). Of the 52 loci not 

identified by the PGC, 2 have been reported as genome-wide significant in other studies: the 

locus at ZEB214 and a locus on chromosome 8 (38.0-38.3 Mb)15.

In further independent samples (5,662 cases and 154,224 controls), 43 of the 50 genome-

wide significant index SNPs showed the same pattern of allelic association, a level that far 

surpassed chance (P = 1.05 × 10−7). Despite the modest number of cases in these samples, 

18 of the 50 index alleles reached nominal significance (P < 0.05), which again is 

implausible by chance (P = 1.46 × 10−11). None demonstrated evidence for heterogeneity of 

effect (Methods and Supplementary Table 6).

Mutation-intolerant genes

Recent studies have shown that mutation-intolerant genes capture much of the rare variant 

architecture of neurodevelopmental disorders such as autism, intellectual disability and 

developmental delay, as well as schizophrenia16–19. Here we show that, for schizophrenia, 

this also holds for common variation. Using gene set analysis in MAGMA20, loss-of-

function (LoF)- intolerant genes (n = 3,230) as defined by the Exome Aggregation 

Consortium (ExAC)21 using their gene-level constraint metric (pLI ≥ 0.9), were enriched for 

common variant associations with schizophrenia in comparison with all other annotated 

genes (P = 4.1 × 10−16).

It has been shown that pLI is correlated with gene expression across tissues, including 

brain21, which raises the possibility that the enrichment for LoF-intolerant genes in 

schizophrenia may reflect enrichment for signal in genes expressed in the brain. However, 

LoF-intolerant gene set enrichment was robust to the inclusion of both ‘brain-expressed’ (n 
= 10,360) and ‘brain-specific’ (n = 2,647) gene sets19 as covariates in the analysis (P = 1.89 

× 10−10) or to controlling for FPKM gene expression values in brain22 (P = 1.03 × 10−14).

It has been suggested that clustering of risk alleles in mutationintolerant genes is a hallmark 

of early-onset traits under natural selection23,24. However, LoF-intolerant genes are known 

to be enriched for SNPs identified as genome-wide significant in GWAS (as listed in the 

NHGRI-EBI GWAS Catalog25) and for broad categories of disorders21. To examine whether 

our finding is a property of polygenic disorders in general, we obtained summary genetic 

data from a late-onset neuropsychiatric disorder (Alzheimer’s disease), a non-psychiatric 

disorder (type 2 diabetes) and a psychological trait (neuroticism), each of which has been 

shown to be under minimal selective pressure (Methods). These other phenotypes showed at 

best a weak signal for enrichment of the LoF-intolerant gene set in the MAGMA analysis, 
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with the signal not comparable to that seen in schizophrenia (Alzheimer’s disease, P = 

0.008; type 2 diabetes, P = 0.016; neuroticism, P = 0.066).

To quantify the contribution of SNPs within LoF-intolerant genes to schizophrenia SNP-

based heritability (h2
SNP), we used partitioned linkage disequilibrium score regression 

(LDSR)26 (Supplementary Table 7). Overall, genic SNPs accounted for 64% of h2
SNP, a 

1.23-fold enrichment proportional to their SNP content (P = 5.93 × 10−14). Consistent with 

the analysis using MAGMA, h2
SNP was enriched in LoF-intolerant genes (2.01-fold; P = 

2.78 × 10−24), which explained 30% of all h2
SNP (equating to 47% of all genic h2

SNP). In 

contrast, genes classed as not LoF intolerant (pLI < 0.9) were significantly depleted for 

h2
SNP relative to their SnP content (0.90-fold; P = 5.86 × 10−3), although in absolute terms 

SNPs in these genes accounted for 34% of h2
SNP A finer-scale analysis of the relationship 

between LoF intolerance scores and enrichment for association showed that enrichment was 

restricted to genes with a pLI score above 0.9, precisely those defined as ‘LoF intolerant’ 

(Supplementary Fig. 5).

Common risk alleles in regions under background selection

Our finding that LoF-intolerant genes are enriched for common risk variants raises the 

question of how such alleles are found at common frequencies in the population. While the 

contribution of ultra-rare variation in functionally important genes to disorders associated 

with low fecundity can be accounted for by de novo mutation16,19,27, this cannot explain the 

persistence of common alleles. To address this question, we used partitioned LDSR to test 

the relationship between schizophrenia-associated alleles and SNP-based signatures of 

natural selection. These included measures of positive selection, background selection and 

Neanderthal introgression. We examined the heritability of SNPs after thresholding them at 

extreme values for these metrics (top 2%, 1% and 0.5%), including in the baseline model 

annotation sets such as LoF-intolerant genes and genomic regions with extreme LD patterns 

(Methods).

We observed strong evidence for schizophrenia h2
SNP enrichment in SNPs under strong 

background selection (BGS), which was consistent across all the thresholds we examined 

(Table 1). We also found a significant depletion of h2
SNP in SNPs subject to positive 

selection as indexed by the CLR statistic. These two results are mutually consistent, as 

calculation of the CLR statistic explicitly controls for the effect of BGS28. This suggests that 

SNPs under positive selection, but under weak or no BGS, are depleted for association with 

schizophrenia. No significant relationship between h2
SNP and other positive selection or 

Neanderthal introgression measures was found after correction for multiple testing (Table 1). 

An LDSR analysis treating BGS measures as a quantitative trait rather than as a binary one 

confirmed that the relationship between BGS and schizophrenia association was not due to 

the imposition of arbitrary thresholds to define strong BGS (P = 7.73 × 10−11). We also note 

that the τc statistic of the LDSC model was significant for BGS, in both the binary (P = 

0.041) and quantitative (P = 0.023) analyses (Supplementary Table 8). The τc statistic 

indicates the enrichment of BGS after controlling for all other annotations in the model 

(including LoF-intolerant genes)26 and thus represents a robust and conservative test for 

BGS enrichment.
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The above analyses account for a possible confounding relationship between LoF 

intolerance and BGS. To illustrate this more clearly, we binned the BGS intensities into four 

categories of increasing score and classified SNPs in these bins according to whether they 

were in LoF-intolerant genes, ‘all other’ gene sets or a non-genic set (Supplementary Fig. 6). 

Note that the lower boundary of the top bin (BGS intensity > 0.75) corresponds 

approximately to the top 2% BGS threshold in Table 1 and is equivalent to a reduction in 

effective population size estimated at each SNP of 75% or more29. We found significant 

heritability enrichment across all BGS intensity intervals in LoF-intolerant genes that 

increased progressively with higher intensity scores. Notably, we also found heritability 

enrichment for SNPs under BGS pressure in genes that were not LoF intolerant, restricted to 

the highest BGS intensity bin. Indeed, the highest BGS intensity bin in non-LoF-intolerant 

genes was enriched for heritability at a level roughly equivalent to that for all LoF-intolerant 

genes. These findings point to BGS and LoF intolerance as making at least partially 

independent contributions to heritability enrichment in schizophrenia. In contrast, none of 

the phenotypes we selected on the basis of their minimal impact on fecundity (Alzheimer’s 

disease, type 2 diabetes and neuroticism) showed significant BGS enrichment for heritability 

either when using the BGS τc statistic of the LDSR model (minimum P > 0.22; 

Supplementary Table 8) or when specifically testing regions of high BGS intensity in genes 

that were tolerant (pLI < 0.9) of functional mutations (minimum P > 0.40).

Systems genomics

Using MAGMA, we undertook a primary analysis of 134 central nervous system (CNS)-

related gene sets we have previously shown capture the excess copy number variation 

(CNV) burden in schizophrenia30. In a GWAS context, we now show that, collectively, this 

group of gene sets captures a disproportionately high fraction of h2
SNP (30% of total 

heritability, enrichment = 1.63, P = 8.57 × 10−13, 46% of genic heritability; Supplementary 

Table 7). Of the 134 sets, 54 were nominally significant, of which 12 survived multiple-

testing correction (family-wise error rate (FWER) P < 0.05; Supplementary Table 9), with 

no notable association for gene sets such as the ARC protein complex and the NMDAR 

protein network, that we have previously implicated in rare variant studies30,31. Stepwise 

conditional analysis, adjusting sequentially for the more strongly associated gene sets, 

resulted in six gene sets that were independently associated with schizophrenia (Table 2 and 

Supplementary Data). These extended from low-level molecular and subcellular processes to 

broad behavioral phenotypes. The most strongly associated gene set constituted the targets 

of the fragile X mental retardation protein (FMRP)32. FMRP is a neuronal RNA-binding 

protein that interacts with polyribosomal mRNAs (the 842 target transcripts of this gene 

set32) and is thought to act by inhibiting translation of target mRNAs, including many 

transcripts of pre- and postsynaptic proteins. The FMRP target set has been shown to be 

enriched for rare mutational burden in exome sequencing studies of de novo variation in 

autism33 and intellectual disability31. In schizophrenia, it has also been shown to be 

nominally significantly enriched for association signal in sequencing studies8,31 and 

GWAS5,8, but has only inconsistently been associated in studies of CNV30,34. Here we 

provide the strongest evidence thus far for enrichment of this gene set in schizophrenia.
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We highlight another five gene sets that are independently associated with schizophrenia. 

Three of these derive from the Mouse Genome Informatics (MGI) database35 and relate to 

behavioral and neurophysiological correlates of learning: abnormal behavior (MP:0004924), 

abnormal nervous system electrophysiology (MP:0002272) and abnormal long-term 

potentiation (MP:0002207). We note that two of these gene sets (MP:0004924 and MP:

0002207) were among the five most enriched of the 134 gene sets tested in a recent 

schizophrenia CNV analysis30. The remaining two independently associated genes sets were 

voltage-gated calcium channel complexes36 and the 5-HT2C receptor complex37. The 

calcium channel finding confirms extensive evidence from common and rare variant studies 

implicating calcium channel genes in schizophrenia5,8, including a new GWAS locus in 

CACNA1D identified in our meta-analysis. While there is less convergent evidence in 

support of the involvement of the 5-HT2C receptor complex in schizophrenia, the fact that 

we identify independent association for this gene set implicates these genes in schizophrenia 

pathophysiology and potentially rejuvenates a previous avenue of 5-HT2C ligand therapeutic 

endeavor in schizophrenia research38. However, we interpret this result with caution given 

the small size of this gene set and the fact that a number of its genes encode synaptic 

proteins that are structurally related to other receptor complexes37, not only 5-HT2C.

Systems genomics and mutation-intolerant genes

The LoF-intolerant genes and the six conditionally independent (‘significant’) CNS-related 

gene sets together account for 39% of schizophrenia SNP-based heritability (P = 5.07 × 

10−26), equating to 61% of genic heritability (Fig. 2a and Supplementary Table 7). This is 

likely to be an underestimation of the true effect of these gene sets, as distal non-genic 

regulatory elements (not included in this analysis) will add to the heritability explained by 

these genes. In examining the relationship between the LoF-intolerant and CNS-related gene 

sets (Fig. 2a), genes belonging to both categories were the most highly enriched (2.6-fold, P 
= 7.90 × 10−15), although LoF-intolerant genes that were not annotated to our significant 

CNS gene sets still displayed enrichment for SNP-based heritability (1.74-fold, P = 9.77 × 

10−10), while genes that were in the significant CNS gene sets but had pLI <0.9 showed 

more modest enrichment (1.39-fold, P = 6.05 × 10−4). Notably, genes outside these 

categories were depleted in heritability relative to their SNP content (enrichment = 0.79, P = 

1.82 × 10−7).

This general pattern remained when we focused on the six significant CNS gene sets 

individually, in that the enrichment in these gene sets derived primarily from their 

intersection with LoF-intolerant genes (Fig. 2b). Indeed, only the targets of FMRP showed 

significant enrichment for SNPs in genes that were not LoF intolerant (2.06-fold, P = 4.23 × 

10−5).

Data-driven gene set analysis

To set the systems genomics results in context and to ensure that we were not missing 

enrichment in other gene sets by our hypothesis-driven approach, we undertook a purely 

data-driven analysis of a larger comprehensive annotation of gene sets from multiple public 

databases, totaling 6,677 gene sets (Methods and Supplementary Table 10). Six gene sets 

survived FWER correction for the full 6,677 gene sets and showed independence through 
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conditional analyses. The LoF-intolerant gene set was the most strongly enriched, followed 

by the two most strongly associated functional gene sets we had specified in our hypothesis-

driven CNS gene set analysis (FMRP targets and MGI abnormal behavior genes). The other 

three sets were calcium ion import (GO:0070509), membrane depolarization during action 

potential (GO:0086010) and synaptic transmission (GO:0007268). These are highly 

overlapping with the independently associated sets from our primary CNS systems genomics 

analysis. Indeed, if we repeat the data-driven comprehensive gene set analysis while 

adjusting for the six independently associated CNS gene sets, the only surviving enrichment 

term is the LoF-intolerant genes. These results are consistent with those from CNV 

analysis30 in that they do not support annotations other than those related to CNS function 

and demonstrate that hypothesis-based analysis to maximize power does not substantially 

impact the overall pattern of results.

Identifying likely candidates within associated loci

To identify SNPs and genes that might be causally linked to the genome-wide significant 

associations, we used FINEMAP39 to identify credibly causal alleles (those with a 

cumulative posterior probability for a locus of at least 95%) and functionally annotated these 

alleles using ANNOVAR40. This identified 6,105 credible SNPs across 144 genome-wide 

significant loci, excluding the major histocompatibility complex (MHC) region (Methods 

and Supplementary Table 11). From these, we defined a highly credible set of SNPs (n = 25) 

as those that were more likely to explain the associations than all other SNPs combined (i.e., 

with a FINEMAP posterior probability greater than 0.5). Of these, 14 mapped to genes on 

the basis of putative functionality (exonic SNPs that cause nonsynonymous or splice 

variations or promoter SNPs; n = 6) or mapped to regions identified as likely regulatory 

elements (n = 8) through chromosome conformation analysis performed in tissue from the 

developing brain using Hi-C41 physical interactions (Methods and Supplementary Table 12). 

One of the implicated alleles was a nonsynonymous variant in the manganese and zinc 

transporter gene SLC39A8. Nonsynonymous variants in this gene, which lead to SLC39A8 

deficiency, have been associated with severe neurodevelopmental disorders putatively 

through impaired manganese transport and glycosylation42, highlighting a mechanism of 

therapeutic potential for schizophrenia.

We also applied Summary-data-based Mendelian Randomization (SMR) analysis43 to the 

data in concert with dorsolateral prefrontal cortex expression quantitative trait locus (eQTL) 

data from the CommonMind Consortium44, aiming to identify variants that might be 

causally linked through expression changes in specific genes (Methods and Supplementary 

Table 13). After applying a conservative threshold (PHEIDI > 0.05) that prioritized 

colocalized signals due to a single causal variant43, we identified 22 candidates at 19 loci 

with false discovery rate (FDR) P < 0.05.

