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ABSTRACT Salmonid rickettsial syndrome (SRS), caused by the intracellular bacterium Piscirickettsia sal-
monis, is one of the main diseases affecting rainbow trout (Oncorhynchus mykiss) farming. To accelerate
genetic progress, genomic selection methods can be used as an effective approach to control the disease.
The aims of this study were: (i) to compare the accuracy of estimated breeding values using pedigree-based
best linear unbiased prediction (PBLUP) with genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP), Bayes
C, and Bayesian Lasso (LASSO); and (ii) to test the accuracy of genomic prediction and PBLUP using
different marker densities (0.5, 3, 10, 20, and 27 K) for resistance against P. salmonis in rainbow trout.
Phenotypes were recorded as number of days to death (DD) and binary survival (BS) from 2416 fish chal-
lenged with P. salmonis. A total of 1934 fish were genotyped using a 57 K single-nucleotide polymorphism
(SNP) array. All genomic prediction methods achieved higher accuracies than PBLUP. The relative increase
in accuracy for different genomic models ranged from 28 to 41% for both DD and BS at 27 K SNP. Between
different genomic models, the highest relative increase in accuracy was obtained with Bayes C (�40%),
where 3 K SNP was enough to achieve a similar accuracy to that of the 27 K SNP for both traits. For
resistance against P. salmonis in rainbow trout, we showed that genomic predictions using GBLUP,
ssGBLUP, Bayes C, and LASSO can increase accuracy compared with PBLUP. Moreover, it is possible to
use relatively low-density SNP panels for genomic prediction without compromising accuracy predictions
for resistance against P. salmonis in rainbow trout.
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In 1989, Piscirickettsia salmonis was identified as a pathogenic bacte-
rium causing salmonid rickettsial syndrome (SRS) in farmed coho

salmon (Oncorhynchus kisutch) in Chile (Branson and Diaz-Munoz
1991; Cvitanich et al. 1991). Since then, P. salmonis has been confirmed
as the causative agent for SRS in coho salmon, Atlantic salmon (Salmo
salar), and rainbow trout (Oncorhynchus mykiss) in several countries,
including Norway, Canada, Scotland, Ireland, and Chile (Fryer and
Hedrick 2003; Rozas and Enríquez 2014). The economic losses related
to SRS in Chile in the year 2012 were US$450 million, owing to mor-
tality, antibiotic treatment, and vaccinations (Camussetti et al. 2015)

Currently, treatment for bacterial diseases in the aquaculture in-
dustry is predominantly based on antibiotics (Peña et al. 2016). Al-
though several vaccines are available for prevention of SRS, none of
them provide complete protection against P. salmonis in field condi-
tions (Kuzyk et al. 2001; Tobar et al. 2011). In addition, selective breed-
ing can be used to alleviate disease problems. The levels of genetic
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variation for resistance to P. salmonis, with heritability values ranging
from 0.11 to 0.41, have demonstrated the feasibility to improve the trait
by means of artificial selection in salmon breeding populations (Yáñez
et al. 2013, 2014, 2016a; Lhorente et al. 2014).

With the recent advances in genotyping methods and the develop-
ment of single-nucleotide polymorphism (SNP) panels for salmonids
(Houston et al. 2014; Palti et al. 2015; Yáñez et al. 2016b; Macqueen
et al. 2017), genetic markers linked with quantitative trait loci (QTL)
can be identified and implemented in breeding programs through
marker-assisted selection (MAS) (Yáñez et al. 2014). For example, in
Atlantic salmon, onemajor QTL for infectious pancreatic necrosis virus
resistance was detected, explaining 29 and 83% of the phenotypic and
genetic variances, respectively (Gheyas et al. 2010; Houston et al. 2010,
2008a,b). This QTL has been successfully used in MAS programs in
this species (Moen et al. 2015). However, genome-wide association
studies (GWAS) in Atlantic salmon suggested that resistance against
P. salmonis is a trait with moderate polygenic control, with many
markers explaining a small proportion of the genetic variance (Correa
et al. 2015). The complexity of this trait and the absence of QTL with
major effects suggest that the implementation of MAS could be not
successful in this particular case. By contrast, genomic selection (GS)
will be the most appropriate way to incorporate the genomic infor-
mation and accelerate the genetic progress for traits where the
markers have small effects.

