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Background. The aim of this study was to investigate the immunological alterations that occur 
during the storage of erythrocyte suspensions which may lead to transfusion-related immunomodulation 
following allogeneic blood transfusion.

Materials and methods. One part of the erythrocyte suspensions obtained from donors was 
leucoreduced while the other part was not. The leucoreduced (LR) and non-leucoreduced (NL) 
erythrocyte suspensions were then further divided into three equal amounts which were stored for 0, 
21 or 42 days prior to measurements, by enzyme-linked immunosorbent assays, of cytokine levels 
in their supernatants. T-helper (Th) lymphocyte subgroups and gene expression were analysed in the 
NL erythrocyte suspensions by flow cytometry and real-time polymerase chain reaction, respectively. 
Results were compared to those of storage day 0.

Results. By day 21, the number of Th2 cells had increased significantly and the numbers of Th1, 
Th22 and Treg cells had decreased significantly in the NL erythrocyte suspensions. On day 42 the 
numbers of Th2 and Treg cells in the NL suspensions were significantly increased while the number 
of Th1 cells was significantly decreased. The levels of transcription factors (TBX21, GATA3, and 
SPI.1) were significantly decreased on days 21 and 42, and AHR, FOXP3 and RORC2 levels were 
significantly increased on day 42 in NL erythrocyte suspensions. The decrease in interleukin-22 and 
increase in transforming growth factor-β levels found in NL erythrocyte suspensions on day 21 were 
statistically significant. Elevated levels of interleukin-17A were found in both LR and NL erythrocyte 
suspensions on day 42.

Discussion. Our results suggest that allogeneic leucocytes and cytokines may play significant 
roles in the development of transfusion-related immunomodulation.
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Introduction
When performed at the right time and in the 

correct conditions, allogeneic blood transfusion is a 
lifesaving intervention. Although the benefit of such 
transfusions is obvious, they are associated with a 
real risk of serious and life-threatening complications. 
These complications can be classified as infectious, 
immunological and non-immunological. Transfusion-
related immunomodulation (TRIM) is listed among the 
immunological complications, and can be defined as a 
consequence of changes within the immune system of 
the transfusion recipient, induced by allogeneic blood 
transfusion. It was first described in patients waiting 
for renal transplantation, based on the observation that 
allogeneic blood transfusions prolonged graft survival1. 
TRIM also seems to be associated with increases 

in cancer recurrence, graft survival, post-operative 
bacterial infection, and short-term mortality rates, 
decreases in Crohn's disease recurrences and recurrent 
spontaneous abortion, and reactivation of certain latent 
infections such as those caused by cytomegalovirus 
and human immunodeficiency virus2-15. The role of 
allogeneic leucocytes16,17, microchimerism18,19, biological 
response modifiers (BRM)20, cytokines21-24, bioactive 
lipids25,26, erythrocyte suspension (ES) supernatant27,28, 
storage duration of blood components29,30, soluble Fas 
ligand21,31, soluble human leucocyte antigen (HLA) 
class I molecules21,32,33, and similar potential factors 
in the development of TRIM have been investigated, 
but the essential mechanism underlying TRIM has not 
yet been elucidated34. Major changes that occur in the 
recipient's immune system can be summarised as a 
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decrease in the number of T-helper cells (Th), a reduction 
in T-cell response, a decrease in natural killer cell 
function, insufficient antigen presentation, suppression 
of lymphocyte blastogenesis, an increased production 
of anti-idiotypic antibodies and anti-clonotypic 
antibodies35,36, a decrease in the CD4/CD8 ratio35-37, 
decreased late type hypersensitivity reactions35,36,38, 
decreases in cytokine production (interleukin-2 [IL-2], 
interferon-gamma [IFN-γ])35,36,39, and an impairment 
of monocyte/macrophage phagocytic function35,36,40. 
Based on these immunological changes, it has been 
postulated that the effect of TRIM may originate from 
three sources: mononuclear cells (MNC) within the 
blood component6,17,41, BRM-immunological mediators 
(BRM-IM) that accumulate within the blood component 
during storage6,20,28,42, and soluble HLA class I peptides 
within the allogeneic plasma6,33,42. 