In total, the combination of FINEMAP, Hi-C and SMR analyses assigned potentially causal 

genes at 33 genome-wide significant loci and implicated a single gene at 27 of these loci. 

However, the analyses intersect for only a single gene, ZNF823, indicating the need for more 

comprehensive functional genomic annotations in CNS- relevant tissues.
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Discussion

In the largest genetic study of schizophrenia thus far, we explore the genomic architecture of 

and the evolutionary pressures on common variants associated with the disorder. Our study 

provides the first evidence linking common variation in LoF-intolerant genes to risk of 

developing schizophrenia and demonstrates that these genes account for a substantial 

proportion (30%) of the SNP-based heritability for schizophrenia. Systems genomics 

analysis highlights six gene sets that are independently associated with schizophrenia and 

point to molecular, physiological and behavioral pathways involved in schizophrenia 

pathogenesis.

Given that mutation intolerance is due to high selection pressure21,23,24, our finding that 

schizophrenia risk variants that persist at common allele frequencies are enriched in LoF-

intolerant genes might appear counterintuitive. However, new evidence presented here 

suggests that this can be reconciled by BGS, which is a consequence of purifying selection 

in regions of low recombination45,46. In such regions, recurrent selection against deleterious 

variants causes haplotypes to be removed from the gene pool, which reduces genetic 

diversity in a manner equivalent to a reduction in effective population size47. This in turn 

impairs the efficiency of the selection process, allowing alleles with small deleterious effects 

to rise in frequency by drift48. Such a consequence of purifying selection has been shown to 

be compatible with the genomic architecture of complex human traits49 and to influence 

phenotypes in model organisms50. We have explicitly modeled this effect (both theoretically 

and via simulations; Supplementary Note) and provide strong evidence for the feasibility of 

this effect as explanatory for the effect sizes seen for common alleles in schizophrenia.

We did not find enrichment for any measure of positive selection or Neanderthal 

introgression. A recent study explained a negative correlation between schizophrenia 

associations and metrics indicative of a Neanderthal selective sweep as evidence for positive 

selection or polygenic adaptation in schizophrenia12. We do not find any significant 

correlation in our model, which addresses the contribution of BGS, and hence our results are 

not consistent with large contributions of positive selection to the genetic architecture of 

schizophrenia (Table 1). Indeed, positive selection is not widespread in humans, as reported 

by other studies that explicitly considered or accounted for BGS28,51. Polygenic adaptation, 

the co-occurrence of many subtle allele frequency shifts at loci influencing complex traits52, 

remains an intriguing possibility but has not been implicated in psychiatric phenotypes, 

including schizophrenia, in recent analyses53,54. In contrast, BGS has been proposed as a 

mechanism driving human-Neanderthal incompatibilities, as regions with stronger estimated 

BGS have lower estimated Neanderthal introgression55. We therefore conclude that the bulk 

of the BGS signal we obtain is unlikely to be influenced by positive selection29, challenging 

theories of the selective advantage of schizophrenia risk alleles to explain the high 

population frequencies of these alleles.

Methods

Methods, including statements of data availability and any associated accession codes and 

references, are available at https://doi.org/10.1038/s41588-018-0059-2.
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Methods

GWAS and reporting of independently associated regions

Details of sample collection and genotype quality control are given in the Supplementary 

Note. The CLOZUK schizophrenia GWAS was performed using logistic regression with 

imputation probabilities (‘dosages’) adjusted for 11 principal-component analysis (PCA) 

covariates. These covariates were chosen as those nominally significant (P < 0.05) in a 

logistic regression for association with the phenotype56. To avoid overburdening the GWAS 

power by adding too many covariates to the regression model57, only the first 20 principal 

components were considered and tested for inclusion, as higher numbers only become useful 

for the analysis of populations that bear strong signatures of complex admixture58. The final 

set of covariates included the first five principal components (as recommended for most 

GWAS approaches59) and principal components 6, 9, 11, 12, 13 and 19. Quantile–quantile 

and Manhattan plots are shown in Supplementary Figs. 7 and 8.

To identify independent signals among the regression results, signals were amalgamated into 

putative associated loci using the same two-step strategy and parameters as PGC 

(Supplementary Table 14). In this procedure, regular LD clumping is performed (r2 = 0.1, P 
< 1×10−4; window size < 3 Mb) to obtain independent index SNPs. Afterward, loci are 

defined for each index SNP as the genomic region that contains all other imputed SNPs 

within the region with r2 ≥ 0.6. To avoid inflating the number of signals in gene-dense 

regions or in those with complex LD, all loci within 250 kb of each other were annealed.

Meta-analysis with PGC

A total of 6,040 cases and 5,719 controls from CLOZUK were included in the recent PGC 

study5. We reanalyzed the PGC data after excluding all these cases and controls, obtaining a 

sample termed ‘INDEPENDENT PGC’ (29,415 cases and 40,101 controls). Adding the 

summary statistics from this independent sample to the CLOZUK GWAS results allowed for 

a combined analysis of 40,675 cases and 64,643 controls (without duplicates or related 

samples). This meta-analysis was performed using the fixed-effects procedure in METAL60 

with weights derived from standard errors. For consistency with the PGC analysis, 

additional filters (INFO > 0.6 and MAF > 0.01) were applied to the CLOZUK and 

INDEPENDENT PGC summary statistics, leaving 8 million markers in the final meta-

analysis results. Quantile–quantile and Manhattan plots are shown in Supplementary Fig. 3 

and Fig. 2. The same procedure as above was used to report independent loci from this 

analysis (Supplementary Tables 3 and 4). As raw PGC genotypes were not available for the 

LD clumping procedure, phase 3 of the 1000 Genomes Project (1KGPp3) was used as a 

reference.

Replication of new GWAS loci

To validate the association signals from the CLOZUK + PGC meta-analysis, we 

amalgamated data contributed by other schizophrenia genetics consortia (total of 5,762 cases 

and 154,224 controls; details in the Supplementary Note). We sought GWAS summary 

statistic data for the index SNPs from the 50 new genome-wide significant loci 

(Supplementary Table 4). These summary statistics were subjected to meta-analysis in 
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METAL using the fixed-effects procedure to obtain replication and heterogeneity statistics 

(Supplementary Table 6).

Estimation and assessment of a polygenic signal

Association signals caused by the vast polygenicity underlying complex traits can be hard to 

distinguish from confounders related to sample relatedness and population stratification. To 

effectively disentangle this issue, we used the software LD Score v1.0 to analyze the 

summary statistics of our association analyses and estimate the contribution of confounding 

biases to our results by LDSR61. An LD reference was generated from 1KGPp3 after 

restricting this dataset to strictly unrelated individuals and retaining only markers with MAF 

>0.01. To improve accuracy, the summary statistics used as input were refined by discarding 

all indels and restricting SNPs to those with INFO >0.9 and MAF >0.01, a total of 5.16 

million SNPs. The resulting LD score intercept for the CLOZUK GWAS was 1.085 ± 0.010, 

which compared to a mean χ2 of 1.417 indicates a polygenic contribution of at least 80%. 

For the CLOZUK + PGC meta-analysis, the LD score intercept was 1.075 ± 0.014 (mean χ2 

= 1.960), which supports more than 90% of the signal being driven by polygenic 

architecture. Both of these figures are in line with those for other well-powered GWAS of 

complex human traits64, including schizophrenia5. This analysis was also used to calculate 

SNP-based heritability (h2
SNP) for our three datasets (CLOZUK, INDEPENDENT PGC and 

the CLOZUK + PGC meta-analysis), which we transformed to a liability scale using a 

population prevalence of 1% (registry-based lifetime prevalence62). For reference and 

compatibility with epidemiological studies of schizophrenia, prevalence estimates of 0.7% 

(lifetime morbid risk63) and 0.4% (point prevalence63, more akin to treatment-resistant 

schizophrenia prevalence (appropriate for CLOZUK)) were used for additional liability-

scale h2
SNP calculations (Supplementary Table 15).

The LDSR framework allowed us to compare the genetic architecture of CLOZUK and 

INDEPENDENT PGC, by calculating the correlation of their summary statistics64. A 

genetic correlation coefficient of 0.954±0.030 was obtained, with a P value of 6.63×10−227. 

We also examined the independent SNPs that reached a genome-wide significant level in the 

INDEPENDENT PGC dataset, of which there were 76 after excluding the extended major 

histocompatibility complex (xMHC) region. In the CLOZUK sample, 76% (n = 57) of these 

genome-wide significant SNPs were nominally significant (P < 0.05). Using binomial sign 

tests based on clumped subsets of SNPs65, we found that all but 1 (98.6%) of these 76 

genome-wide significant SNPs were associated with the same direction of effect in the 

CLOZUK sample, a result highly unlikely to reflect chance (P = 2.04 × 10−21; 

Supplementary Table 1). Moreover, of the 1,160 SNPs with an association P value less than 

1 × 10−4 in the INDEPENDENT PGC sample, 82% showed enrichment in the CLOZUK 

cases (P = 3.44 × 10−113), confirming that very large numbers of true associations will be 

discovered among these SNPs with increased sample sizes. Additionally, the new sample 

introduced in this study (CLOZUK2) was compared by the same methods with the PGC 

dataset and showed results consistent with the full CLOZUK analysis, providing molecular 

validation of this sample as a schizophrenia sample (Supplementary Table 1).
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We went on to conduct polygenic risk score analysis. Polygenic scores for CLOZUK were 

generated from INDEPENDENT PGC as a training set, using the same parameters for risk 

profile score (RPS) analysis in PGC5, arriving at a high-confidence set of SNPs for RPS 

estimation by removing the xMHC region and indels, and applying INFO > 0.9 and MAF > 

0.1 cutoffs. Scores were generated from the autosomal imputation dosage data, using a range 

of P-value thresholds for SNP inclusion66 (5 × 10−8, 1 × 10−5, 0.001, 0.05 and 0.5). In this 

way, we can assess the presence of a progressively increasing signal-to-noise ratio in relation 

to the number of markers included67. As in the PGC study, we found the best P-value 

threshold for discrimination to be 0.05 and report highly significant polygenic overlap 

between the INDEPENDENT PGC and CLOZUK samples (P < 1 × 10−300, Nagelkerke r2 = 

0.12; Supplementary Table 2), confirming the validity of combining the datasets. For 

comparison with other studies, we also report polygenic variance on the liability scale68, 

which amounted to 5.7% for CLOZUK at the 0.05 P-value threshold (Supplementary Table 

2). As in the PGC study, the limited r2 and area under the receiver operating characteristic 

curve (AUROC) obtained by this analysis restrict the current clinical utility of these scores 

in schizophrenia.

Gene set analysis

To assess the enrichment of sets of functionally related genes, we used MAGMA v1.0320 on 

the CLOZUK + PGC meta-analysis summary statistics. From these, we excluded the xMHC 

region for its complex LD and the X chromosome given its smaller sample size. In the 

resulting data, gene-wide P values were calculated by combining the P values of all SNPs 

inside genes after accounting for LD and outliers. This was performed allowing for a 

window of 35 kb upstream and 10 kb downstream of each gene to capture the signal of 

nearby SNPs that could fall in regulatory regions69,70. Next, we calculated competitive gene 

set P values on the gene-wide P values after accounting for gene size, gene set density and 

LD between genes. For multiple-testing correction in each gene set collection, an FWER71 

was computed using 100,000 resamplings.

We performed sequential analyses using the following approaches:

1. LoF-intolerant genes. We tested the enrichment of the LoF-intolerant genes 

described by ExAC21. This set comprised all genes defined in the ExAC database 

as having a probability of LoF intolerance (pLI) statistic higher than 90%. 

Although these genes do not form part of cohesive biological processes or 

phenotypes, they have previously been found to be highly expressed across 

tissues and developmental stages21. Also, they are enriched for hub proteins72, 

which makes them interesting candidates for involvement in the ‘evolutionary 

canalization’ processes that have been proposed to lead to pleiotropic, complex 

disorders73.

2. CNS-related genes. These gene sets were compiled in our recent study30 and 

include 134 gene sets related to different aspects of CNS function and 

development. These include, among others, gene sets that have been implicated 

in schizophrenia by at least two independent large-scale sequencing studies8,31: 

targets of FMRP32, constituents of the N-methyl-D-aspartate receptor 
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(NMDAR74) and activity-regulated cytoskeleton-associated protein complexes 

(ARCs75,76), as well as CNS and behavioral gene sets from MGI database 

version 635.

3. Genes identified by data-driven analysis. The final systems genomic analysis was 

designed as an ‘agnostic’ approach, with the aim of integrating a large number of 

gene sets from different public sources, not necessarily conceptually related to 

psychiatric disorders, as this has been successful elsewhere70,77. We conducted 

this analysis to test whether additional gene sets were associated in addition to 

those from the 134 CNS-related gene sets. For this, first we merged together the 

LoF-intolerant gene set and the 134 sets in the CNS-related collection. Second, 

we selected additional gene set sources to encompass a comprehensive collection 

of biochemical pathways and gene regulatory interaction networks: 2,693 gene 

sets with direct experimental evidence and a size of 10–200 genes70 were 

extracted from Gene Ontology (GO78) database release 01/02/2016; 1,787 gene 

sets were extracted from the fourth ontology level of MGI database version 635; 

1,585 gene sets were extracted from REACTOME79 version 55; 290 gene sets 

were extracted from KEGG80 release 04/2015; and 187 gene sets were extracted 

from OMIM81 release 01/02/2016.

The total number of gene sets included was 6,677.

Detailed results of the analyses of the CNS-related and data-driven collection are given in 

Supplementary Tables 9 and 10. Reported numbers of genes in each gene set are those with 

available data in the meta-analysis. This may differ from the original gene set description, as 

some genic regions had null or poor SNP coverage. Following the data-driven gene set 

analysis as described, we also conducted analysis adjusting for our CNS-related gene sets to 

determine whether the data-driven analysis was contributing additional findings.

Partitioned heritability analysis of gene sets

It is known that the power of a gene set analysis is closely related to the total heritability of 

the phenotype and the specific heritability attributable to the tested gene set82. To assess the 

heritability explained by the genes carried forward after the main gene set analysis, LD 

Score was again used to compute a partitioned heritability estimate of CLOZUK + PGC 

using the gene sets as SNP annotations. As in the MAGMA analysis, the xMHC region was 

excluded from the summary statistics. These were also trimmed to contain no indels and 

only markers with INFO >0.9 and MAF >0.01, for a total of 4.64 million SNPs. As a 

recognized caveat of this procedure is that model misspecification can inflate the partitioned 

heritability estimates26, all gene sets were annotated twice: once using their exact genomic 

coordinates (extracted from the NCBI RefSeq database83) and another time with putative 

regulatory regions taken into account using the same upstream/downstream windows as in 

the MAGMA analyses. Additionally, all SNPs not directly covered by our gene sets of 

interest were explicitly included into other annotations (‘non-genic’, ‘genic but not LoF 

intolerant’) on the basis of their genomic location. Finally, the ‘baseline’ set of 53 

annotations from Finucane et al.26, which recapitulates important molecular properties such 

as presence of enhancers or phylogenetic conservation, was also incorporated in the model. 
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All of these annotations were then tested jointly for heritability enrichment. We note that 

using exact genic coordinates or adding regulatory regions made little difference to the 

estimated enrichment of our gene sets; thus, throughout the manuscript, we report the latter 

for consistency with the gene set analyses (Fig. 2 and Supplementary Table 8).

Natural selection analyses

We aimed to explore the hypothesis that some form of natural selection is linked to the 

maintenance of common genetic risk in schizophrenia12,84,85. To do this, for all SNPs 

included in the CLOZUK + PGC meta-analysis summary statistics, we obtained four 

different genome-wide metrics of positive selection (iHS86, XP-EEH87, CMS88 and 

CLR28), one of background selection (B statistic29, postprocessed by Huber et al.28) and one 

of Neanderthal introgression (average posterior probability LA89). The use of different 

statistics is motivated by the fact that each of them is tailored to detect a particular selective 

process that acted on a particular timeframe (see Vitti et al.51 for a review). For example, 

iHS and CMS are based on the inference of abnormally long haplotypes and thus are better 

powered to detect recent selective sweeps that occurred during the last ~30,000 years88, such 

as those linked to lactose tolerance or pathogen response90. On the other hand, CLR 

incorporates information about the spatial pattern of genomic variability (the site frequency 

spectrum91) and corrects explicitly for evidence of BGS, thus being able to detect signals 

from 60,000 to 240,000 years ago28. The B statistic uses phylogenetic information from 

other primates (chimpanzee, gorilla, orangutan and rhesus macaque) to infer the reduction in 

allelic diversity that exists in humans as a consequence of purifying selection on linked sites 

over evolutionary time frames92. As the effects of background selection on large genomic 

regions can mimic those of positive selection46, it is possible that the B statistic might 

amalgamate both, although the rather large diversity reduction that it infers for the human 

genome as a whole suggests that any bias due to positive selection is likely to be minor93. 

Finally, XP-EEH is a haplotype-based statistic that compares two population samples, and 

its power is thus increased for alleles that have suffered differential selective pressures since 

those populations diverged90. Although methodologically different, LA has a similar 

rationale by comparing human and Neanderthal genomes89, to infer the probability of each 

human haplotype having been the result of an admixture event with Neanderthals.

For this work, CLR, CMS, the B statistic and LA were retrieved directly from their 

published references and lifted over to GRCh37 genomic coordinates if required using the 

Ensembl LiftOver tool94,95. As the available genome-wide measures of iHS and XP-EEH 

were based on HapMap 3 data96, both statistics were recalculated with the HAPBIN97 

software directly on the EUR superpopulation of the 1KGPp3 dataset, with the AFR 

superpopulation used as the second population for XP-EEH. Taking advantage of the fine-

scale genomic resolution of these statistics (between 1-10 kb), all SNP positions present in 

CLOZUK + PGC were assigned a value for each measure, either directly (if the position 

existed in the lifted-over data) or by linear interpolation. To simplify the interpretation of our 

results, all measures were transformed before further analyses to a common scale, in which 

larger values indicate stronger effect of selection or increased probability of introgression. 

For example, the BGS B statistic, for which values of zero indicate the strongest effect (see 
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Charlesworth45 for its theoretical derivation), was included in all our analyses as 1 - B, 

which we termed ‘BGS intensity’.

Heritability enrichment of these statistics was tested by the LD Score partitioned heritability 

procedure. We derived binary annotations from the natural selection metrics by 

dichotomizing at extreme cutoffs defined by the top 2%, 1% and 0.5% of the values of each 

metric in the full set of SNPs. This approach is widely used in evolutionary genomics, owing 

to the difficulty of setting specific thresholds to define regions under selection28,51. 

Consistent with the previously described LDSR partitioned heritability protocol, enrichment 

was estimated with all binary annotations included in a model with multiple categories that 

represent important genomic features. This model included the 3 main categories of our set-

based analysis (‘non-genic’, ‘genic’ and ‘LoF intolerant’), 2 categories based on genomic 

regions with outlying LD patterns (recombination hotspots and coldspots)98 and the 53 

‘baseline’ categories of Finucane et al.26.

We then derived the τc coefficient26 (and associated P value) of the significantly enriched 

natural selection annotations (i.e., the background selection metric), This represents the 

enrichment of an annotation over and above the enrichment of all other annotations, which is 

a conservative approach, as most of the categories in our model are partially overlapping. To 

increase our power and for additional validation, we noted that LD Score allows testing of 

the full range of quantitative metrics, in an extension of the partitioned heritability 

framework. Results of this analysis are reported in Supplementary Table 8.