Genomic evaluations using dense SNPmarkers have been shown to
increase accuracy of estimated breeding values (EBV) compared with
pedigree-based methods for different economically important traits in
Atlantic salmon (Ødegård et al. 2014; Tsai et al. 2015, 2016; Bangera
et al. 2017; Correa et al. 2017; Sae-Lim et al. 2017) and rainbow trout
(Vallejo et al. 2016, 2017). Different GS methods have been tested and
prediction accuracy varies depending on the method used, which
mainly differ with respect to the assumption about marker effects
and the genetic relationshipmatrix calculation. The genomic best linear
unbiased predictor (GBLUP) assumes that allmarker effects come from
a normal distribution (Meuwissen et al. 2001; VanRaden 2008), and the
relationship matrix is calculated using genomic information only. The
single-step GBLUP (ssGBLUP) assumes the same normal distribution
for marker effects; however, it uses a combination of pedigree and
genomic information to determine the additive genetic relationship
matrix (Aguilar et al. 2010). In general, Bayesianmethods assumemore
flexible and nonnormal distributed marker effects. For instance, the
Bayes C method assumes that SNP effects have independent and iden-
tical mixture distributions (Habier et al. 2011), whereas the Bayesian
Lasso (LASSO) assumes a double exponential prior distribution for
variances of SNP marker effects (Aguilar et al. 2010).

The performances of the different GS methods have been tested for
different livestock species and traits (Hayes et al. 2010; Colombani et al.
2013; Chen et al. 2014; Neves et al. 2014). The best method in terms of
accuracy will depend on some factors, such as the number of pheno-
typed animals, heritability, effective population size, size of the genome,
marker density, and genetic architecture of the trait (Daetwyler et al.
2008; Goddard 2009; Meuwissen 2009). In general, Bayesian methods
outperform the GBLUP method for traits that are affected by a few
large QTL, whereas for traits that are affected by many QTL with small
effects, GBLUP would likely perform better than or similar to the
Bayesian methods (Chen et al. 2014). Furthermore, Hayes et al.
(2010) suggested that results obtained from cattle may not be relevant
for other species, owing to the larger linkage disequilibrium (LD) blocks
in bovine than other species.

Therefore, it is valuable to compare the accuracies of different GS
methodologies to identify the method that will result in the highest

accuracy for the genetic evaluation of resistance to one of the most
importantbacterialdiseases affecting sea rearingof rainbowtrout,which
in turn is one of the most widely distributed aquaculture species in the
world. In addition, GS can be implemented using a cost-effective indi-
vidual genotyping strategy using low-density panels without much loss
of information (Cleveland and Hickey 2013). Recent empirical studies
have demonstrated that low-density panels are sufficient to get higher
accuracy using genomic EBV (GEBV) than EBV obtained from
pedigree-based BLUP (PBLUP) for resistance against P. salmonis
(Bangera et al. 2017) and sea lice (Tsai et al. 2016; Correa et al.
2017) in Atlantic salmon.

The objectives of this studywere: (i) to compare the accuracy of EBV
using PBLUP with that using GBLUP, ssGBLUP, Bayes C, and LASSO;
and (ii) to test the accuracy of genomic prediction and PBLUP using
differentmarker densities (0.5, 3, 10, 20, and 27K) for resistance against
P. salmonis in rainbow trout.