These factors are thought to cause TRIM via mechanisms 
such as clonal deletion43,44, immunosuppression16,28,42, 45-47, 
anergy48,49, microchimerism50,51, transition of the immune 
response from Th1 to Th239,49,51-59, apoptosis60-62. In 
addition to above-mentioned factors, duration of ES 
storage, number of transfusion products, erythrocytes 
and erythrocyte-derived microparticles have also been 
associated with TRIM63-83. In general, allogeneic MNC 
and related structures are considered to be the main cause 
of TRIM. It is, therefore, thought that the effects of TRIM 
can be eliminated by leucoreduction. However, several 
components such as free haemoglobin, lipids, cytokines 
and microparticles that have been shown to pass through 
the filter used for leucoreduction and accumulate 
during storage in leucoreduced (LR) ES and LR 
platelet suspensions limit the effect of leucoreduction27. 

Cytokines constitute a group of BRM-IM which may 
also lead to the TRIM effect in the recipient. Cytokines 
are proteins produced by different cell types which 
mediate inflammatory and immune responses. They 
are the primary mediators that provide connections 
between the cells of the immune system. Alterations 
in cytokine levels during the storage of LR-ES and 
non-leucoreduced (NL) ES have been demonstrated in 
previous studies84,85. The cytokine content of NL-ES 
and LR-ES supernatants during storage may, therefore, 
provide valuable information regarding potential TRIM 
effects and the efficiency of leucoreduction. 

In this study, we aimed to investigate the changes 
that occur in ES during the storage period and the 
relationship between leucoreduction and TRIM. To 
do this, MNC and BRM-IM that are considered the 
main cause of TRIM within the product were evaluated 
in order to detect the changes in Th subgroups and 
cytokine profiles which occur during storage of ES, 
their association with TRIM and the relationship 
between leucoreduction and TRIM. 

Materials and methods
Donation and preparation of blood component 
samples

This study was approved by Uludag University 
School of Medicine Ethical Board (N. 2011-3/20). Ten 
units of whole blood were obtained from ten volunteers 
who met national blood donor selection criteria and were 
admitted to the "Dr. Raşit Durusoy" Blood Bank at the 
Uludag University School of Medicine. CPD/SAG-M 
quadruple paediatric component bags (Kansuk, Istanbul, 
Turkey) were used to store the blood donations. ES (with 
additive solution) and fresh plasma were obtained from 
the whole blood bags. The fresh plasma was not used in 
this study. NL-ES and LR-ES samples were prepared 
from ES for 0, 21 and 42 days of storage based on the 
algorithm shown in Figure 1. First, the ES was divided 
into two equal parts: one of these parts was then further 
divided, in three equal portions, into paediatric bags 
to be stored as the day 0, 21, and 42 NL-ES samples. 
The other part of the ES was connected under sterile 
conditions (Sterile Tube Connecting Device; Terumo, 
Lakewood, CO, USA) to a CPD/SAG-M quadruple 
paediatric component bag with whole blood filter 
(Kansuk). However, the main bag was disconnected 
from the new bag system before connection so that none 
of the solutions in this new bag system came into contact 
with the half unit of ES integrated into the system. After 
the connection procedure, the ES was filtered through 
the integrated 4 log leucocyte filter (Pall, Portsmouth, 
UK) and further divided into three equal portions as 
the LR-ES samples for 0, 21 and 42 days of storage. 
The NL-ES and LR-ES bags containing samples for 
storage for 21 and 42 days were stored in blood bank 
refrigerators (Nuve, Ankara, Turkey), while the day 0 
samples were transferred to five test-tubes for laboratory 
analysis. All of the laboratory analyses were conducted 
on these samples. The same procedure was performed 
for laboratory analyses of the related samples stored for 
21 and 42 days.

Th lymphocyte subgroups, specific transcription 
factors and plasma cytokine profiles were investigated in 
NL-ES samples. Th subgroups and specific transcription 
factors were not measured in LR-ES samples because 
the number of leucocytes within the product following 
4log leucoreduction is theoretically expected to be 
insufficient. Only plasma cytokine profiles were 
evaluated in these samples.

