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Abstract.—Phylogenetic comparative methods explore the relationships between quantitative traits adjusting for shared
evolutionary history. This adjustment often occurs through a Brownian diffusion process along the branches of the phylogeny
that generates model residuals or the traits themselves. For high-dimensional traits, inferring all pair-wise correlations
within the multivariate diffusion is limiting. To circumvent this problem, we propose phylogenetic factor analysis (PFA) that
assumes a small unknown number of independent evolutionary factors arise along the phylogeny and these factors generate
clusters of dependent traits. Set in a Bayesian framework, PFA provides measures of uncertainty on the factor number
and groupings, combines both continuous and discrete traits, integrates over missing measurements and incorporates
phylogenetic uncertainty with the help of molecular sequences. We develop Gibbs samplers based on dynamic programming
to estimate the PFA posterior distribution, over 3-fold faster than for multivariate diffusion and a further order-of-magnitude
more efficiently in the presence of latent traits. We further propose a novel marginal likelihood estimator for previously
impractical models with discrete data and find that PFA also provides a better fit than multivariate diffusion in evolutionary
questions in columbine flower development, placental reproduction transitions and triggerfish fin morphometry. [Bayesian
inference; comparative methods; morphometrics; phylogenetics.]

Phylogenetic comparative methods revolve around
uncovering relationships between different characteris-
tics or traits of a set of organisms over the course of their
evolution. One way to gain insight into these interactions
is to analyze unadjusted correlations between traits
across taxa. However, as insightfully noted by Felsenstein
(1985), unadjusted analyses introduce the inherent
challenge that any association uncovered may reflect
the shared evolutionary history of the organisms being
studied, and hence their similar traits values, rather
than processes driving traits to covary over time. Thus,
studies to identify covarying evolutionary trait processes
must simultaneously adjust for shared evolutionary
history.

There have been many attempts to accomplish this
goal. Felsenstein (1985) and Ives and Garland (2010) are
two such important examples, but they rely on a known
evolutionary history described by a fixed phylogenetic
tree and consider univariate evolutionary processes
giving rise to only single traits. Felsenstein (1985)
treats continuous traits as undergoing conditionally
independent, Brownian diffusion down the branches
of the phylogenetic tree and Ives and Garland (2010)
posit a regression model where the tree determines
the error structure in the univariate outcome model.
Huelsenbeck and Rannala (2003) adapt the Brownian
diffusion description in a Bayesian framework with the
goal of drawing simultaneous inference on both the tree
from molecular sequence data as well as the correlations
of interest related to a small number of traits through
a multivariate Brownian diffusion process. Lemey et al.

(2010) extend the multivariate process by relaxing the
strict Brownian assumption along distinct branches in
the tree using a scale mixture of normals representation.
Cybis et al. (2015) jointly model molecular sequence data
and multiple traits using a multivariate latent liability
formulation to combine both continuous and discrete
observations and determine their correlation structure
while adjusting for shared ancestry. This method
is effective, but inference remains computationally
expensive and estimates of the high-dimensional
correlation matrix between traits only allows us to
explain the evolution of these traits through a single
process. Additional frequentist methods include, Revell
(2009) who use a phylogenetically adjusted principal
components analysis (PCA), Adams (2014) who use a
phylogenetic least squares analysis, and Clavel et al.
(2015) who also use a multivariate diffusion method.
All of these methods, however require large matrix
inversions which make them ill-suited to adaptations
to full Bayesian inference, or bootstrapping to provide
measures of uncertainty.

One way to alleviate these problems lies with
dimension reduction through exploratory factor analysis
(Aguilar and West 2000). Factor analysis is the inferred
decomposition of observed data into two matrices,
a factor matrix representing a set of underlying
unobserved characteristics of the subject which give
rise to the observed characteristics and a loadings
matrix which explains the relationship between the
unobserved and observed characteristics. Another form
of dimension reduction through matrix decomposition
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is an eigen decomposition known as a PCA. Santos
(2009) provides a method for constructing PCA adjusted
for evolutionary history. This method, however, has the
same problems typically associated with PCA, namely
that it is not invariant to the scaling of the data and is not
conducive to Bayesian analysis since it is not a likelihood
based method. In a frequentist setting, the author also
provides no approach for simultaneous inference on
the phylogenetic tree that is rarely known without
error (Huelsenbeck and Rannala 2003). In addition,
there lacks a reasonable prescription for measuring
uncertainty about which traits contribute to which
principal components. Rai and Daume (2008) design a
factor analysis method which uses a Kingman coalescent
to construct a dendrogram across a factor analysis
for genetic data. While this is similar to the idea we
will employ, this specific method uses a dendrogram
between, rather than within, factors and is thus ill
suited to handle the important problem we tackle in
this article. Namely, researchers often seek to identify
a small number of relatively independent evolutionary
processes, each represented by a factor changing over
the tree, that ultimately give rise to a large number of
observed, dependent traits. This paper provides such a
dimension reduction tool by introducing phylogenetic
factor analysis (PFA).

To formulate such a PFA model, we begin with usual
Bayesian factor analysis, as posited by Lopes and West
(2004) and Quinn (2004), which represents underlying
latent characteristics of a group of organisms through
a factor matrix and maps those latent characteristics
to observed characteristics via a loadings matrix. In
a standard factor analysis, the underlying factors for
each species would be assumed to be independent of
each other, however this does nothing to adjust for
evolutionary history. Vrancken et al. (2015) describe
how a high-dimensional Brownian diffusion can be
used to describe the relationship between all of these
observed traits, however the signal strength of the
results of analyzing this model can be quite poor.
By using independent Brownian diffusion priors on
our factors, our PFA model groups traits into a
parsimonious number of factors while successfully
adjusting for phylogeny. Scientifically, these diffusions
represent independent evolutionary processes. We use
Markov chain Monte Carlo (MCMC) integration in order
to draw inference on our model through a Metropolis-
within-Gibbs approach. This facilitates both a latent data
representation (Cybis et al. 2015) for integrating discrete
and continuous traits and a natural method to handle
missing data relevant to our problems. We further rely
on path sampling methods (Gelman and Meng 1998) to
determine the appropriate number of factors (Ghosh and
Dunson 2009). Since the latent, probit model necessitates
the use of hard thresholds, we now have introduced
an inherent difficulty in path sampling. In order to get
around this difficulty, we employ a novel method which
relies on softening the threshold necessitated by the
probit model slowly over the course of the path. We

additionally develop a novel method by which to handle
identifiability issues inherent to factor analysis by taking
advantage of the fact that correlated elements in the
loadings matrix tend to be correlated across the MCMC
chain.

We show that our PFA method performs superiorly to
a high-dimensional Brownian diffusion in both model
fit, specifically through Bayes factors, and, when we are
inferring large numbers of latent traits, speed using the
examples of the evolution of the flower genus Aquilegia,
as well as the reproduction of the fish family Poeciliidae
that involves trait measurements missing at random.
Lastly, we explore the dorsal, anal and pectoral fin
shapes of the fish family Balistidae in order to explore
this method’s ability to handle situations where the
number of traits are large compared with the number
of species and to explore the simultaneous inference
on our method along with the evolutionary history of
these organisms with the aid of sequence data. The
PFA model and its inference tools will be released
in the popular phylogenetic inference package BEAST
(Drummond et al. 2012).

METHODS

Phenotypic Trait Evolution
Consider a collection of N biological entities (taxa).