MATERIALS AND METHODS

Challenge test and phenotypes
The rainbow trout (O.mykiss) used in this studywere obtained from the
breeding nucleus of Aguas Claras S.A. (Puerto Montt, Chile) and were
challenge-tested for resistance against P. salmonis at Aquainnovo’s
Aquaculture Technology Center Patagonia, Puerto Montt, Chile
(Flores-Mara et al. 2017). The fish used in this study were from the
year-class 2011, which has undergone three generations of selection for
growth, carcass quality, and appearance traits. Juveniles from 105 fam-
ilies (representing progeny from 105 dams and 48 sires) were reared in
separate tanks until being individually tagged using a passive integrated
transponder tag at an average weight of 7 g. After tagging, the animals
were communally reared in a single tank for �7 months before being
transferred to Aquainnovo’s research station (Lenca River, Xth Region,
Chile). The fish were subjected to acclimation period during 20 d at the
research station. After this period, a total of 2416 juveniles (with an
average of 23 fish per family and ranging from 15 to 30 individuals)
were experimentally challenged with P. salmonis. Before the challenge
test, all fish were proven to be negative to the presence of infectious
salmon anemia virus, infectious pancreatic necrosis virus, and Renibac-
terium salmoninarum by real-time PCR, and Flavobacterium spp. by
culture. Fish were infected by injecting 0.2 ml of an LD50 (median
lethal dose) inoculum of P. salmonis through intraperitoneal (IP) in-
jection. Post IP injection, infected fish were equally distributed by fam-
ily into three different tank replicates (used as fixed effect for PBLUP
and genomics models). The challenge test continued for 32 d, and
mortality and weight at the end of the experiment were recorded in
all fish. All surviving fish at day 32 were anesthetized and killed. Tissue
samples (fin clips) for genomic DNA isolation were taken from all dead
and surviving fish and preserved in 95% ethanol at 280�.

Resistance to SRS was defined as the number of days to death (DD),
with values ranging from 5 to 32; and binary survival (BS), scored as 1 if
the fish died during the challenge test and 0 if the fish survived until the
end of the challenge test.

Genotypes
The genotyped individualswere selected to obtain a balancednumber of
animals per family (mean = 19, range from 12 to 26) and maintain the
phenotypic variance.GenomicDNAwasextracted fromfinclip samples
from 2130 fish (average of 19 fish per family, range from 12 to 26 fish)
using a commercial DNeasy Blood & Tissue Kit, Qiagen, following the
manufacturer’s instructions. The fish were genotyped using a commer-
cially available 57 K Affymetrix Axiom SNP array, designed by the
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National Center for Cool and Cold Water Aquaculture at the United
States Department of Agriculture (Palti et al. 2015).

The genotypes were subjected to quality control (QC) using Affy-
metrix’s Axiom Analysis Suite software, using the default settings (dish
QC$ 0.82 and genotype call rate$ 97% for each sample). Additional
QC steps were conducted by filtering out SNPs and samples with a
Hardy–Weinberg equilibrium test p-value , 0.00001, SNP call rate
lower than 0.90, and minor allele frequency lower than 0.01.

Statistical models

Pedigree-based BLUP: The pedigree-based variance components and
EBV were estimated using BLUP and were compared with genomic
evaluations. The model used was as follows:

y ¼ Xbþ Zg þ e; ðM1Þ
where y is a vector of phenotypes (DD or BS), b is a vector of fixed
effects (tank and body weight), g is a vector of random additive poly-
genic genetic effects that follows a normal distribution�N(0, As2

g), X
and Z are incidence matrices,A is the additive relationship matrix, e is
the random residual error with a distribution� Nð0; Is2

e Þ, and I is the
identity matrix (Lynch andWalsh 1998). Body weight was included as
a covariate in the analysis given that it significantly (p, 0.05) affected
both traits. This was most likely because inoculum was IP-injected in
the same dose for all fish, disregarding their initial size.

Genomic BLUP: TheSNP-based variance components andGEBVwere
estimated using GBLUP, in a similar way to the PBLUPmodel (M1), as
implemented in the BLUPF90 software package (Misztal et al. 2016).
TheGBLUPmodel is amodification of the PBLUPmethod, where g is a
vector of random additive genetic polygenic effects with a distribution
�Nð0;Gs2

gÞ and G is the genomic relationship matrix as described by
VanRaden (2008). The G matrix is constructed based on all markers,
and it can differ from the pedigree-based numerator relationship ma-
trix (A), in that it can potentially have some negative off-diagonal values
when individuals are molecularly less related than average pairs of
animals in the sense of identity by state if the population were in
Hardy–Weinberg equilibrium (Toro et al. 2002). The variance compo-
nents, PBLUP, and GBLUP solutions for the breeding values were
obtained using a restricted maximum likelihood method implemented
in AIREMLF90, from the BLUPF90 family of programs (Misztal et al.
2016).

Single-step GBLUP: The ssGBLUP model is similar to the PBLUP
model (M1) except for the use of a combined genomic and pedigree
relationship. The kinship matrix used was H (Aguilar et al. 2010), in
which genotype and pedigree data are combined. The inverse of the
matrix H is:

H21 ¼ A21 þ
�
0 0
0 G21 2 A21

22

�
; (1)

where A21 is the inverse numerator relationship matrix for all ani-
mals, A21

22 is the inverse of a pedigree-based relationship matrix for
genotyped animals only, and G21 is the inverse genomic relationship
matrix.

The EBV and the GEBV for DD were analyzed as linear traits using
AIREMLF90 and BLUPF90. BS was analyzed using a threshold model
(includingaprobit link functiontotransformevent incidence to liability)
by means of a Bayesian approach implemented in the THRGIBBS1F90
module from the BLUPF90 family of programs (Misztal et al. 2016). For

Bayesian analysis (THRGIBBS1F90) 200,000 iterationswere used in the
Gibbs sampling, with a burn-in period of 20,000 iterations, and samples
were saved every 50 cycles. Visual inspection of trace plots of the
posterior variance components generated by POSTGIBBSF90 were
used for QC purposes regarding convergence.

Bayes C: Bayes C fits a mixture model that assumes some known
fraction ofmarkers have zero effects, and it has been shown that BayesC
is less sensitive to prior assumptions than, e.g., Bayes B (Habier et al.
2011). All model parameters for Bayes C are defined as in M1, except
the elements of vector g which was calculated for each fish as:

Xn
i¼1

giaidi; ðM2Þ

where gi is the vector of the genotypes for the ith SNP for each animal;
ai is the random allele substitution effect of the ith SNP; and di is an
indicator variable (0,1) sampled from a binomial distribution with
parameters determined such that 1% of the markers were included in
themodel. The prior assumption is that SNP effects have independent
and identical mixture distributions, where each marker has a point
mass at zero with probability p and a univariate normal distribution
with probability 12 p having a null mean and variance s2

a, which in
turn has a scaled inverse chi-squared prior, with va ¼ 4 and
ve ¼ 10 degrees of freedom (d.f.) and scale parameter s2

a (or s2
e )

(Fernando and Garrick 2013). For the additive variance, d.f. =
4 was used so the data would not overwhelm the prior if many loci
were fitted, considering that, for Bayes C, a common locus variance is
assumed and estimated by combining information from the prior and
the data, and each fitted locus contributes to estimation of the com-
mon locus variance from the data (Fernando and Garrick 2013). The
residual variance d.f. values were chosen based on those used in pre-
vious studies (Peters et al. 2012; Santana et al. 2016; Wolc et al. 2016;
Yoshida et al. 2017).

Bayesian Lasso: LASSO (Legarra et al. 2012) appears to be an inter-
esting alternative method for performing regression on markers, sug-
gesting that a double exponential prior may be a better choice than the
Bayes A method, when most markers do not have an effect. The pa-
rameters for the LASSO method are defined as above in M1, except for
an a priori distribution of individual SNP effects (ai) which was calcu-
lated as:

Pr
�
aijt2

�
Nð1; t2i Þ and Pr

�
aijt2i

� ¼ l2

2
expð2l2 j t2i Þ; ðM3Þ

where t2i is the individual variance for each SNP, estimated condi-
tionally on a regularization parameter l (initial value was
l2 ¼ 2=s2

gÞ; which was estimated using an a priori gamma distribu-
tion bounded between 0 and 107.

The Bayes C and LASSO analyses were performed using GS3
software (Legarra et al. 2012). A total of 200,000 iterations were used
in the Gibbs sampling, with a burn-in period of 20,000 cycles where
results were saved every 50 cycles. Convergence and autocorrelation
were assessed by visual inspection of trace plots of the posterior vari-
ance components.