Evaluation of T-helper subgroups in non-leucoreduced 
erythrocyte suspensions 

Th1, Th2, Th9, Th17, Th22 and Treg cells were 
determined by flow cytometry based on surface markers 
and intracellular cytokine expression in each NL-ES 
sample. The monoclonal antibodies used in our study 
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were IgG1 FITC, IgG1 APC, IgG1 PE, IgG2A PE, IgG1 
AF647/CD3 FITC/CD4 PE (BioLegend, San Diego, 
CA, USA), IgG1-PE Cy5 (eBioscience,  Waltham, MA, 
USA), CD3 APC, CD4 FITC, IFN-γ PE, IL-4 APC, 
IL-5 PE, IL-9 PE, IL-21 APC, IL-22 PE, IL-17 AF647 
/ CD3 FITC / CD4 PE (BioLegend), IL-13 FITC, IL-21 
APC, Foxp3 PE Cy5, CD4 FITC / CD25 PE, CD127 
APC (eBioscience), CD3 PerCP and CD4 PE (BD 
Biosciences, San Jose, CA, USA). Stained cells were 
evaluated using flow cytometry (Navios; Beckman 
Coulter, Indianapolis, IN, USA).

Evaluation of transcription factors in non-
leucoreduced erythrocyte suspensions by polymerase 
chain reaction 

Each NL-ES sample was analysed for the expression 
of specific transcription factors TBX21, GATA3, PU.1, 
RORC2, AHR and FOXP3 of Th cell subgroups. This 
process consisted of MNC isolation, total RNA isolation, 
complementary DNA (cDNA) synthesis and then real-
time polymerase chain reaction (RT-PCR). 

MNC were isolated by density gradient using Ficoll 
(Histopaque-1077, Sigma-Aldrich, St. Louis, MO, 
USA). Total RNA was isolated from 5×106 cells using a 
commercially available kit (MO BIO Laboratories Inc., 
Carlsbad, CA, USA) and then used for cDNA synthesis 
with the commercial First Strand cDNA Synthesis Kit 
(New England BioLabs Inc, Ipswich, MA, USA). cDNA 

samples that were obtained were stored in a freezer at 
−20 °C until RT-PCR analysis. 

Real-Time Ready (Roche, Mannheim, Germany) 
designed for this study were used to measure the 
expression of specific transcription factors by RT-PCR. 
Panels consisted of six genes related to the transcription 
factors (TBX21, GATA3, AHR, SPI.1, FOXP3, 
RORC2), five reference genes (HPRT1, RPL13A, 
ACTB, GAPDH, YWHAZ), positive and negative 
controls. The expression of specific transcription factors 
was measured using Light-Cycler 480 RT-PCR (Roche). 
Following the RT-PCR analysis, relative quantification 
of target gene expression was performed. All data were 
analysed using the ΔΔCt method.

Measurement of cytokine levels 
For cytokine analysis, supernatants were obtained 

from NL-ES and LR-ES through centrifugation of 
test-tubes at 3,500 g for 10 minutes. The supernatants 
were then re-centrifuged at 15,000 g for 7 minutes to 
discard cell debris; plasma samples were transferred 
into clean test-tubes and stored at −80 °C in a freezer 
(Revco, St. Louis, MO, USA) until use. Interleukin 
(IL)-4, IL-6, IL-8, IL-9, IL-10, IL-13, IL-17, IL-22, 
tumour necrosis factor (TNF)-α, transforming-growth 
factor (TGF)-β and interferon (IFN)-γ levels were 
measured in these samples using commercial enzyme-
linked immunosorbent assay (ELISA) kits (Bio-Legend) 

Figure 1 - 	Algorithm for preparing the samples from whole blood.
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according to the manufacturer's recommendations. 
Minimum detectable levels of the ELISA were as 
follows: 3.2 pg/mL for IL-4, 7.8 pg/mL for IL-6, 15.6 
pg/mL for IL-8; 6 pg/mL for IL-9, 3.9 pg/mL for IL-10, 
15.6 pg/mL for IL-13, 3.9 pg/mL for IL-17A, 62.5 pg/mL 
for IL-22, 15.6 pg/mL for TNF-α, 7.8 pg/mL for TGF-β, 
and 15.6 pg/mL for IFN-γ.