From each taxon i=1,...,N, we observe a P-dimensional
measurement Yi = (Yi1,...,YiP) of traits and, if available,
a molecular sequence Si. We organize these phenotypic
traits into an N×P matrix Y= (Y1,...,YN)′ and an
aligned sequence matrix S. These taxa are related to
each other through an evolutionary history F , informed
through S, and we are interested in learning about the
evolutionary processes along this history that give rise
to observed traits Y. The history F consists of a tree
topology � and a series of branch lengths B. The tree
topology is a bifurcating directed acyclic graph with a
single generating point called the root, representing the
most recent common ancestor of the given taxa, and with
end points, each of which corresponds to a different
taxon. The branch lengths correspond to edge weights
of the graph, reflecting the evolutionary time before
bifurcations. The history F may be known and fixed,
or unknown and jointly inferred using Y and S. For
further details on constructing the sequence-informed
prior distribution p(F |S) and integrating over F when
unknown (see, e.g., Suchard et al. 2001 or Drummond
et al. 2012).

In order to simultaneously model continuous, binary
and ordinal traits, we adapt a latent data representation
through the partially observed, standardized matrix Z
with entries

Zij =
{

(Yij −Ŷj)/�̂j if trait j is continuous
Zij if trait j is binary or ordinal,

(1)

where Ŷj is the mean of trait j across taxa, �̂j is its
standard deviation for j=1,...,P and,more importantly,
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Zij ∈R is an unknown random variable that satisfies the
restrictions

�j(c−1) <Zij ≤�jc given Yij =c (2)

and c∈{1,...,mj} for mj-valued binary/ordinal data for
trait j. For identifiability, latent trait cut-points γj =
(�j0,...,�jmj ) take on the restrictions �j0 =−∞, �j1 =0 and
�jmj =∞ or are otherwise random and jointly inferred.
Grouping cut-points for all binary or ordinal traits into
γ, Cybis et al. (2015) suggest assuming that differences
between the small number of successive, random cut-
points are a priori exponentially distributed with mean
1
2 to define their density p(γ). Cybis et al. (2015) also
discuss in detail how to treat categorical data in this sort
of analysis. Since we do not use examples which contain
nonordered categorical data we elect not to describe
those methods in these sections, but we will mention that
they are implemented in BEAST and are easily adapted
to fit the methods described in this article.

In order to uncover the biological relationships
amongst traits in Z while controlling for evolutionary
history, previous work relies on a Gaussian process
generative model induced through considering
conditionally independent Brownian diffusion along
each branch in F (Felsenstein 1985). In a multivariate
setting, a P×P variance matrix � and unobserved, P-
dimensional root trait value μR characterize the process.
Pybus et al. (2012) identify that analytic integration of μR
is possible by assuming that μR is a priori multivariate
normally distributed with a fixed hyperprior mean
μ0 and variance equal to �−1

0 �, where �0 is a fixed
hyperprior sample-size. Consequentially, given F and
�, the latent traits Z are distributed according to a
matrix-normal (MN)

Z∼MN
(
μ0,�F +�−1

0 J,�
)
, (3)

where �F +�−1
0 J is the across-taxa (row) variance and a

deterministic function of phylogeny F , � is the across-
trait (column) variance, and J is a N×N matrix of ones
(Vrancken et al. 2015). Traits Z have density function

p(Z|F,�)=
exp

{
− 1

2 tr
[
�−1(

Z−1μt
0
)t(

�F +�−1
0 J

)−1(
Z−1μt

0
)]}

(
2�

)NP/2 |�|N/2
∣∣∣�F +�−1

0 J
∣∣∣P/2 ,

(4)

where tr[·] is the trace operator and 1 is a N-dimensional
column vector of ones. Tree variance matrix �F contains
diagonal elements that are equal to the sum of the
adjusted branch lengths in F between the root node and
taxon i, and off-diagonal elements (i,i′) that are equal to
the sum of the adjusted branch lengths between the root
node and the MRCA of taxa i and i′, where the adjusted
branch lengths represent a function of wall time and a
branch rate accounting for variation in evolutionary rate

over the course of the tree. For our diffusion model, we
scale our tree such that from the root to the most recent
tip we say that the process has undergone one diffusion
unit.

Placing a conjugate prior distribution on �, such as
�−1 ∼Wishart�(�R0 ) where � is the hyperprior degrees
of freedom and �R0 is the hyperprior belief on the
structure of the inverse of the variance matrix �, enables
inference about its posterior distribution, shedding light
on how the evolution of these traits relate to each other.
Such inference often requires repeated evaluation of
density (4), especially when the phylogeny F or variance
� is random. This evaluation suggests a computational
order O(N3 +P3), arising from the inversion of the
N×N variance matrix �F +�−1

0 J and P×P variance
matrix �. One easily avoids the latter by parameterizing
the model in terms of �−1 (Lemey et al. 2010). To
address the former, Pybus et al. (2012) provide an
O(NP2) dynamic programming algorithm to evaluate
(4) without inversion of the across-taxa variance matrix,
similar to Freckleton (2012). This advance certainly
makes for more tractable inference under these diffusion
models as N grows large, but the quadratic dependence
on P still hampers their use for high-dimensional
traits. Inference can often be slow, taking as long as
a day for problems with a dozen traits and about
30 taxa to mix properly (Cybis et al. 2015). Finally,
direct inference on � can often fail to produce a
coherent and interpretable conclusion about the number
of independent evolutionary processes generating the
traits if the matrix cannot be reordered to form
approximately separated blocks especially if the signal is
too weak to produce many statistically significant cells.

Factor Analysis
To infer potentially low dimensional evolutionary

structure among traits, we rely on dimension reduction
via a PFA. This model builds on the premise that a
small, but unknown number K �min

(
N,P

)
of a priori

independent univariate Brownian diffusion processes
along F provides a more parsimonious description of
the covariation in Z than a P-dimensional multivariate
diffusion. We parameterize the PFA in terms of an
N×K factor matrix F= (F1,...,FK) whose K columns Fk =(
F1k,...,FNk

)t for k =1,...,K represent the unobserved
independent realizations of univariate diffusion at each
of the N tips in F , a K×P loadings matrix L={Lkj} that
relates the independent factor columns to Z, and an N×P
model error matrix ε, such that

Z=FL+ε. (5)

To inject information about and control for shared
evolutionary history F , we specify that

F∼MN
(

0,�F +�−1
0 J,IK

)
and

ε∼MN
(

0,IN,�−1
)
,

(6)
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where I(·) is the identity matrix of appropriate
dimension and the residual column precision � is a
diagonal matrix with entries (�1,...,�P). Lastly, since
K is unknown, we place a reasonably conservative
zero-truncated-Poisson prior on it, such that p(K =1)
=1/2.

To better appreciate the details of the PFA model, we
briefly compare it to a typical Bayesian factor analysis.
Typical factor analyses assume that all entries of F are
independent and identically distributed (iid) as N

(
0,1

)
,

normal random variables with mean 0 and variance 1.
In PFA, the shared evolutionary history F specifies the
correlation structure within the N entries of column
Fk . Often, one refers to a given column as a “factor.”
Across factors, the column variance remains IK to reflect
our assertion that the underlying evolutionary processes
generating Fk are independent of each other. Note that
in this model the number of parameters undergoing
Brownian Diffusion is assumed to be of dimension K
as opposed to of dimension P in the previous model.