Genetic parameters and heritability: The total additive genetic var-
iance (s2

g) was estimated using relationship matrices A, G, and H for
PBLUP, GBLUP, and ssGBLUP, respectively. For both DD and BS, the
heritabilities were computed using the following equation:
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h2 ¼ s2
a

s2
a þ s2

e
: (2)

For Bayesian models, the total additive genetic variance ðVA9Þ was
estimated as the sum of the additive marker ð2s2

ap
P​ piqiÞ and the

polygenic pedigree (s2
g)-based additive genetic variance

ðVA9 ¼ 2s2
ap

P​ piqi þ s2
gÞ, and the heritability was computed as:

h2 ¼ VA9

VA9þ s2
e

: (3)

Prediction accuracy: The predictive abilities of different models were
assessedusingafivefold cross-validation scheme.Briefly, all phenotyped
and genotyped animals were randomly separated into five validation
sets.Thegenomicpredictionsof thevalidationdata setsweredetermined
one at a time,where thephenotypic records of the validationfish (20%of
the population) were set to missing and all remaining individuals with
phenotypes and genotypes (80% of the population) were used as the
training data set. For ssGBLUP, training and validation data sets were
separated as described above, with the addition of 100% of the animals
with only phenotypes (n = 482) into the training set.

Accuracy was used to assess the performance of each model for the
validation set, and was estimated as:

rGEBV;BV ¼ rGEBV ;y

h
; (4)

where rGEBV;y is the correlation between the EBV or GEBV of a given
model (predicted for the validation set using information from the
training set) and the record phenotype, and h is the square root of the
pedigree-based estimate of heritability (Legarra et al. 2008; Ødegård
et al. 2014).

In addition, the prediction accuracies obtained using different SNP
densities were tested for all the methods. The 0.5 K, 3 K, 10 K, and 20 K
SNP densities were randomly selected five times for each test method
from the �27 K SNP that passed QC.

The bias ofEBVpredictionwas obtained as the regression coefficient
of phenotyped animals and EBV or GEBV, for PBLUP and genomics
methods (GBLUP, ssGBLUP, Bayes C, and LASSO) in the validation
data.

Data availability
All phenotypic and genotypic data used in the current study can be
found at the Figshare public repository (https://figshare.com/s/
5219597a19f23873fda3).

RESULTS

Descriptive statistics and genetic parameters
Summary statistics for both traits and covariates (bodyweight at the end
of the challenge test) are presented in Table 1. The average DD ranged
from 22 to 24 d and from 23 to 25 d between tanks for phenotyped (n =
2320) and genotyped (n = 1844) animals, respectively. The proportion
of cumulative mortality ranged from 0.59 to 0.65 d and from 0.52 to
0.60 d between tanks for phenotyped and genotyped animals, respec-
tively. The average body weights at the end of the challenge test were
165.3 g (SD = 40.44 g) and 168.8 g (SD = 41.37 g) for phenotyped and
genotyped fish, respectively. A total of 1934 animals and 27,490 SNP
(27 K) passed QC.

Variance components estimates for all the models are presented in
Table 2. For both DD and BS, the additive genetic variance and heri-
tability were higher for genomic methods compared with PBLUP. For
PBLUP the heritabilities were 0.38 and 0.54 for DD and BS, respec-
tively. For genomic prediction methods the heritability values ranged
from 0.45 to 0.57 and from 0.54 to 0.62 for DD and BS, respectively. For
both traits, the lowest and the highest heritability estimates when using
genomic prediction methods were obtained from the GBLUP and
Bayes C methods, respectively.

Accuracy of different methods and marker densities
Based on the fivefold cross-validation, the prediction accuracy of GEBV
from genomic methods outperformed that of the EBV from PBLUP
(Table 3).Within all genomicmethods, the accuracies predicted forDD
were higher than those for BS, with a low SE of the estimate (Table 3).

The relative increase in accuracy of predicted GEBV compared with
EBV from PBLUP variedmoderately betweenmodels and traits at 27 K
marker density (Figure 1). For both traits, the Bayes C method resulted
in higher relative improvement in accuracy (.40%). On the other
hand, LASSO and GBLUP resulted in the lowest relative increases in
accuracy, and were the same (28%) for DD and similar for BS (LASSO =
36% and GBLUP = 37%) (Figure 1).

n Table 1 Summary statistics for resistance against Piscirickettsia salmonis for phenotyped and genotyped rainbow trout

Traits Tank Na Mean SD Minimum Maximum

Phenotyped fish
Days to death (d) 1 819 23.59 8.07 5 32

2 805 22.82 8.03 6 32
3 792 22.13 8.27 7 32

Binary survival (1 or 0) 1 819 0.59 0.49 0 1
2 805 0.65 0.48 0 1
3 792 0.65 0.48 0 1

Final challenge weight (g)b — 2320 165.30 40.44 46 295
Genotyped fish

Days to death (d) 1 669 24.92 7.64 10 32
2 641 24.01 7.78 11 32
3 624 23.25 8.07 11 32

Binary survival (1 or 0) 1 669 0.52 0.50 0 1
2 641 0.59 0.49 0 1
3 624 0.60 0.49 0 1

Final challenge weight (g)b — 1844 168.80 41.37 66 295
a
Number of fish.

b
Used as covariable.
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Formarkerdensityequal to20K, theBayesCandssGBLUPmethods
weremost favorable in terms of relative increase in accuracy forDD and
BS, respectively (Figure 1). At marker densities of 3 K and 10 K,
ssGBLUP andGBLUP resulted in the same relative increase in accuracy
for BS (Figure 1). By contrast, for DD the Bayesian methods had better
performance. The ssGBLUPmethod performed slightly better than the
other genomicsmethods at the lowest marker density (0.5 K), especially
compared with Bayes C, which showed the lowest increase in accuracy
for both traits (,11%). Nevertheless, the relative increases in accuracy
of predicted GEBV from all genomic models were superior to those of
EBV from PBLUP, even at the lowest marker density of 0.5 K for both
traits. In general, the relative increase in accuracy was considerably
more evident for BS than DD.

TheGEBV estimated usingGBLUPhad the smallest departure from
unity for DD. By contrast, the Bayes C method resulted in the most
biased estimate (1.035). The bias values for EBV andGEBV for BS were
considerably lower than1.0 forallmethodsand ranged from0.24 to0.27,
which indicates that all results for BS were upward biased (Table 3).

DISCUSSION

Heritability for pedigree-based and genomic models
Low to moderate heritability estimates (from 0.16 to 0.24) have been
reported for SRS resistance in Atlantic salmon (Yáñez et al. 2013, 2014)
and coho salmon (Yáñez et al. 2016a) using a pedigree-basedmethod to
analyze a trait defined similarly to DD and BS. The comparatively
higher estimates of heritability reported using genomic information
compared with PBLUP in our study are in accordance with what has
been reported in other fish species (Tsai et al. 2016; Bangera et al. 2017;
Correa et al. 2017; Vallejo et al. 2017). Vallejo et al. (2016, 2017) also
estimated a similar range of heritability using genomic models (0.26–
0.54) and PBLUP (0.31–0.48) for bacterial cold water disease resistance
in rainbow trout.

Prediction accuracy
The relatively high accuracy achieved in the present study for genomic
methods suggested that the strong relationship between the animals in
the training and validation data sets, and the small effective population
size of this breeding population, could contribute to the accuracy values.
This in turn could result in extensive LD and a smaller number of
effective chromosome segments to be estimated. The GEBV prediction
accuracy for resistance against cold water disease in rainbow trout
was estimated using different methods by Vallejo et al. (2017), and
the accuracies reported were similar of magnitude for survival days
(0.63–0.71) and survival status (0.66–0.71).

In Atlantic salmon, Bangera et al. (2017) and Correa et al. (2017)
showed that the relative increase in GEBV prediction accuracies from
different models compared with PBLUP was up to 30 and 22% higher
for resistance against SRS and Caligus rogercresseyi, respectively. How-
ever, improvement in accuracy values in the current study varied from
28 to 41%; this was still lower than the values reported by Vallejo et al.
(2017), which ranged from 83 to 109% for bacterial cold water disease
resistance in rainbow trout. We speculate that in the study of Vallejo
et al. (2017), the use of a larger number of animals with phenotype in
the training data set (7893 vs. 2417) resulted in a higher relative increase
in accuracy. Furthermore, Piyasatian et al. (2007) suggested that high
heritability of a trait (.0.45 in the present study) reduced the benefit of
GS over PBLUP.

Effect of marker density on accuracy
Genotyping of large numbers of selection candidates with high-density
panelsmaynot be cost-effective if the economicbenefit per animal is low
compared with the cost of genotyping (Habier et al. 2009), as in aqua-
culture species. The use of low-density panels, with considerable re-
duction in cost of genotyping, is a potential cost-effective approach to
implement GS. Previous studies in Atlantic salmon reported that low-
density panels between 5 and 10 K were sufficient to obtain reliable
increases in accuracy (even close to the maximal accuracy of high-
density panels) compared with PBLUP (Tsai et al. 2015, 2016; Correa
et al. 2017). The lowest-density SNP panel (0.5 K) used in our study
resulted in the lowest accuracies, mainly for DD, as a result of insuffi-
cient LD between the markers owing to the large distance between the
randomly selected low-density markers (Bangera et al. 2017).

We suggest that the considerable gain inGEBV accuracy obtained in
different genomic prediction methods using markers above 10 K was
because of the highLDbetween the randomly selectedmarkers. All low-
density panels showed improved GEBV accuracy over PBLUP (Figure
1); higher accuracy of genomic prediction can be obtained by using
high-density panels, as also shown by Ødegård et al. (2014) and
Bangera et al. (2017). Therefore, to implement cost-effective GS, a
strategy of genotyping of the selection candidates with a low-density
panel (e.g., 500 SNPs) followed by imputation to a high-density panel
(e.g., 50 K) could be used (Tsai et al. 2017). Imputing from 0.25 to 0.5 K
to a high-density panel and using the imputed genotypes for genomic
prediction was shown to achieve a similar level of accuracy compared
with using true genotypes in Atlantic salmon (Tsai et al. 2017).

Comparison of models at different marker densities
TheGBLUP approach assumes polygenic control of the trait andmakes
use of all genotyped SNPs for calculating the genomic relationship
matrix. By contrast, Bayesianmodels assume that a fewmarkers explain

n Table 2 Estimates of residual variance (s2
e ), total additive

genetic variance (V9a), and heritability (h2) for resistance against
Piscirickettsia salmonis in rainbow trout

Methods

Traits

Days to death Binary survival

Va9a σ2
e h2 SEb Va9a σ2

e h2 SEb

PBLUP 23.017 37.375 0.381 0.059 1.177 1.005 0.539 0.053
LASSO 29.031 32.840 0.468 0.037 1.342 1.000 0.569 0.042
GBLUP 27.313 33.813 0.447 0.037 1.249 1.005 0.554 0.036
ssGBLUP 34.585 34.376 0.502 0.037 1.355 1.004 0.574 0.035
BAYES C 41.580 31.030 0.566 0.041 1.782 1.000 0.624 0.055
a
Total additive genetic variance for PBLUP, ssGBLUP, and GBLUP was s2

g; for
LASSO and BAYES C it was 2s2

ap
P​ piqi+s2

p (s2
p ¼ polygenic effect).

b
SE or SD for Bayesian methods.

n Table 3 Mean accuracy, bias, and SE of EBV and GEBV for
resistance against Piscirickettsia salmonis using a 27 K SNP
panel

Methods

Traits

Days to death Binary survival

Accuracy SE Biasa SE Accuracy SE Biasa SE

PBLUP 0.613 0.097 1.053 0.113 0.470 0.105 0.269 0.109
LASSO 0.784 0.069 0.968 0.069 0.591 0.090 0.253 0.041
GBLUP 0.785 0.064 1.026 0.092 0.598 0.082 0.240 0.049
ssGBLUP 0.798 0.061 1.035 0.091 0.608 0.082 0.267 0.048
BAYES C 0.859 0.061 1.063 0.102 0.614 0.086 0.240 0.045
a
Regression for the EBV obtained by PBLUP and GEBV predicted with the
different genomic methods.
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the genetic variance of a trait (Habier et al. 2007;Hayes et al. 2009; de los
Campos et al. 2013). Thus, Bayesian methods are expected to perform
better than GBLUP when several moderate- to large-effect QTL are
controlling the trait. In this study, two GBLUP and two Bayesian
methods were tested to compare the accuracy of genomic predictions
from different GS models with those obtained by ordinary PBLUP.

All genomic prediction methods outperformed PBLUP at different
SNP densities (Figure 1). For both traits, the Bayes C method had the
highest accuracy (.40% relative increase over PBLUP) at the highest
SNP density (27 K). The GBLUP and ssGBLUP methods showed a
constant relative increase in accuracy from 3 K to 27 K SNP panels,
mainly for BS. Interestingly, for the 0.5 K SNP panel, ssGBLUP resulted
in the highest accuracies for both traits, suggesting that for very low-
density panels, the use of additional animals with only phenotypes in
the training set can improve the accuracy of predictions. Furthermore,
ssGBLUP could be used as a strategy to reduce the genotyping costs and
still achieve higher GEBV accuracies compared with PBLUP. As has
been reported previously, the use of information from genotyped and
nongenotyped individuals (Lourenco et al. 2014) and the increase in
accuracy when compared with PBLUP (Chen et al. 2011; Christensen
et al. 2012) are among the advantages of using ssGBLUP.

The use of progressivelymoremarkers in theGBLUPmethodmight
haveresulted inbetter capturingofgenetic relationships,whereasBayesC
was more effective in capturing LD between markers and QTL when
moremarkerswere used (Bermingham et al. 2015). Furthermore,fitting
1% of the SNPs with larger effect in the Bayes C method resulted in the
highest relative increase in accuracy. This is most likely owing to the
genetic architecture of P. salmonis resistance in rainbow trout. In a
previous GWAS in the same population, P. salmonis resistance was
suggested to be under oligogenic control (data not published), with
a few SNPs showing moderate to large effects (the top 10 SNPs
explained .50% of the genetic variance; results not shown).

Bayes C outperformed ssGBLUP at 20 and 27 K SNP densities for
DD, andhad slightly lowerperformance forBS.However, for lower SNP
densities, theBayesCmethodhad lower accuracy (Figure1 andTable3).
The large distance between the low-density SNPs results in lower LD
between the markers and QTL. The possibility of exclusion of the SNPs
with moderate to high effects during the process of random selection
might have resulted in lower relative accuracies in Bayes C.

Several other studies also reported thatGEBV estimated byBayesian
methods outperformed EBV estimated using pedigree-based methods,
and even other genomic methods (i.e. GBLUP and ssGBLUP) (Neves

et al. 2014; Vallejo et al. 2016, 2017; Bangera et al. 2017; Correa et al.
2017). A disadvantage in using Bayesian methodologies (e.g., Bayes C)
is the considerably higher computational time, which could increase
linearly depending on the number of markers fitted in the model
(Bermingham et al. 2015). Considering the similarity in accuracies be-
tween Bayes C and ssGBLUP, and the highest accuracies for the low-
density panels (Figure 1 and Table 3), the ssGBLUP method may be a
more flexible and computationally efficient alternative.

Bias
GEBV bias was calculated as the regression of EBV on GEBV. A
regression coefficient equal to one is indicative of predictions that are
on a scale similar to that of the GEBV, whereas a regression,1 or.1
indicates that GEBV is overestimated or underestimated, respectively.
Here, we found bias values somewhat below unity for BS, indicating
that GEBV was underregressed compared with EBV, and suggesting
that the genetic trends could be underestimated and have negative
impact in selection schemes. Other studies reported bias values ,1
for BS, and similar bias values to those of the present work for DD
(Vallejo et al. 2016, 2017; Bangera et al. 2017).

Implications
Our results showed that using genomic information for estimating
breeding values achieved higher accuracies compared with using only
pedigree information for both DD and BS. Using 20 K and 3 K SNP
panels for DD and BS, respectively, was enough to improve accuracy to
similar values to those obtained for 27 K SNP chip density. Given the
economic importance of resistance against P. salmonis in rainbow trout,
and the efficacy of genomic prediction over pedigree-based methods,
we suggest that selective breeding using genomic information will be an
important component to control SRS and reduce losses in aquaculture
systems.
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