Statistical analysis 
Continuous variables are presented as medians 

(range). Between-group comparisons were performed 
using the Mann-Whitney test, whereas within-group 
comparisons were performed using Wilcoxon's 
ranked-sum test. Percent changes (change between 
last measurement and first measurement divided by 
first measurement multiplied by 100) in variables that 
were measured in dependent time periods were also 
calculated, and the between-group comparisons were 
performed using the Mann-Whitney test. Statistical 
analyses were conducted using SPSS v.21 (IBM Corp., 
New York, NY, USA), and p-values of <0.05 are 
considered statistically significant.

Results
T-helper cell subgroups 

Alterations in Th cell subgroups during the storage 
of NL-ES are presented in Table I. At day 21, there were 

reductions in Th cells expressing IFN-γ (p=0.005), IL-
22 (p=0.028) and FOXP3 (p=0.034) when compared to 
day 0. There were increases in the number of Th cells 
expressing IL-4 (p=0.005), IL-5 (p=0.005) and Th cells 
that do not express CD127 (p=0.005). At day 42, there 
were reductions in Th cells expressing IFN-γ (p=0.007) 
when compared to day 0. There were increases in the 
number of Th cells expressing IL-4 (p=0.005), IL-5 
(p=0.005), IL-17A (p=0.028) and Th cells that do not 
express CD127 (p=0.005).

Transcription factors 
Changes in expression of specific transcription 

factors during the storage of NL-ES samples are 
presented in Table II. At day 21, there were reductions in 
the expression of TBX21 (p=0.005), GATA3 (p=0.005) 
and SPI.1 (p=0.007) when compared to day 0. At day 42, 
there were statistically significant reductions in TBX21 
(p=0.005), GATA3 (p=0.005) and SPI.1 (p=0.005) gene 
expression and statistically significant increases in the 
expression of AHR (p=0.005), FOXP3 (p=0.005) and 
RORC2 (p=0.005) when compared to day 0.

Cytokine levels 
IL-4, IL-6, IL-9, IL-10 and TNF-α could not be 

detected in any of the samples by ELISA. IL-22 and 
TGF-β levels were only detected in NL-ES plasma 

Table I - Alterations of T-helper cell subgroups in stored erythrocyte suspensions (%). 

Day 0 Day 21 Day 42

CD3+CD4+IFN-γ+ median 0.40 0.00 0.00

(min:max) (0.20:1.00) (0.00:0.10) (0.00:0.30)

CD3+CD4+IL-4+ median 0.25 2.00 3.70

(min:max) (0.10:0.70) (0.50:5.90) (1.70:11.80)

CD3+CD4+IL-5+ median 7.70 20.80 44.30

(min:max) (2.40:17.40) (2.90:34.20) (20.00:67.30)

CD3+CD4+IL-9+ median 0.65 0.50 0.30

(min:max) (0.20:1.60) (0.00:1.40) (0.00:1.20)

CD3+CD4+IL-13+ median 1.95 3.65 4.65

(min:max) (1.10:8.60) (2.30:8.20) (0.70:8.90)

CD3+CD4+IL-17A+ median 0.90 2.15 3.90

(min:max) (0.20:2.30) (0.50:7.50) (0.20:17.80)

CD3+CD4+IL-21+ median 6.65 6.40 6.15

(min:max) (1.20:9.00) (2.50:21.70) (0.40:20.30)

CD3+CD4+IL-22+ median 1.05 0.45 0.55

(min:max) (0.50:3.00) (0.10:1.00) (0.10:6.50)

CD4+CD25+highFoxp3+ median 2.70 0.00 29.40

(min:max) (0.00:24.30) (0.00:6.90) (0.00:64.80)

CD4+CD25+highCD127− median 0.30 1.70 3.20

(min:max) (0.20:1.60) (0.80:5.80) (0.40:33.60)

Results are presented as percentage rates, showing the median (minimum and maximum) values. p-values <0.05 
are considered as statistically significant and significant changes are shown in italic.
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samples (Table III). There were no significant changes in 
IL-8, IL-13 and IFN-γ levels in either NL-ES or LR-ES 
at day 21 or day 42 when compared to day 0. IL-22 
levels were decreased (p=0.043) and TGF-β levels 
were increased (p=0.008) in NL-ES samples at day 21, 

when compared to day 0. At day 42, TGF-β levels were 
increased in NL-ES samples when compared to the day 
0 samples. The increase in TGF-β levels was very close 
to being statistically significant (p=0.051). There was 
an increase in IL-17A levels in LR-ES samples which 

Table II - Alterations in T-cell subgroup-specific transcription factors in stored erythrocyte suspensions.

ΔΔCt Day 0 Day 21 Day 42

TBX21 median 0.00064 0.00000 0.00023

(min:max) (0.000:0.004) (0.000:0.001) (0.000:0.002)

GATA3 median 0.01750 0.00147 0.00000

(min:max) (0.006:0.027) (0.000:0.005) (0.000:0.000)

AHR median 0.02410 0.00560 0.38495

(min:max) (0.011:0.098) (0.000:0.411) (0.336:0.437)

SPI.1 median 0.25925 0.03665 0.00019

(min:max) (0.167:0.564) (0.000:0.212) (0.000:0.001)

FOXP3 median 0.00273 0.00040 0.05410

(min:max) (0.002:0.006) (0.000:0.062) (0.042:0.098)

RORC2 median 0.00131 0.00000 0.33805

(min:max) (0.000:0.006) (0.000:0.458) (0.232:0.492)

Results are presented as ΔΔCt values, showing the median (minimum and maximum) values. p values <0.05 are considered 
as statistically significant and significant changes are shown in italic.

Table III - Alterations of cytokine levels in stored erythrocyte suspensions.

(pg/mL) IL-8 IL-13

LR-ES NL-ES LR-ES NL-ES

DAY 0 median 25.46 40.01 11.36 13.19

(min:max) (17.65:112.60) (25.46:200.39) (8.48:173.26) (4.44:174.64)

DAY 21 median 34.56 63.50 16.05 16.38

(min:max) (12.45:102.84) (27.41:1218.76) (4.44:639.15) (0.74:61.62)

DAY 42 median 28.71 36.51 23.28 21.43

(min:max) (20.26:495.62) (27.41:2214.37) (5.11:877.63) (0.00:142.68)

IL-17A IL-22

LR-ES NL-ES LR-ES NL-ES

DAY 0 median 5.58 4.24 0.00 3.67

(min:max) (2.55:9.78) (2.93:14.41) (0.00:0.00) (0.00:650.46)

DAY 21 median 6.79 5.78 0.00 0.00

(min:max) (5.25:10.74) (2.07:12.96) (0.00:0.00) (0.00:2.33)

DAY 42 median 9.20 3.66 0.00 0.00

(min:max) (6.30:13.93) (1.87:14.70) (0.00:0.00) (0.00:454.40)

IFN-γ TGF-β

LR-ES NL-ES LR-ES NL-ES

DAY 0 median 22.88 23.34 0.00 1.39

(min:max) (0.01:161.48) (0.01:481.48) (0.00:0.00) (0.00:62.72)

DAY 21 median 26.60 13.81 0.00 55.87

(min:max) (0.00:365.67) (0.55:380.09) (0.00:0.00) (0.00:106.06)

DAY 42 median 12.65 19.39 0.00 36.84

(min:max) (0.00:304.74) (1.48:537.30) (0.00:0.00) (0.00:162.61)

Results (pg/mL) are presented as the median (minimum and maximum) values. p-values <0.05 are considered as statistically significant and significant 
changes are shown in italic. LR-ES: leucoreduced erythrocyte suspension; NL-ES: non-leucoreduced erythrocyte suspension; IL-8: interleukin-8; IL-13: 
interleukin-13; IL-17A: interleukin-17A; IL-22: interleukin-22; IFN-γ: interferon-gamma; TGF-β; transforming growth factor-beta. 
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was statistically significant (p=0.012). When percent 
changes in IL-8, IL-13, IL-17A and IFN-γ levels were 
compared between NL-ES and LR-ES groups, a greater 
increase in IL-17A levels was noted in LR-ES samples 
than in NL-ES samples at day 42 (p=0.050). IL-22 and 
TGF-β levels were excluded from this comparative 
analysis since these cytokines could not be detected in 
LR-ES samples.

Discussion
MNC within blood components and the supernatant 

are two major drivers of the TRIM phenomenon. 
Storage duration61,62,72-74,86 and number of transfused 
products7,71 are also thought to contribute to this effect. In 
a breakthrough study by Baumgartner et al., NL-ES and 
LR-ES supernatants and MNC were mixed in a culture 
medium and all supernatants were found to induce 
Treg induction28. It was reported that this induction was 
not associated with leucoreduction, storage duration 
or cytokines. We investigated the changes in MNC 
and supernatant within ES over a period of storage 
and examined the effectiveness of leucoreduction. 
Differently from Baumgartner et al., we aimed to 
investigate all Th subgroups and not only Treg cells. 
Analyses were performed directly on MNC in ES and 
supernatant rather than cell culture. Moreover, 4log 
leucocyte filters were used instead of 3log filters during 
the production of LR-ES.

Changes in T-helper cell profile 
Previous studies reported contradictory results 

regarding the relationship between allogeneic MNC and 
the TRIM effect, some supporting7,71,87-89, some against 
this phenomenon90-97. CD4+ Th cells, being the primary 
cells mediating cellular or humoral immune responses, 
have been accused of being among those cells that are 
responsible. These cells develop from naïve Th cells 
in secondary lymphoid organs in response to specific 
antigen presentation and cytokine mediation98. 

Effector Th cells are classified in subgroups such as 
Th1, Th2, Th9, Th17, Th22, and Treg according to their 
expression of intracellular cytokines under the influence 
of specific transcription factors. We investigated all 
these Th subgroups in our study, studying their surface 
markers, intracellular cytokine profiles and specific 
transcription factors. 

Th1 cells differentiate from naïve Th cells under the 
influence of the specific transcription factor TBX21 
(T-bet), which is expressed following IL-12 and IFN-γ 
stimulation, and produce high amounts of IFN-γ99-102. 
Significant reductions in TBX21 and CD3+CD4+IFN-γ+ 
levels in NL-ES noted on storage days 21 and 42 may 
suggest a reduction in the Th1 type response. This 
finding parallels those of previous studies demonstrating 

reductions in Th1 type cytokine levels in recipients 
following allogeneic blood transfusion39,51,56-59.

Th2 cells differentiate from naïve Th cells under the 
influence of the specific transcription factor GATA3, which 
is expressed following IL-4 stimulation, and produce IL-4, 
IL-5, IL-9, IL-10, and IL-1399,100,103,104. Increased numbers 
of CD3+CD4+IL-4+ and CD3+CD4+IL-5+ cells suggest 
that Th2 type cells within the product increased during 
storage. This result supports the theory that allogeneic 
blood transfusion leads to TRIM by transforming the 
recipient's immune response from Th1 to Th239,49,51,54-59. 
This transformation might lead to TRIM in the recipient 
as a result of a process which begins within the product. 
Furthermore, reduction in co-stimulant expression due 
to an enhanced recipient Th2 response might also be 
a contributing factor to the TRIM phenomenon53,59. 
However, the inverse relationship between increased 
intracellular cytokine levels and decreased GATA3 
levels that we noted in our study appears to be a paradox. 
Nevertheless, it is known that IL-4, which is endogenously 
synthesised as a result of GATA3 activation, is sufficient 
for the persistence of Th2 differentiation105. It is possible 
that GATA3 is depleted after inducing the IL-4 production 
necessary for Th2 differentiation, which might explain the 
above-mentioned paradox.

Th9 cells differentiate from naïve Th cells under the 
influence of TGF-β and IL-4 or from Th2 cells under 
the influence of TGF-β106. Their specific transcription 
factor is SPI.1107. They mostly produce IL-9108. Although 
Th9 cells appear to be the main source of IL-9, this 
cytokine is expressed by Th2 and Th17 cells as well109,110. 
The significant reduction in SPI.1 gene expression 
observed in this study, as well as some reduction in 
CD3+CD4+IL-9+ cell numbers at days 21 and 42 of 
storage, may indicate that Th9 activity in the product 
decreases. Considering the significant reduction noted in 
its transcription factor, the less than expected decrease in 
intracellular IL-9 might be due to additional expression 
of IL-9 from Th2 and Th17 cells109,110.

Th17 cells differentiate from naïve Th cells under 
the influence of the specific transcription factor 
RORC2, which is expressed following TGF-β and IL-6 
stimulation, and produce IL-17A, IL-17F, and IL-21111,112. 
Significant increases in RORC2 and CD3+CD4+IL-17A+ 

levels at storage day 42 suggest an increase in Th17 
activity within the product towards the end of the storage 
period. The increase in Th17 activity and decrease in Th1 
activity might be due to the absolute antagonism between 
these two cell populations113-115. It has previously been 
reported that disturbance of the interaction between 
Th1 and Th17 cells and, especially, the absence of a 
Th1 response leads to a stronger autoimmune response 
in an experimental setting115. Reduced Th1 activity 
and increased Th17 activity may suggest a potential 
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relationship between NL-ES that have approached the 
end of the storage period and autoimmunity. 

Th22 cells differentiate from naïve Th cells under the 
influence of the specific transcription factor AHR, which 
is expressed following IL-6 and TNF-α stimulation, 
and produce IL-22104,116,117. An insignificant decrease 
in AHR level on storage day 21 and the significant 
increase in AHR level at day 42, the significant reduction 
in CD3+CD4+IL-22+ level at day 21 and insignificant 
reduction in CD3+CD4+IL-22+ level at day 42 all suggest 
a decrease in Th22 activity within the product during its 
period of storage. 

Treg cells either develop naturally in the thymus 
(natural Treg; nTreg) or differentiate from naïve T cells 
in the presence of TGF-β (inducible Treg; iTreg)99,118. 
Treg cells specifically express a transcription factor 
called FOXP3, and intracellular Foxp3 expression is 
considered to be the most specific Treg marker99,118. 
However, activated effector T cells may also temporarily 
express low levels of intracellular FOXP3 under certain 
conditions118. In contrast to these cells, which express 
high levels of CD127, Treg cells express CD127 at 
either very low levels or not at all119-122. Unlike other 
Th cells, Treg cells suppress the immune response. 
Their main functions consist of self-tolerance and 
establishing and maintaining immune homeostasis. We 
found that the level of the transcription factor FOXP3 
was increased at day 42, the CD4+CD25+highFOXP3+ 
level was decreased at day 21, and the CD4+CD25+high 
CD127− levels were increased at both days 21 and 
42 of storage. These findings suggest that Treg cell 
activity tends to increase towards the end of the period 
of storage. There might be a relationship between 
transfusion of NL-ES approaching the end of its 
storage period and the immunosuppressive effect of 
transfusion. It has been demonstrated that the Th2 
immune response inhibits Treg differentiation through 
binding of GATA3 to the FOXP3 promoter region, thus 
blocking its expression123. Our results suggest that, by 
day 21 of storage, GATA3 may have caused a reduction 
in Treg activity via inhibition of FOXP3. The increase 
in FOXP3 and CD4+CD25+highCD127− levels together 
with the disappearance of GATA3 observed at day 42 
support this suggestion. 

Cytokines in the supernatant and effectiveness of 
leucoreduction 

Evidence suggests that that several BRM-
IM21-24,27,81,124-128, soluble Fas ligand and soluble HLA 
class I molecules6,55,129,130 which accumulate in ES during 
storage may have a role in TRIM. One of the potential 
drivers of TRIM effects are cytokines21-24. Changes 
in cytokine levels in ES supernatants during storage 
and their effects have been previously demonstrated 

in various studies28,84,85,129,131,132. The effectiveness of 
leucoreduction in the prevention of TRIM is unclear. 
Contradictory results have been reported in several 
studies in favour7,71,89,133,134 and against6,135-137 its 
effectiveness. We, therefore, measured cytokine profiles 
in LR-ES and NL-ES supernatants in order to examine 
the relationship of these profiles with the TRIM effect.

We measured IL-4, IL-6, IL-8, IL-9, IL-10, IL-13, 
IL-17A, IL-22, IFN-γ, TNF-α, and TGF-β levels by 
ELISA in this study. Among the listed cytokines, IL-4, 
IL-6, IL-9, IL-10 and TNF-α were not detected in any of 
the samples. This might be due to their rapid degradation, 
the low sensitivity of the ELISA for their detection, their 
short half-life or their consumption within the product 
during the storage period. IL-22 and TGF-β levels were 
only measurable in NL-ES supernatants. 

IL-8, IL-13, IL-17A, IFN-γ levels could be determined 
in LR-ES; among these only IL-17A was found to be 
significantly increased at storage day 42. Comparative 
analysis revealed that this increase tended to be greater 
than the increase in NL-ES samples which was close to 
statistical significance. It could be suggested that increased 
IL-17A in LR-ES might contribute to the TRIM effect 
by activating recipient Th17 cells following transfusion 
by weakening the Th1 response113-115 or by enhancing 
Th2 activity via transformation into Th17/Th2 cells138. 
If IL-17A does play a role in TRIM, this documented 
increase in IL-17A in LR-ES might be one of the 
reasons why leucoreduction is ineffective in preventing 
post-transfusion immunomodulation. The IL-8, IL-
13 and IFN-γ levels together with IL-17A in samples 
not containing leucocytes were also interesting. It is 
possible that these cytokines originate either from 
sources within the product other than leucocytes, or 
leucocyte-related structures (exosomes, microparticles, 
etc.) that can permeate the leucocyte filter. However, it 
does not appear to be rational to expect these sources to 
produce higher levels of IL-17 in LR-ES samples than 
NL-ES supernatants containing leucocytes. Our results 
regarding IL-17A levels do, therefore, need questioning 
and further confirmation.

In NL-ES supernatants IL-8, IL-13, IL-17A, IL-22, 
IFN-γ, TGF-β levels could be measured; among these, 
only a decrease in IL-22 levels and an increase in TGF-β 
levels were found to be statistically significant at day 
21 of storage. The increase in TGF-β levels in day 
42 samples was close to statistical significance. This 
increase in TGF-β levels during the storage process 
supports previous studies suggesting a relationship 
between this cytokine and TRIM28,129. TGF-β, transferred 
to the recipient via allogeneic blood transfusion may 
reach high levels, especially in patients who receive 
multiple transfusions, and inhibit leucocyte activation 
or enhance the immunosuppressive features of TRIM 
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by inducing differentiation of naive Th cells into Treg 
cells. Therefore, in contrast to the above-mentioned 
hypothesis, the change in TGF-β levels, which were 
increased in NL-ES but undetectable in LR-ES 
supernatants, may be an indicator of the benefit of 
leucoreduction in preventing TRIM.

In summary, IL-17A and TGF-β accumulation 
in supernatants may contribute to TRIM via the 
mechanisms suggested above. This leads to the 
hypothesis that the TRIM effect could occur not only 
via allogeneic blood components but also through 
autologous ones, which have approached the end of 
their storage period. On the other hand, our comparative 
analysis suggests that leucoreduction may be effective in 
the prevention of TRIM. While increased TGF-β levels 
in NL-ES support this suggestion, the increased level of 
IL-17A in LR-ES is difficult to interpret. In any case, as 
direct immunosuppressive effects of TGF-β overcome 
the potential proposed effects of IL-17A, leucoreduction 
might ultimately be considered as effective. 

Conclusions
In conclusion, significant amounts of molecules 

and cells are transferred to the recipient via allogeneic 
blood transfusion. The persistence and activity of 
these transferred elements within the circulation may 
predispose to the development of TRIM. Our results 
suggest that allogeneic leucocytes and cytokines both 
play roles in the development of TRIM. It appears that 
leucoreduction may at least be effective in preventing 
cytokine-mediated TRIM. However, factors other than 
leucocytes will always limit this preventive effect. 
Finally, the TRIM phenomenon is not encountered 
following every transfusion, and it is possible that 
different mechanisms underlie the effects in different 
individuals. Numerous product- and recipient-related 
variables lead to these effects. It should not be 
forgotten that, in addition to leucocytes in the product 
and BRM-IM accumulated within the supernatant, 
erythrocytes, solutions within the bag systems, 
concomitant diseases and demographic characteristics 
of the patients receiving blood transfusion may also 
play roles in the TRIM effect. Valuable additional data 
could be provided by future studies designed to take 
all of these factors into account. 
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