To complete model specification of the loadings L and
residual error ε, we assume

Lkj ∼N
(
0,1

)
for all k ≤ j,

�j ∼	
(

�,��

)
for all trait j continuous, and

(7)

otherwise �j =1 to preserve identifiability under the
scale-free latent model for discrete traits. Here, 	

(

�,��

)
signifies a gamma distributed random variable with
hyperparameter scale 
� and rate ��.

Without further restrictions on L, any factor analysis
remains overspecified. For example, given an orthogonal
K×K matrix T, one may rotate F in one direction and
L in the other and arrive at the same data likelihood,
since FL=FTTtL. To address this identifiability issue,
we fix lower triangular entries Lkj =0 for k > j (Geweke
and Zhou 1996; Aguilar and West 2000). It is also
standard practice to apply the restriction Lkk >0, since
otherwise FL= (−F)(−L). While the constraint yields an
identifiable posterior distribution with respect to F and
L, we do not pursue it here because it introduces bias
into our scientific inference on L and, instead, search for
an alternative.

The diagonal and upper triangular entries Lkj for k ≤ j
of the loadings L inform the magnitude and effect-
direction that the evolutionary process captured in factor
Fk contributes to trait j. As a quantitative measure
of uncertainty about these relationships, we define pkj
to equal the absolute difference between the posterior
probability that Lkj >0 and the posterior probability that
Lkj <0; this measure ranges from 0 when Lkj is centered
around 0 to 1 when Lkj is either strictly positive or strictly
negative with probability 1. It is possible, and we would
argue likely, that Fk has little or no influence on the trait
arbitrarily labeled k, such that most of the posterior mass
of Lkk lies around and close to 0. Artificially restricting
Lkk >0 forces all of this mass above 0, signifying a positive
association with prior, and hence posterior, probability 1.

To combat this bias, we recouch these identifiability
conditions as a label switching problem in a mixture
model and propose a post hoc relabeling algorithm
(Stephens 2000). We require K sign constraints, one
for each column-row outer-product in forming FL, for
posterior identification. In our prior, we modify equation
(7) to further assign one nonzero entry Lkj >0 per row,
but do not specify which one; this assignment mirrors
the mixture model labeling. Hence, we allow the data,
not an arbitrary decision, to determine which entry per
row reflects a positive association with probability 1,
decreasing potential bias.

Recalling that continuous traits are standardized in
Z to have mean 0 and variance 1 affords several
benefits. First, we can posit a 0-matrix mean for F in
equation (6) without loss of information. But, more
importantly, when we draw inference on �, we can
interpret traits which have precision elements that
demonstrate considerable posterior mass at or below 1 to
be described insufficiently by the model, since the factors
provide no insight beyond a random normal model. A
third advantage is that standardization helps us select
reasonable scales for the nonzero entries in L, namely
that these have variance 1, and hyperparameters for �,
specifically that 
�

��
=1. In practice, 
� = 1

3 and �� = 1
3

for analyses in this paper. While these hyperparameter
choices are by no means perfect we feel that, under
the paradigm of data scaling, they are reasonable and
generalizable across a variety of problems.

This model is a simplified form of the item factor
analysis models that are described by Quinn (2004) in the
political science literature and Beguin and Glas (2001) in
the psychology literature with a tree as a prior on the
factors instead of an independent normal distribution.
In fact, the methods for treating binary and ordinal
data described in Quinn (2004) are the same as those
described in Cybis et al. (2015), making for a convenient
adaptation of this factor analysis model to phylogenetics
using existing software in BEAST.

Inference
Given the trait measurements Y and aligned sequences

S, we strive to learn about the joint posterior distribution
of the number of evolutionary processes K, factors F,
loadings L, column precisions �, latent trait cut-points
γ and evolutionary history F

p(K,F,L,�,γ,F |Y,S)∝p(Y|K,F,L,�,γ)

×p(F|K,F)×p(F |S)×p(L|K)×p(�)×p(γ)×p(K)

=
(∫

p(Y|Z,γ)p(Z|K,F,L,�)dZ
)

p(F|K,F)×p(F |S)

×p(L|K)×p(�)×p(γ)×p(K), (8)

where p(Y|Z,γ)∝1(Y|Z,γ) is the indicator function that
the restrictions in Equation (2) hold. We accomplish
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this inference through MCMC, using a random-scan
Metropolis-within-Gibbs scheme (Liu et al. 1995) for
fixed K and a modification of path sampling to then
estimate the marginal posterior p(K |Y,S). For fixed K,
our Metropolis-within-Gibbs scheme employs transition
kernels described in Cybis et al. (2015) and references
therein to integrate over the evolutionary history F and
unobserved, latent traits Zij and cut-points γj where trait
j is discrete.

Here, we focus on transition kernels within the scheme
to integrate over the factors F, loadings L and residual
column precision �. Lopes and West (2004) derive
full conditional distributions for the columns of L and
diagonals of � under a traditional factor analysis. These
full conditional distributions do not change under a PFA
and we use them for Gibbs sampling. Specifically, for
column j of L, the first k′ =min

(
j,K

)
entries are nonzero

and, given all other random variables, distributed
according to a multivariate normal (MVN)(

L1j,...,Lk′j
)t |Z,F,�∼MVN

(
M

(
L
)

j ,V
(
L
)

j

)
for j=1,...,P, (9)

parameterized in terms of its mean

M
(
L
)

j =V
(
L
)

j �jF
t
1:k′Zej (10)

and variance

V
(
L
)

j =
(
�jF

t
1:k′F1:k′ +Ik′

)−1
, (11)

where F1:k′ =(
F1,...,Fk′

)
is the first k′ columns of F and

ej is the unit-vector in the direction of trait j. Further,

�j |Z,F,L∼	

(

�+ N

2
,��+ 1

2
et

j
(
Z−FL

)t(Z−FL
)
ej

)
,

(12)

if trait j is continuous. The Appendix provides
derivations of these full conditional distributions. Gibbs
sampling all columns of L carries a computation order
O(NK2P), arising from the matrix multiplication of
Ft

1:k′F1:k′ for each trait. The matrix inversion is not rate-
limiting here since N 
K. Likewise, Gibbs sampling �
remains very light-weight at O(NKP), stemming from
the sparse multiplication of FLej for each trait. While
we write that the order of both Gibbs samplers depend
on P to be clear that we must iterate over all traits, the
astute reader has already recognized the conditional
independence of updates between traits, such that we
may execute updates for each trait in parallel.

The traditional Gibbs sampler for F fails in the
phylogenetic setting for more than a handful of taxa,
since determining the full conditional distribution of F
requires inverting the matrix

(
�F +�−1

0 J
)
. As mentioned

previously, but worth repeating, this task stands as

prohibitive with a computational order O(N3) and
presents a major challenge for PFA.

We circumvent this difficulty by exploiting the
structure of the phylogenetic tree F . Probability models
on directed, acyclic graphs lend themselves well to
dynamic programming for determining marginalized
data likelihoods, such as Felsenstein’s pruning algorithm
for sequence data (Felsenstein 1973) and related work
for Brownian diffusion (Pybus et al. 2012), and
conditional predictive distributions, like those obtained
for (ancestral) sequence reconstruction.

In extending these conditional distributions to
Brownian diffusion, first let Fi· = (Fi1,...,FiK) identify
row i of F, more specifically all latent factor values
attributed to taxon i, and let F-i· concatenate the
remaining rows. Given that F is matrix-normally
distributed with an across-taxa (row) variance that
depends on the phylogeny F , Cybis et al. (2015) provide a
tree-traversal-based algorithm to determine p(Fi· |F-i·,F)
that remains a multivariate normal distribution. The
algorithm requires first a post-order tree-traversal
to determine the joint distribution of all tip-values
descendent to each internal node and then a preorder
tree-traversal back to taxon i to compute its prior
conditional mean μF-i· and precision �F-i· . Since the
across-factor (column) variance on F is diagonal,
the dynamic programming algorithm runs quickly
in O(NK). Using this result, we determine the full
conditional distribution

Ft
i· |Z,F-i·,L,�,F ∼MVN

(
M

(
F
)

i ,V
(
F
)

i

)
for i=1,...,N, (13)

with mean

M
(
F
)

i =V
(
F
)

i

(
L�Ztei +�F-i·μF-i·

)
(14)

and variance

V
(
F
)

i =
(

L�Lt +�F-i·

)−1
, (15)

where ei is the unit-vector in the direction of taxon i. The
Appendix delivers a derivation of this full conditional
distribution. The evaluation of this full conditional
distribution runs in O(K2P), where the term L�Lt is rate
limiting.

Employing equations (13–15), we can cycle over i
to fabricate a tractable Gibbs sampler for F with total
computational order O(N2K+NK2P). It is fruitful to
compare this work with the rate-limiting step for
inference under the nonsparse model. Here, sampling
the precision matrix �−1 carries a computational
cost of O(NP2). From these bounds, it is clear that
increasing numbers of taxa N should limit PFA, while
increasing numbers of traits P should limit the nonsparse
model from a computational work per MCMC iteration
perspective. However, per-iterative arguments ignore
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the posterior correlation between model parameters and
its influence on MCMC mixing times.

Finally, to maintain identifiability with respect to F and
L in the posterior, we propose a simple post hoc relabeling
algorithm (Stephens 2000). We sample (F(m),L(m))
from p(K,F,L,�,γ,F |Y,S) for MCMC iteration m=
1,...,M assuming a sign-unconstrained prior. From this
unconstrained sample, we select for each row k in L the
column element with the fewest number of sign changes
between iterations. Assume for row k, this is column jk .
We then constrain our sample by multiplying F(m)

k and

row k of L(m) by the sign of L(m)
kjk

. No further sample
reweighing is necessary because p(F|K,F)=p(-F|K,F)
is also invariant to reflection.

Model selection.—To estimate the marginal posterior
density p(K |Y,S), we rely on a variant of path sampling
that we equip to successfully integrate latent variable
Z when traits are discrete. We employ our variant to
approximate each marginal likelihood p(Y,S|K =k) for
k =1,...S, where S is a relatively small number such
as min{P,10}, after which we approximate p(Y,S|K >
S)=0. Then, invoking Bayes theorem, p(K =k |Y,S)∝
p(Y,S|K =k)p(K =k). Moreover, through this approach,
we can address the model selection problem of how
many independent factors do the data support through
Bayes factors (Jeffreys 1935):

p(K =k |Y,S)
p(K =k′ |Y,S)

= p(Y,S|K =k)
p(Y,S|K =k′)

p(K =k)
p(K =k′) . (16)

Lopes and West (2004) and Ghosh and Dunson
(2009) have been strong proponents of Bayes factors
to determine the optimal number of factors in a
traditional factor analysis, where Lopes and West (2004)
employ a simple harmonic mean estimator (Newton
and Raftery 1994) to estimate their marginal likelihoods.
This estimator performs poorly in highly structured
phylogenetic models and path sampling has largely
supplanted it (Baele et al. 2012).

Path sampling is an MCMC-based integration
technique to estimate marginal likelihoods, such as
p(Y,S|K). The technique constructs a series of power
posteriors (Friel and Pettitt 2008) at various temperatures
�∈[0,1], where �=1 corresponds to a joint density
l(Y,S,Z,F,L,�,γ|K) proportional, but with an unknown
constant, to p(Y,S|K) and �=0 yields a normalized
density p̂(Z,F,L,�,F,γ|K) that does not depend on the
data, often a combination of the prior and other working
distributions (see e.g., Baele et al. 2016). The usual power
posterior path is q(�,Y,S,θ)= l(Y,S,θ)�× p̂(θ)1−�, where
θ is the set of all parameters in the model we are
considering. For example, in PFA, θ={Z,F,L,�,F,γ}.

In latent models with discrete traits, however, the
support of the latent variable Z changes when the
data are observed (Heaps et al. 2014). In particular, our
unnormalized joint density l(Y,S,θ) is zero for values
of Z that are incompatible with Y because p(Y|Z,γ)=0,

therefore a trait Zij only has support over (�i(c−1),�ic]
if Yij =c, while p̂(·) places nonzero density over all
possible values Zij ∈ (−∞,∞). Our working distribution,
for example, assumes Zij ∼N(0,1) when Zij is random.
If we factor l(Y,S,θ) into a support condition 1(Y|Z,γ)
and the remaining likelihood h(Y,S,θ), then the standard
path used in this scenario (Heaps et al. 2014) is

q(�,Y,S,θ)=1(Y|Z,γ)×h(Y,S,θ)�× p̂(θ)1−�. (17)

For the power posterior method to yield the marginal
likelihood p(Y|K), it is necessary (Friel and Pettitt 2008)
that ∫ {

lim
�→0

q(�,Y,S,θ)
}

dθ=1. (18)

Plugging (17) into (18), we find∫ {
lim
�→0

q(�,Y,S,θ)
}

dθ=
∫

1(Y|Z,γ)× p̂(θ)dθ. (19)

If we define � as the region where 1(Y|Z,γ)=1, then we
see that ∫

�
p̂(θ)dθ<1, (20)

since �� the support of θ. While it is theoretically
possible to construct p̂(θ) such that it is normalized
to 1 over �, previous attempts to do so have failed.
Alternatively, Heaps et al. (2014) attempt to approximate
such a distribution by fixing γ and ignoring the
corresponding integral.

We posit an exact solution by proposing a new
path that relies on a softening threshold. Consider the
modified path

q∗(
�,Y,S,θ

)={1−[1−1(Y|Z,γ)]�}
×h(Y,S,θ)�× p̂(θ)1−�. (21)

Following from (18), we find that∫ {
lim
�→0

q∗(
�,Y,S,θ

)}
dθ=

∫
p̂(θ)dθ=1, (22)

by construction.
Lastly, in order to adapt the power posterior method, at

each step in the series we need to compute the derivative
of logq∗(

�,Y,S,θ
)

with respect to �. From equation (21),
we see that

∂

∂�
logq∗(

�,Y,S,θ
)

=− 1−1(Y|Z,γ)
1−[1−1(Y|Z,γ)]�

+logh(Y,S,θ)−logp̂(θ), (23)

and observe that there is no singularity at �=1 since,
at that point in the path, latent variable Z only assumes
values in �, such that 1(Y|Z,γ)=1.
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EMPIRICAL EXAMPLES

Columbine Flower Development
Columbine genus Aquilegia flowers have attracted at

least three different pollinators across their evolutionary
history: bumblebees (Bb), hawkmoths (Hm), and
hummingbirds (Hb). Whittall and Hodges (2007)
question the role that these pollinators play in the
tempo of columbine flower evolution, tracked through
the color, length and orientation of different anatomical
floral features, and are particularly interested in how
transitions between pollinators relate to spur length.
Cybis et al. (2015) take up this question by examining P=
12 different traits for N =30 monophyletic populations
from the genus Aquilegia that include 10 continuously
valued traits, a binary trait that indicates presence or
absence of anthocyanin pigment and a final ordinal trait
indicating the primary pollinator for that population.
Whittall and Hodges (2007) propose a Bb–Hm–Hb
ordering and we use the fixed phylogenetic tree the
authors employ in their analysis. Through fitting a
latent multivariate Brownian diffusion (LMBD) model
parameterized in terms of a 12×12 variance matrix �,
Cybis et al. (2015) find the data strongly support the
proposed ordering over alternative orderings. We return
to the relationship between pollinator and the other traits
and test whether a PFA returns a better understanding
of the evolutionary factors driving their interrelated
change compared with an LMBD model.

Under our PFA, the most probable number of
independent evolutionary processes is K =2, with a log
Bayes factor >7 over the neighboring K =1 or K =3 factor
parameterizations (Table 1). Further, the PFA with K =2
is favored over the LMBD model with a log Bayes factor
>24 when assuming equal prior probabilities over these
two models.

The PFA has high explanatory power for all
continuous traits (Table 2) and Figure 1 presents our
inference on the relationships between traits under the
PFA with K =2 and compares these findings to inference
under the LMBD model. The first evolutionary process
F1 approximately partitions the traits into two groups.
One group includes: orientation, blade brightness, spur
brightness, sepal length, blade length, pollinator type,
spur hue, spur length, blade hue, and expected trait
values increase (displayed loadings entries Lkj in purple)
as the factor grows over the phylogeny. The other group
includes: blade chroma, anthocyanins pigment presence
and, with less posterior probability, spur chroma, and
expected trait values decrease (green) as the factor
grows. A possible exception to the F1 partitioning is the
pollinator trait, where we estimate only a 0.92 absolute
difference in posterior probability of being greater than
0 versus less than 0.

Ignoring the uncertainty in pollinator trait inclusion
for the moment, this partitioning recapitulates the block
structure that Cybis et al. (2015) report using an LMBD
model and an arbitrary thresholding on the posterior
mean estimates of the individual pairwise correlation
entries in �. However, in Figure 1 we quantify the LMBD

TABLE 1. Log marginal likelihood estimates for
the number K of independent factors driving evolution
under a PFA and a LMBD model in Aquilegia, and
Poeciliidae and MBD in Balistidae

Log marginal
Model likelihood

A
qu

ile
gi

a K =1 −385.4
K =2 −366.9
K =3 −374.3

LMBD −391.1

K =2 −536.0

Po
ec

ili
id

ae K =3 −500.7
K =4 −501.0
K =5 −505.9

LMBD −592.3

B
al

is
ti

da
e K =4 −15622.0

K =5 −15603.5
K =6 −15610.4
MBD −15673.2

Notes: The K =2 model for Aquilegia, the K =3 and K =4
model for Poeciliidae and the K =5 model for Balistidae
achieve the highest marginal likelihoods.

TABLE 2. Precision � posterior mean and 95% Bayesian
credible interval estimates under the latent factor model for
the traits in Aquilegia, in Poeciliidae and in Balistidae

Posterior 95% Bayesian
Trait mean credible interval

Orientation 2.1 [1.0, 3.3]
Spur length 4.4 [2.0, 7.1]
Blade length 3.0 [1.4, 4.8]

A
qu

ile
gi

a Sepal length 2.6 [1.3, 4.1]
Spur chroma 4.2 [1.8, 6.9]
Spur hue 6.2 [2.6, 10.5]
Spur brightness 2.7 [1.2, 4.3]
Blade chroma 2.3 [1.1, 3.7]
Blade hue 2.1 [1.0, 3.2]
Blade brightness 3.3 [1.4, 0.6]

Matrotrophy index 14.3 [5.6, 23.2]

Po
ec

ili
id

ae
(K

=3
) Gonopodium length 9.3 [4.3, 16.1]

Male body length 3.5 [2.4, 4.6]
Male body weight 2.8 [1.9, 3.7]
Female body length 10.5 [5.7, 15.5]
Female body weight 15.1 [8.0, 24.3]

Matrotrophy index 13.8 [5.5, 22.7]

Po
ec

ili
id

ae
(K

=4
) Gonopodium length 9.1 [4.4, 15.5]

Male body length 3.5 [2.3, 4.8]
Male body weight 2.8 [1.9, 3.8]
Female body length 10.5 [5.8, 15.5]
Female body weight 14.7 [8.2, 22.5]

Notes: The PFA model explains all of the continuous traits
in these models better than a N(0,1) distribution on the
standardized traits.

uncertainty by shading our inference using the same
probability measure as we do for our PFA model. Taking
correlation uncertainty into consideration we see that,
for example the LMBD model would assert that there
is no correlation between blade chroma and spur hue.
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a)

b)

FIGURE 1. Processes driving columbine flower evolution inferred
through PFA or LMBD. a) Loadings L estimates from a K =2 factor
PFA model. Purple circles represent traits positively associated with
traits represented by other purple circles within a loading, and
negatively associated with traits represented by green circles within
a loading. Similarly, traits represented by green circles are positively
associated with traits represented by green circles within a loading.
Size represents the magnitude of the value of the loadings. Opacity
represents the posterior probability that the sign of the given element
is equal to the sign of the posterior mean. The greyed out cell
represents a structural 0 introduced for identifiability reasons. The
magnitude for anthocyanins and pollinator type is less relevant since
those measurements are discrete. b) Correlation matrix estimate from
a LMBD model. Red represents positive correlation, blue represents
anticorrelation, and opacity represents the absolute difference in
posterior probability of being greater than 0 and less than 0. Size
of the circle represents the magnitude of the correlation. The PFA
captures well two independent processes, while the LMBD groups
these processes together.

The PFA model by contrast offers the more nuanced
assessment that these traits are related through two
independent underlying processes, one process of which
has a positive association between these traits, the other
of which has a negative association.

In addition to improved uncertainty quantification
in the block structure of traits, our PFA returns a
second independent evolutionary process F2 that relates
pollinator with spur length and, in addition, spur
and blade chroma and hue, with posterior probability
approaching 1. The existence of two distinct processes,
one of which directly connects pollinator and spur
length, sheds additional insight into the original
hypothesis that Whittall and Hodges (2007) pose. The
LMBD model fails to pick up on this, in addition to
returning a worse fit to the data.

Transitions to Placental Reproduction
The freshwater fish Poeciliidae represent a family

of model organisms in which one can study the
transition from nonplacental to placental reproduction
and the evolutionary pressures associated with placental
introduction. Pollux et al. (2014) define a matrotrophy

index to be the log-ratio of the dry weight of newborn
fish to the dry weight of eggs at fertilization as a proxy
measure of how reliant a fish species is on its placenta
for reproduction. Using phylogenetic generalized least
squares (PGLS) (Ives and Garland 2010), Pollux et al.
(2014) find that Poeciliidae dichromatism, courtship
behavior, superfetation, and a sexual selection index
are all correlated over evolutionary history with the
matrotrophy index. Unlike PFA, PGLS as used by Pollux
et al. (2014) does not adjust for potential evolutionary
relationships between the traits. Failure to do so can
lead to false positive measures of association between
individual traits and the matrotrophy index.

Pollux et al. (2014) collect from the literature or
measure 14 life-history traits and compile from GenBank
or sequence 28 different genes across Poeciliidae species.
In our analysis, we only use P=11 traits since three of the
original traits are functions of the included ones. Of these
traits, five are discrete-valued: dimorphic coloration
(dichromatism), courtship behavior, superfetation, the
presence or absence of ornamental display traits and
a count composite of the presence or absence of three
other male behaviors (sexual selection index). Six are
continuous-valued: log weight and log length for males
and females, gonopodium length, and matrotrophy
index. Considering species with at least one trait
measurement, there are N =98 taxa, for which we
assume the same fixed phylogenetic tree that Pollux et al.
(2014) estimate and similarly condition on in their PGLS
analysis. Importantly, 182 trait measurements remain
missing. We treat these measurements as missing-at-
random in our PFA and do not need to further prune the
tree or impute values that may further introduce bias.

Pollux et al. (2014) find that dichromatism, courtship
behavior, superfetation, and sexual selection index are
all correlated with the matrotrophy index. Figure 2
shows that this concurs with the results of a K =2 factor
PFA. This small model fit also highlights a weakness
of traditional factor analysis assumptions that fix the
diagonal elements of the loadings matrix to be positive.
In particular, dichromatism is unrelated to the other
traits in the second factor, while the positivity constraint
would have forced its inclusion. However, the most
probable number of independent evolutionary processes
is K =3 or K =4, with a log Bayes factor in favor K =3
over K =2 of 35.3 and a log Bayes factor in favor of K =4
over K =5 of 4.9 (Table 1). Since a log Bayes factor of
only 0.3 separates the K =3 and K =4 models, we include
both models in our results, and the data strongly support
these PFA models over the LMBD model (log Bayes factor
≈ 92).

Loadings for the independent evolutionary process

factors F
(
3
)

k and F
(
4
)

k under the K =3 and K =4 PFA
models, respectively, recapitulate a negative association
between the matrotrophy index and dichromatism,
courtship behavior, and sexual selection index, and
a positive association with superfetation (Fig. 2, first
loading). Uncertainty measures pkj are >0.94 for all
of these trait-factor relationships. However, unlike in
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a)

b)

c)

FIGURE 2. Processes driving transitions to placental reproduction
inferred through PFAs. Loading L estimates from the a) K =4, b)
K =3, and c) K =2 factor models. Loadings size, coloring and density
follow those of Figure 1. Note that the magnitude for dichromatism,
courtship behavior, ornamental display traits, sexual selection index,
and superfetation is less relevant since those data are discrete. We
include the two factor model for direct comparison to the results of
Pollux et al. (2014). Loadings in the more probable K =3 and K =4 factor
models do not support an association between matrotrophy index and
gonopodium length nor body weights and lengths.

Pollux et al. (2014), the PFA does not recover with
high posterior probability a relationship between
matrotrophy index and gonopodium length nor with
body weights and lengths, suggesting that these were
false positive findings. For both PFA models, second

independent processes F
(
3
)

2 and F
(
4
)

2 drive dichromatism,
courtship behavior, ornamental display traits and
sexual selection index positively and superfetation and
gonopodium length negatively, where p2j >0.9 for each
of these relationships except involving superfetation

(p2j =0.88) and for courtship behavior in F
(
3
)

2 (p2j =0.84).
Both models also identify similar third independent

processes F
(
3
)

3 and F
(
4
)

3 relating body lengths and
weights. We do however find more posterior certainty

in the F
(
3
)

3 relationships (all p3j >0.99) than in the F
(
4
)

3
relationships (all p3j >0.94). It is perhaps surprising that
these size measurements are unrelated to any of the other
reproductive characteristics. The only marked difference
between the K =3 and K =4 factor models exists in the
presence of a fourth evolutionary process F

(
4
)

4 in the K =4

factor model that controls the presence or absence of
superfetation independently of all other traits.

The precision elements � for both the K =3 and
K =4 factor models are all significantly greater than
1 and therefore indicate that, for both models, our
PFA provides good insight into the relationship of
the continuous traits (Table 2). Further, the precision
elements are in broad agreement between the K =3 and
K =4 factor models, as we expect due to the negligible
difference in marginal likelihoods.

Frequentist-based factor analysis is only identifiable
if the number of parameters inferred for a
variance/covariance matrix is greater than the
number of parameters that need to be inferred for
the factor analysis. Interestingly, our PFA model
produces interpretable results in spite of the fact that
the correlation model has 66 free parameters as opposed
to 333 free parameters for the K =3 factor model, and
436 free parameters for the K =4 factor model.

Triggerfish Fin Shape
The fish family Ballistidae, commonly know as

triggerfish, live mostly in reefs; however, the particular
part of the reef in which they live can vary. This
variability affects not only their diet, but also their
mobility needs that fin shapes well reflect (Dornburg
et al. 2011). To model shape changes through evolution,
phylogenetic morphometrics often relies heavily on PCA
(Revell 2009; Polly et al. 2013). However, deterministic
data reduction via PCA can introduce bias (Uyeda
et al. 2015) and, more importantly, inference of principal
components while simultaneously adjusting for an
uncertain evolutionary history remains a continuing
challenge. PFA offers an alternative approach.

For N =24 triggerfish species, Dornburg et al. (2011)
sequence and align 12S (833 nucleotides, nt) and 16S (563
nt) mitochondrial genes and RAG1 (1471 nt), rhodopsin
(564 nt) and Tmo4C4 (575 nt) nuclear genes, and
Dornburg et al. (2008) digitally photograph and mark
13 semilandmark Cartesian coordinates for pectoral,
dorsal, and anal fins, generating P=78 measurements
per species. Among these morphometric measurements,
the species Balistapus undulatus is missing dorsal and
anal fins landmarks, and the species Rhinecanthus assasi
lacks pectoral fin landmarks. For these, we assume the
missing data are missing at random.

To accommodate phylogenetic uncertainty within
p(F |S), we concatenate gene alignments into S
and model nucleotide sequence substitution along
the unknown evolutionary history F through the
Hasegawa et al. (1985) continuous-time Markov
chain with unknown transition:transversion rate
ratio � and stationary distribution π. We incorporate
across-site rate variation using a discretized, one-
parameter Gamma distribution (Yang 1994) with
unknown shape 
 and proportion pinv of invariant
sites. To specify prior p(F,�,π,
,pinv), we make
relatively uninformative choices, documented in the
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a)

b)

FIGURE 3. Expected triggerfish fin shape given a range of a) first factor values F1 and b) third factor values F3, holding all others constant. Purple
dots estimate semilandmark locations. Green lines are interpolated to present a clearer outline of the fin shape. For the relation represented by
F1 the dorsal and anal fins go from more pointed to less pointed. For the relation represented by F3, we see a rotation in the pectoral fin.

BEAST extensible markup language (XML) file in
the Supplementary material available on Dryad at
http://dx.doi.org/10.5061/dryad.6320t.

These triggerfish sequences and traits favor the K =5
factor model with a log Bayes factor of 18.5 over the K =4
factor model and 6.9 over the K =6 factor model (Table 1).
Further, these data favor the K =5 factor model over the
multivariate Brownian diffusion (MBD) model with a log
Bayes factor of 69.7. Even if this support were equivocal,
we caution against using a MBD to model these traits.
The unknown variance matrix  carries P(P+1)/2=
3081 degrees-of-freedom that dwarfs the N×P=1872
possible measurements.

For two of the five factors in the K =5 model, Figure 3
demonstrates how fin shape changes as a function of
latent factor values. We vary F1 and F3 between −1 and
1 that approximates their highest posterior density range
over their reconstructed evolutionary history. For F1,
increasing values lead to dorsal and anal fins that become
less pointed and more rounded. For F3, increasing values
lead to a counterclockwise rotation of the dorsal fin. Our
credible band decreases in size as the factor value gets
closer to 0 since the standard deviation of the posterior
inference on our loadings is multiplied by these factor
values as well.

We also include the corresponding maximum clade
credibility (MCC) tree, colored by factor value,

with purple representing positive values and green
representing negative values for the first factor F1, and
the blue representing positive factor values and orange
representing negative factor values for F3 in Figure 4.
This tree shows us that the species Balistes polylepsis and
B. vetula, have negative factor values for F1, but those
species as well as the rest of the clade with the genus
Balistes and species Pseudobalistes fuscus have positive
factor values for F3, whereas the clade containing the
genus Rhinecanthus has negative factor values for F1, but
a close to 0 factor value for F3. Conversely, the genus
Xanthichthys has a negative factor value for F3, and a
closer to 0 factor value for F1. We also display posterior
clade probabilities for those clades with probability
<99%.

For brevity, we have only considered two factors in
this section. We selected F1 and F3 since these factors
relate distinctive information, however we include the
results for the remaining factors in the Supplementary
material available on Dryad. We additionally include our
inference on the precision elements as well as our results
on the inference on the other aspects of our tree model
in the Supplementary material available on Dryad.

Lastly, PFA facilitates ancestral shape reconstruction.
Figure 5 depicts inferred pectoral, dorsal and anal fin
shapes for ancestors of Xanthichthys mento and Balistes
capriscus at arbitrary points into their evolutionary past.

http://dx.doi.org/10.5061/dryad.6320t
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FIGURE 4. Evolution of independent factors F driving triggerfish fin morphology along inferred phylogeny. The colorings display contemporary
and ancestral first F1 and third F3 factor values under a K =5 factor PFA model. For F1, green represents positive values and purple represents
negative values. For F3, the scale is orange to blue. The Supplementary material available on Dryad contains plots for F2, F4, and F5. Balistes
polylepis and Balistes vetula have negative factor values for the first factor F1, whereas the clade containing genus Rhinecanthus has positive factor
values. In the third factor F3, the Balistes genus and the species Pseudobalistes fuscus have positive factor values whereas the genus Rhinecanthus
has near 0 factor values. Conversely, the genus Xanthichthys has a negative factor value for F3, and has a near 0 value for F1. We display the
posterior clade probabilities for probabilities <99%.

We choose reconstructions at the MRCA of all 24 species
in our study and 1/4, 1/2, and 3/4 of the expected
sequence substitution distance between the MRCA and
both contemporaneous species. Typically, high aspect
ratio fins, or long fins with a small area, are associated
with swimming quickly over large distances. The diet
of Xanthichthys mento consists mostly of plankton and
swims above reefs and has a high aspect ratio, perhaps
reflecting a need to hunt down more evasive prey. We
see that these low aspect ratio dorsal and anal fins
arose from a moderate MRCA which flatten as the
species evolved. The pectoral fin rotated clockwise as
this species evolved. In contrast, Balistes capriscus has
low aspect ratio dorsal and anal fins, reflecting the fact
that it swims more towards the reef floors which may
be more useful in navigating the complex habitat. This
species evolved from a species with a moderate aspect
ratio in its dorsal and anal fins which became broader
and more pointed as it evolved. However, the aspect
ratio increases again about 3/4 of the way through its
evolution. The pectoral fin rotated counterclockwise as it
evolved.

This ancestral reconstruction can provide new insights
into the trajectories of shape change that could be further
investigated with biomechanical and fluid dynamic
models.

SIMULATION

We briefly evaluate the performance of PFA in
estimating the number of factors K and loadings matrix
L under conditions similar to the Aquilegia example.
Assuming K =2 and fixing L and � to their posterior
mean estimates for the P=12 traits and using the fixed
tree F from this example, we simulate 100 dataset
replicates under the PFA model. For each replicate,
we then perform posterior inference and, collectively,
examine our ability to recover the true generative values.

Under these simulation conditions, we recover the
true number of factors with relatively high probability
(0.89). With the remaining probability, we recover the
more parsimonious K =1 model. Averaged across all
entries in L, we achieve 79.1% coverage using the 95%
highest probability density (HPD) interval estimates;
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FIGURE 5. Inferred ancestral fin shapes at the MRCA and 1/4, 1/2, and 3/4 of the expected substitution distance between the MRCA and two
contemporaneous triggerfish species. In a), Xanthichthys mento has a flat dorsal and anal fin with a point, and a clockwise rotated pectoral fin
relative to its ancestors. The dorsal and anal fins become rounder and the pectoral fin rotates counterclockwise moving backwards in time. In
contrast, in b), Balistes capriscus has a broad pointed dorsal and anal fin, and a counterclockwise anal fin. The dorsal and anal fins become more
pointed and then round out, while the pectoral fin rotates clockwise.

while slightly below nominal, this coverage stands as
reasonable in practice, especially since HPD intervals
incorporate prior information and, in general, return no
frequentist guarantees. We also consider the power to
detect an uncertainty measure pkj >0.95 and find that
we deem an arbitrary loading entry Lkj significant only
with probability 0.18. However, the magnitude of the
entries in L vary widely in our examples. Supplementary
Figure S5 available on Dryad describes how the true
value of Lkj influences coverage, power and mean-
squared bias. As expected given a prior centered around
0, coverage is lowest for the largest values of |Lkj|
(e.g., >1.5) and power increases with increasing |Lkj|.
Importantly for the interpretation of our results, many
loadings entries had pkj >0.95, suggesting that their true
values were likely larger in magnitude than our posterior
estimates under the PFA model.

COMPUTATIONAL ASPECTS

To draw posterior inference, we simulate MCMC
chains of between 200M and 1B steps, subsampling
every 10K steps to eliminate unnecessary overhead and

ensure the rate-limiting computation remains the PFA
and L/MBD transition kernels. For path sampling, we
employ 100 path points based on the quantiles of a
beta �

(
0.3,1

)
random variable (Xie et al. 2011), with

warm-started chains of 10M steps at each point. In
our examples, the PFA chains generate draws 3- to 5-
fold faster than the L/MBD chains. Further, with the
relatively large ratio of latent to nonlatent traits in the
Aquilegia example, we find an approximately 27-fold
larger median effective sample size (ESS) across L, F, and
� than in the latent components of �, demonstrating both
faster and more efficient sampling.

DISCUSSION

This article merges traditional factor analysis with
phylogenetics to provide a new inference tool for
comparative studies. The key connection rests on
modeling each factor independently as a Brownian
diffusion along a phylogeny. The tool we provide not
only serves as a dimension reduction technique in the
face of high-dimensional traits, but directly addresses
the principal scientific questions that many comparative
studies raise—specifically, how many independent
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evolutionary processes are driving these traits? Set in
a Bayesian framework, we succeed in inferring these
processes for combinations of discrete and continuous
traits through model selection, while simultaneously
accounting for missing measurements and possible
phylogenetic uncertainty.

To make inference under PFA practical, we develop
two new MCMC integration techniques. While we rely
on previously proposed Gibbs samplers for integrating
the loading matrix L and residual trait precisions �,
we require an original algorithm based on dynamic
programming to integrate the factors F along the
phylogeny efficiently. Second, we extend path sampling
through a softening threshold to handle discrete traits,
in which their latent support depends on the path
location �. Such changing support previously has limited
marginal likelihood estimation across many Bayesian
models with latent random variables to combine discrete
and continuous observations.

In examples involving columbine flower and fish
families Poeciliidae and Balistidae evolution, inference
under the PFA is notably quicker under the presence of
latent traits, more interpretable and consistently favored
via model selection over competing LMBD/MBD
models. Interestingly, this success even holds in the
Poeciliidae example, where one might expect an LMBD
model to outperform. Here, the number of parameters
inferred in the variance matrix is small relative to the
number of parameters that form a PFA. The Poeciliidae
and Balistidae examples also demonstrate our Bayesian
approach’s ability to integrate missing data if we make
a simple missing-at-random assumption.

Unlike many univariate comparative methods, the
PFA simultaneously adjusts for correlation between
all traits. This advantage reveals that some previously
identified trait relationships in Poeciliidae evolution may
be spurious. Further, as demonstrated in the columbine
flower example, the inferred factors and their associated
loadings probabilistically cluster traits into independent
processes that provide additional scientific insight, often
hard to discern from the correlation matrix that a LMBD
model provides.

An important computational limitation of PFA arises
when the number of taxa N is much greater than the
number of traits P. For the PFA, computational cost of our
current MCMC integration scales as O(N2K+NK2P),
while the cost is O(NP2) for the LMBD / MBD models.
Nonetheless, the Poeciliidae example carries N/P≈9 and,
still, the PFA model integrates about 3× more efficiently
due to the example’s large ratio of latent traits. For larger
N/P ratios, we are currently devising algorithms that
remain linear in N as future work.

Arguably, PFA reaches its greatest computational
potential when the number of traits stands large relative
to the number of taxa—the reputed “large P, small
N” setting. This setting arises commonly in the field
of geometric morphometrics where very long series of
Cartesian, (semi) landmark coordinate measurements
define the shape of the organism. In our Balistidae

example, the PFA identifies a number of independent
evolutionary processes driving pectoral, dorsal, and anal
fin shapes. With the help of sequence data, the PFA also
simultaneously infers the phylogeny and reconstructs
ancestral shapes. We believe that morphometrics stands
poised as a prime beneficiary of PFA.

One potential extension of this method comes
from Lemey et al. (2010), where they place different
diffusion rates on different branches. Additionally we
can adapt the methods in Gill et al. (2017) that allow
us to incorporate inference on drift in our factors
whose direction changes at different points in the
evolutionary process. Ornstein–Uhlenbeck processes are
nested within the union of both methods that are
implemented in BEAST and are therefore easily adapted
for use in PFA.
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APPENDIX

PFA Gibbs Sampling
While the Gibbs samplers for a standard factor analysis

are known and well documented (Lopes and West 2004),
there are two aspects of our phylogenetic model that
differ sufficiently to require a fresh look at how to draw
posterior inference. First, our prior on F is based on
a phylogenetic tree and therefore requires particular
consideration in order to produce an efficient Gibbs
sampler. Second, our inference on K uses a path sampling
approach where we need to infer L, F, and � at each
point along the path q∗(

�,Y,S,θ
)
, and deriving a Gibbs

sampler that works for any point in the path � will aid
this process.

Sampling factors.—In a standard Bayesian factor analysis,
the prior on each element Fij is N(0,1), and so the entire
matrix F can be Gibbs sampled efficiently in a single
step (Lopes and West 2004). For the PFA model, the
prior on the factors is defined by Brownian motion on a
phylogenetic tree as defined in (6). Thus the conditional
density of F|Z,L,� in our model is proportional to

http://dx.doi.org/10.5061/dryad.6320t
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This expression does not appear to represent a
distribution from which we can easily sample,
principally stemming from the fact that � is a between-
column precision and �F +�−1

0 J is a between-row
precision.

Fortunately, Cybis et al. (2015) devise a pre-order
tree-traversal algorithm to determine the conditional
distribution Ft

i.|F−i. of the factors at a single tip given
all other tip values. This distribution is multivariate
normal MVN(μF-i· ,�F-i· ) with conditional mean μF-i·
and conditional precision �F-i· . Further, in order to
numerically estimate F at any point along the path
q∗(

�,Y,S,θ
)
, we define

q∗(
Fi.|�,eiZ,F−i.,L,�

)
∝ l(eiZ|Fi.,L,�)�p̂(Fi.|F−i.). (A.2)

Substituting in the appropriate densities and completing
the square, we find that this path is proportional to
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Equation (A.3) is proportional to the density of a

MVN
(
M

(
�
)(F

)
i ,V

(
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)
i

)
; therefore, in order to sample F

at a particular point in the path �, we can draw a row Fi.

from the distribution MVN
(
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�
)(F

)
i ,V

(
�
)(F

)
i

)
.

Sampling loadings.—The loadings matrix can be Gibbs
sampled using the same method described by Lopes and
West (2004) with an additional adaptation for use in path
sampling. For the examples provided in this paper, we
place a N(0,1) prior on each cell in the loadings matrix;
however, in this section we prove the Gibbs Sampler for
a generic N(�,�) prior. To begin, we again define for a
point on the path �,

q∗(
L|�,Z,F,�,�,�

)= l(Z|L,F,�,�,�)�p̂(L). (A.6)

Plugging in the proper values for the sampling density
and priors, rearranging and completing the square, we
find that
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where L.j =

(
L1j,...,Lk′j

)
, 1 is a matrix of 1’s with the

same dimensions as L,
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Hence we find the expression in (A.7) is proportional

to a product of independent MVN
(
M

(
�
)(L

)
j ,V

(
�
)(L

)
j

)
densities. Therefore, if we wish to numerically sample a
loadings column L.j at a point on the path � then we can

sample from the distribution MVN
(
M

(
�
)(L

)
j ,V

(
�
)(L

)
j

)
.

Since the densities across columns are independent, we
may sample from them in parallel.

Sampling residual precision.—We wish to sample � at
any point in our path q∗(

�,Y,S,θ
)
. Let �c be a matrix

equivalent to � with rows and columns corresponding
to discrete traits removed. We then say that �c =
(�(

1
),...,�(P′))t where �(j) models continuous trait j and

P′ is the number of continuous traits in our model. If



[16:59 14/4/2018 Sysbio-OP-SYSB170068.tex] Page: 398 384–400

398 SYSTEMATIC BIOLOGY VOL. 67

we define Lc and Zc as the matrices L and Z with the
columns corresponding to discrete traits removed, then
we can say Zc ∼MVN(FLc,�c). Our prior on �(j) is i.i.d.
for different values of j and has distribution 	(
�,��).
For an arbitrary point � in our path q∗(

�,Y,S,θ
)
, we then

define

q∗(
�c|�,Zc,F,Lc

)∝ l(Zc|�c,F,Lc)�p̂(�c), (A.10)

with density
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The expression in (A.11) is proportional to the density of a

gamma 	
(

�+ �N

2 ,��+ �
2 et

j(Z−FL)t(Z−FL)ej

)
random

variable, and therefore we can sample from this gamma
distribution in order to sample �(

j
) at a given point in

the path.
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