Analysis of other phenotypes

To explore the specificity of our natural selection results, we retrieved data from other well-

powered GWAS of complex traits. We selected three phenotypes for which (i) the genome-

wide summary statistic data were publicly available, (ii) the sample size was larger than 

50,000 individuals, (iii) the phenotype has minimal impact on fecundity99–101 (and hence 

the traits behave as neutral or approximately neutral to selection) and (iv) summary statistics 

were considered adequate for LD Score analysis based on baseline z scores >426,102 

(Supplementary Table 8). The phenotypes chosen were Alzheimer’s disease103, neu 

roticism104 and type 2 diabetes105. For the LD Score analyses, as the public release of these 

statistics did not include imputation INFO scores at the time of this study, we restricted the 

set of SNPs to those included in the HapMap 3 project96, as recommended61. To facilitate 

comparison with the schizophrenia results, we also restricted our schizophrenia summary 

statistic data to these SNPs and repeated the analyses above using BGS as a binary (top 2%) 

and quantitative trait.

We also employed MAGMA on the summary statistics of these additional phenotypes to 

examine whether the LoF-intolerant gene set enrichment displayed specificity to 

schizophrenia, after excluding the xMHC and APOE regions.

Fine-mapping, Hi-C and SMR

Accurately locating causal genes (‘fine-mapping’) for complex disorders is a challenge to 

GWAS and usually requires multiple approaches105. To highlight credibly causal variants, 

we used FINEMAP v1.139 at each of the 145 identified loci (Supplementary Table 3), 
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selecting variants with a cumulative posterior probability of 95%. These were then annotated 

with ANNOVAR40 release 2016Feb1 (Supplementary Table 11). We mapped the SNPs with 

a FINEMAP posterior probability higher than 0.5 to the developing brain Hi-C data 

generated by Won et al.41, following the methodology described therein, which allowed us 

to implicate genes by chromatin interactions instead of solely chromosomal position 

(Supplementary Table 12). We compiled results from the eQTL analysis of the 

CommonMind Consortium post-mortem brain tissues44. This included 15,782 genes, which 

were curated to remove any genes with FPKM = 0 across >10% of individuals. All the SNPs 

from the meta-analysis data were mapped to the eQTL data using rs numbers, position and 

allele matching. Both datasets were analyzed together using SMR43, which resulted in 4,276 

genes showing eQTLs with overlapping SNPs and genome-wide significant P values 

(Supplementary Table 13).

URLs

CLOZUK + PGC2 meta-analysis summary statistics, http://walters.psycm.cf.ac.uk/; 

CRESTAR Consortium, http://www.crestar-project.eu/; Wellcome Trust Case Control 

Consortium, http://www.wtccc.org.uk/; People of the British Isles project, http://

www.peopleofthebritishisles.org/; Mouse Genome Informatics (MGI), http://

www.informatics.jax.org/; Psychiatric Genomics Consortium, http://www.med.unc.edu/pgc/; 

1000 Genomes IBD segment sharing within and between populations, http://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/ibd_by_pair/.

Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Data availability

The gene content of the CNS-related gene sets that survived conditional analysis 

(significant) is given in MAGMA format in the Supplementary Data. Summary statistics 

from the CLOZUK + PGC2 GWAS are available for download (see URLs).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Manhattan plot of schizophrenia GWAS associations
Associations are shown from the meta-analysis of CLOZUK and an independent PGC 

dataset (n = 105,318; 40,675 cases and 64,643 controls). The 145 genome-wide significant 

loci are highlighted in green. The red horizontal line indicates the genome-wide statistical 

significance threshold (P = 5×10−8).
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Fig. 2. Partitioned heritability analysis of gene sets in schizophrenia
a, Heritability of genomic partitions and the six conditionally independent (‘significant’) 

gene sets (Table 2). The radius of each segment indicates the degree of enrichment, while the 

arc (angle of each slice) indicates the percentage of total SNP-based heritability explained. 

No relative enrichment (enrichment = 1) is shown by the dashed red line (and depletion 

equates to enrichment <1, inside red line). b, Heritability of the significant CNS gene sets 

dissected by their overlap with LoF-intolerant genes. Whiskers represent heritability or 

enrichment standard errors. Asterisks indicate the significance of each heritability 

enrichment (*P≤0.05, **P≤0.01, ***P≤0.001).
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Table 2

Functional gene set analysis highlights six independent gene sets associated with schizophrenia

Gene set Number of genes Enrichment P value (FWER)a Conditional P valueb

Targets of FMRP32 798 1×10−5 1.9×10−8

Abnormal behavior (MP:0004924) 1,939 1.8×10−4 1.4×10−5

5-HT2C receptor complex37 16 0.029 0.001

Abnormal nervous system electrophysiology (MP:0002272) 201 0.003 0.002

Voltage-gated calcium channel complexes36 196 0.011 0.016

Abnormal long-term potentiation (MP:0002207) 142 0.030 0.031

MP refers to Mammalian Phenotype Ontology terms of the MGI35, from which gene sets were derived. FMRP, fragile X mental retardation 
protein.

a
Westfall-Young family-wise error rate, as implemented in MAGMA20.

b
From stepwise conditional analysis that adjusts sequentially for ‘stronger’ associated gene sets.
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