Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1992 Aug;83(8):899–906. doi: 10.1111/j.1349-7006.1992.tb01997.x

Polyoxyethylene‐modified Superoxide Dismutase Reduces Side Effects of Adriamycin and Mitomycin C

Shingo Kawasaki 1,, Seiji Akiyama 1, Tsuyoshi Kurokawa 1, Masato Kataoka 1, Kazuya Dohmitsu 1, Ken Kondoh 1, Masaji Yamauchi 1, Katsuki Ito 1, Tadashi Watanabe 1, Satoru Sugiyama 2, Takayuki Ozawa 2, Mutsushi Matsuyama 3, Hiroshi Takagi 1
PMCID: PMC5918952  PMID: 1399827

Abstract

Polyoxyethylene‐modified superoxide dismutase (SOD‐POE) is a newly developed long‐acting superoxide dismutase. Adriamycin (ADR) and mitomycin C (MMC) generate superoxide, which contributes to their cytocidal effects or side effects. We examined whether SOD‐POE could prevent the side effects induced by superoxide generated by antitumor agents, and the following results were obtained. SOD‐POE did not influence the antitumor effects of ADR and MMC either in vitro or in vivo, but prevented the toxic death of BALB/c, nu/nu male mice caused by overdoses of ADR or MMC. As for its effective sites, SOD‐POE prevented a decrease in the specific activity of rotenone‐sensitive NADH‐ubiquinone oxidoreductase (complex I) in heart muscle mitochondrial respiratory chain function in BALB/c male mice administered 10 mg/kg ADR, and prevented damage to the sarcoplasmic reticulum and mitochondria of mouse heart muscle by ADR as observed by electron microscopy. Furthermore, SOD‐POE prevented bone marrow suppression induced by MMC in Donryu rats. The above results suggest that combination chemotherapy with SOD‐POE would make it possible to increase the maximum permissible doses of antitumor agents, improving the efficacy of these agents.

Keywords: Key words, Superoxide, Superoxide dismutase, Antitumor agent, Mitochondrial respiratory chain function, Electron microscope

Full Text

The Full Text of this article is available as a PDF (636.0 KB).

We wish to thank Ajinomoto Chemical Co. for supplying SOD and SOD‐POE.

REFERENCES

  • 1. ) Halliwell , B. and Gutteridge , J. C.Oxygen toxicity, oxygen radicals, transition metals and disease . Biochem. J. , 219 , 1 – 14 ( 1984. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. ) Doroshow , J. H.Effect of anthracycline antibiotics on oxygen radical formation in rat heart . Cancer Res. , 43 , 460 – 472 ( 1983. ). [PubMed] [Google Scholar]
  • 3. ) Hanada , K. and Sato , S.Stimulation of microsomal NADPH oxidation by quinone group‐containing anti‐cancer chemicals . Gann , 67 , 523 – 528 ( 1967. ). [PubMed] [Google Scholar]
  • 4. ) Bartkowiak , A. , Grzelinska , E. and Bartosz , G.The crypto‐OH radical in the damage of DNA by bleomycin‐Fe2+ . Int. J. Biochem. , 14 , 1051 – 1053 ( 1982. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Sinha , B. K. , Trush , M. A. and Kalyanaraman , B.Metabolism of VP‐16 and inhibition of lipid peroxidation . Am. Assoc. Cancer Res. Proc. , 354 ( 1984. ).
  • 6. ) McCord , J. M. and Fridovich , I.Superoxide dismutase — an enzymatic function of erythrocuprein (hemocu‐prein) . J. Biol. Chem. , 244 , 6049 – 6055 ( 1969. ). [PubMed] [Google Scholar]
  • 7. ) Pick , M. , Rabani , J. and Yost , F.The catalytic mechanism of the manganese‐containing superoxide dismutase of Escherichia coli studied by pulse radiolysis . J. Am. Chem. Soc. , 96 , 7329 – 7333 ( 1974. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Lavelle , F. , McAdam , M. E. and Fielden , E. M.A pulse radiolysis study of the iron‐containing superoxide dismutase from Photobacterium leiognathi . Biochem. J. , 161 , 3 – 11 ( 1977. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. ) Marklund , S. and Marklung , G.Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay superoxide dismutase . Eur. J. Biochem. , 47 , 469 – 474 ( 1974. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Morimoto , H. , Tsuji , T. and Yokoyama , M.Preparation of polyoxyethylene‐modified superoxide dismutase from single component superoxide dismutase . In “ Medical, Biochemical and Chemical Aspects of Free Radicals ,” ed. Hayaishi O. and Niki E. , p. 615 ( 1988. ). Elsevier; , Amsterdam . [Google Scholar]
  • 11. ) Kondo , T. and Ichihashi , H.In vitro sensitivity test of SDI assay . Saiskin Igaku , 33 , 2239 ( 1978. ) ( in Japanese ). [Google Scholar]
  • 12. ) Mosmann , T.Rapid colorimetric assay for cellular growth and survival; application to proliferation and cytotoxicity assay . J. Immunol. Methods , 65 , 55 – 63 ( 1983. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Smith , P. K. , Krohn , R. I. , Hermanson , G. T. , Mallia , A. K. , Gartner , F. H. , Provenzano , M. D. , Fujimoto , E. K. , Goeke , N. M. , Olson , B. J. and Klenk , D. C.Measurement of protein using bicinchoninic acid . Anal. Biochem. , 150 , 76 – 85 ( 1985. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Hatefi , Y. and Rieske , J. S.Preparation and properties of DPNE‐coenzyme Q reductase (complex I of the respiratory chain) . Methods Enzymol. , 10 , 235 – 239 ( 1967. ). [Google Scholar]
  • 15. ) Hatefi , Y. and Stiggal , D. L.Preparation and properties of succinate: ubiquinone oxidoreductase (complex II) . Methods Enzymol. , 53 , 21 – 27 ( 1978. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Shimomura , Y. , Nishikimi , M. and Ozawa , T.Isolation and reconstitution of the iron‐sulfur protein in ubiquinol‐cytochrome c oxido‐reductase complex . J. Biol. Chem. , 259 , 14059 – 14063 ( 1984. ). [PubMed] [Google Scholar]
  • 17. ) Rieske , J. S.Preparation and properties of reduced coenzyme Q‐cytochrome c redutase . Methods Enzymol. , 10 , 239 – 245 ( 1967. ). [Google Scholar]
  • 18. ) Wharton , D. C. and Tzagoloff , A.Cytochrome oxidase from beef heart mitochondria , Methods Enzymol. , 10 , 245 – 2501967. . [Google Scholar]
  • 19. ) Haser , G. J. , McIntosh , J. K. and Travis , W. D.Manipulation of oxygen radical‐scavenging capacity in mice alters host sensitivity to tumor necrosis factor toxicity but does not interfere with its antitumor efficacy . Cancer Res. , 50 , 3503 – 3508 ( 1991. ). [PubMed] [Google Scholar]
  • 20. ) McCord , J. M. and Wong , K.Phagocyte‐produced free radicals: role in cytotoxicity and inflammation in oxygen free radicals and tissue damage . Ciba Found. Symp. , 343 – 360 ( 1979. ). [DOI] [PubMed]
  • 21. ) Michelsen , A. M.Clinical use of superoxide dismutase and possible pharmacological approach . In “ Pathology of Oxygen ,” ed. Anne P. , pp. 277 – 302 ( 1982. ). Academic Press; , New York . [Google Scholar]
  • 22. ) Yamamoto , H.Ultrastructural changes in myocardium induced by a single dose of doxorubicin in rabbits . J. Clin. Electron Micros. , 19 , 127 – 142 ( 1986. ). [Google Scholar]
  • 23. ) Iwasaki , T. and Suzuki , T.Ultrastructural changes in myocardium induced by doxorubicin. A study by ultramicrotomy and freeze‐fracture method . J. Clin. Electron Micros. , 23 , 121 – 134 ( 1990. ). [Google Scholar]
  • 24. ) Tanaka , Y. and Takahashi , K.Cardiac oxygen radical metabolism in adriamycin‐induced cardiotoxicity . Jikeikai Med. J. , 37 , 253 – 264 ( 1990. ) ( in Japanese ). [Google Scholar]
  • 25. ) Ogura , R. and Hidaka , T.Experimental model of mitochondrial damage by adriamycin . Acta Paediatr. Jpn. , 28 , 739 – 746 ( 1986. ). [Google Scholar]
  • 26. ) Iwasaki , T. , Takino , Y. , Iizuka , T. , Yamamoto , H. , Kanda , H. , Suzuki , T. and Murata , K.Ultrastructural alterations of myocardium induced by doxorubicin. A freeze‐fracture study . J. Clin. Electron Micros. , 18 , 5 – 6 ( 1985. ). [Google Scholar]
  • 27. ) Myers , C. E. , McGuire , W. P. , Liss , R. H. , Ifrim , I. , Grotzinger , K. and Joung , R. C.Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response . Science , 197 , 165 – 167 ( 1977. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) Arena , E. , Biondo , F. , D'Alessandro , N. , Dusomchet , L. , Gebbia , N. , Gerbasi , F. , Rausa , L. and Sanguedolce , R.DNA, RNA and protein synthesis in heart, liver and brain of mice treated with daunomycin or adriamycin . IRCS Res. Biochem. Vancer Pharmacol. , 2 , 1053 ( 1974. ). [Google Scholar]
  • 29. ) Rosenoff , S. H. , Brooks , E. , Bostick , F. and Young , R. C.Alterations in DNA synthesis in cardiac tissue induced by adriamycin in vivo. Relationship to fatal toxicity . Biochem. Pharmacol. , 24 , 1898 – 1901 ( 1975. ). [DOI] [PubMed] [Google Scholar]
  • 30. ) Za'hringer , J. , Hofling , B. , Raum , W. and Randolph , R.Effect of adriamycin on the polyribosome and messenger‐RNA content of rat heart muscle . Biochem. Biophys. Acta , 608 , 315 – 323 ( 1980. ). [DOI] [PubMed] [Google Scholar]
  • 31. ) Gosalvez , M. , Blanco , M. , Hunter , J. , Miko , M. and Chance , B.Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells . Eur. J. Cancer , 10 , 567 – 574 ( 1974. ). [DOI] [PubMed] [Google Scholar]
  • 32. ) Ferrero , M. E. , Ferrero , E. , Gaja , G. and Bernelli‐zazzera , A.Adriamycin: energy metabolism and mitochondrial oxidations in the heart of treated rabbits . Biochem. Pharmacol , 25 , 125 – 130 ( 1976. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES