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Abstract

Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become
dominant in consumer electronic products because of advantages associated with energy density
and product longevity. However, the small size of these batteries, the high rate of disposal of
consumer products in which they are used, and the lack of uniform regulatory policy on their
disposal means that lithium batteries may contribute substantially to environmental pollution and
adverse human health impacts due to potentially toxic materials. In this research, we used
standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models
to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of
lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal
regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content
(average 6.29 mg/L; o = 11.1; limit 5). However, according to California regulations, all lithium
batteries tested are classified hazardous due to excessive levels of cobalt (average 163 544 mg/kg;
o = 62 897; limit 8000), copper (average 98 694 mg/kg; o = 28 734; limit 2500), and nickel
(average 9525 mg/kg; o = 11 438; limit 2000). In some of the Li-ion batteries, the leached
concentrations of chromium, lead, and thallium exceeded the California regulation limits. The
environmental impact associated with resource depletion and human toxicity is mainly associated
with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily
associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of
aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient
toxicity data in the models. These findings support the need for stronger government policy at the
local, national, and international levels to encourage recovery, recycling, and reuse of lithium
battery materials.
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INTRODUCTION

Rechargeable lithium-based batteries have displaced nickel-cadmium and nickel metal
hydride batteries to become the dominant energy supply components in portable consumer
electronic products due to Li-ion’s superior energy density and slow discharge in idle mode.
1 These advantages have also led to the adoption of lithium batteries in electric vehicles,
military, and aerospace applications. Consequently, the global market for lithium batteries is
projected to increase from $7.9 billion in 2008 to $8.6 billion in 2014.1 With a relatively
short life span of about 2 to 4 years, rechargeable lithium batteries in portable electronic
devices will contribute substantially to the increasing problem of electronic waste (e-waste),
the fastest growing segment of the U.S. solid waste stream.2:3

In this study, we focused on rechargeable (secondary) lithium batteries that rely on
intercalated lithium compounds as electrode material, not the disposable (primary) button-
type lithium batteries that rely on metallic lithium. We further differentiate between lithium-
polymer (Li-Poly) batteries that evolved from the original lithium-ion (Li-ion) batteries
based on the used of a solid polymer composite such as polyacrylonitrile instead of liquid
organic solvent to hold the lithium salt electrolyte. Increased functional sophistication of
“smartphones” has also driven the demand for small and high energy density lithium
batteries. Therefore, we included smartphone batteries as a separate category for our
analyses.

Lithium batteries contain potentially toxic materials including metals, such as copper, nickel,
and lead, and organic chemicals, such as toxic and flammable electrolytes containing
LiClOy, LiBF4, and LiPFg.4 Human and environmental exposures to these chemicals are
typically regulated during the manufacture of lithium batteries through occupational health
and safety laws, and potential fire hazards associated with their transportation are regulated
through the U.S. Code of Federal Regulations (49 CFR 173.185),° but there is inconsistent
policy about the fate of discarded lithium batteries in e-waste that is distributed
internationally.3->8 This study focused on metals in three types of batteries entering the
waste stream, Li-ion and Li-poly batteries from older phones and lithium batteries from
newer smartphones that are increasingly entering the waste stream.

Previous studies have established defunct cellphones as hazardous waste under federal law.
7.8 However, those studies excluded batteries, relied on prelithium technology, or used data
from inventory models without empirically assessing chemical concentrations in simulated
environmental disposals.®~13 Thus, the objectives of this study are (i) to use standardized
leaching tests to determine the metal content in discarded rechargeable lithium batteries that

Environ Sci Technol. Author manuscript; available in PMC 2018 April 26.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Kang et al.

Page 3

may render these products classified as hazardous waste under U.S. federal regulations,
using the Toxicity Characteristics Leaching Procedure (TCLP4), and under California state
regulations, using the Waste Extraction Test (WET) and the Total Threshold Limit
Concentration (TTLC®), and (ii) to use material life-cycle impact assessment and hazard
assessment models to evaluate resource depletion and toxicity potentials of lithium batteries
due to their metallic content. Completion of these objectives will provide important
information on the variability of hazardous waste classification for lithium batteries in
cellphones at both state and federal levels while also supporting design-for-the-environment
goals, optimizing resource recovery, and minimizing occupational hazards.

MATERIALS AND METHODS

Sample Collection and Preparation

Sixteen cellphone batteries were obtained from Recellular, Inc. (Ann Arbor, Ml), the world’s
largest facility for recycling cellphones. Recellular processes approximately 4 million used
phones annually, and the battery samples that we selected for this study were proportional
representatives of the size of the inventory. The batteries represented three types of current
battery models found to be most abundant in e-waste: Li-ion and Li-poly for traditional
phones and batteries from more sophisticated smartphones. A complete list of Li batteries,
inventory quantities, and typical components and chemical constituents are reported in
Tables A and B (Supporting Information).

Replicate batteries were shredded using the Retsch SM-2000 Cutting Mill (Retsch,
Germany) to particle diameter of 9.5 mm, as required by TCLP.14 Then, each batch was
homogenized and partitioned evenly by mass, followed by further particle size reduction to
2.0 and 1.0 mm for WET and TTLC analysis.t® During processing, the mill temperature did
not exceed 40 °C.

Chemical Leaching Assessment Procedures

Three standard procedures, TCLP (Method 1311; 40 CFR §261.24; for metals only), WET,
and TTLC (California Department of Toxic Substances Control, DTSC; Title 22) were used
to evaluate the solid waste classification of lithium batteries and to determine the identity of
specific chemicals present in amounts that exceed regulatory limits (See the Supporting
Information, Table C). These procedures were selected because they were more rigorous (in
terms of pH of leaching solution) than alternative procedures associated with environmental
compliance in the European Union, Japan, and China.”-16 For the TCLP procedure, eight
metals were analyzed: As, Ba, Cd, Cr, Pb, Hg, Se, Ag. For TTLC, 21 metals were analyzed:
Ag, Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn. For
TTLC, if the total concentration in the waste extract of any regulated metal equaled or
exceeded the Soluble Threshold Limit Concentration (STLC), then those metals were
analyzed using WET.

For TCLP or WET, 10 g of shredded battery material was placed into an extraction vessel,
which was then placed in a rotary extractor for the specified time period (18 h for TCLP and
48 h for WET). Then, the resulting suspension was filtered using a 0.45 um glass fiber filter.
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For TTLC, 1 g of 2 mm particles was added to a 250 mL vessel, then digested by repeated
additions of HNOs, followed by a 30% H,0O5 solution in water, as specified by EPA Method
3050B. The leachate was then filtered using a 0.45 um filter and diluted to 50 mL.

For quality control purposes, a Mid-range Calibration Curve Standard (MRCCS),
Calibration Blank (CB), Laboratory Control Standard (LCS), Method Blank (MB), Sample
and Duplicate, and Matrix Spike were analyzed for each batch, and a Mid-range Calibration
Verification Standard (MRCVS) and Calibration Blank (CB) were analyzed each 10
injections. Additionally, a duplicate sample battery was processed and analyzed on the most
widely used battery model from each battery type, Li-ion, Li-poly, and smartphone, to assess
the variability of the procedures.

Resource Depletion, Human Toxicity, and Ecotoxicity

The resource depletion and toxicity potentials from cellphone batteries were evaluated based
on the results from the TTLC procedures and weighting factors for metals derived from
established Life Cycle Impact Assessment (LCIA)-based and hazard-based assessment
methods. Numerous LCIA tools have been developed, each with certain strengths or
weaknesses. In this study, we selected LCIA tools that are consistent with regulatory “mid-
point effects” characterization approaches that disaggregate environmental impact
categories. This approach minimizes extrapolation of data and uncertainties associated with
interactions among different impacts to produce an “end-point effect”.17-18 The resource
depletion and toxicity potential for each metal were calculated using the following formula:

Pi= Cj- W Wf;

Pjis a potential for metal /in the battery, where the potential is either: a life-cycle (midpoint)
impact-based resource potential, a hazard-based occupational toxicity potential, a hazard-
based TPI-derived toxicity potential, or an impact-based Tools for the Reduction and
Assessment of Chemical and other environmental Impacts (TRACI) or Centre of
Environmental Science (CML) method-derived human toxicity potential or ecotoxicity
potential (Table C, Supporting Information). C;is the concentration of metal 7in the battery
(kg/kg). Wis the total weight of the battery (kg). Wf;is the weighting factor for the
corresponding potential for metal 7 Weighting factors were calculated according to the
potential’s corresponding method.

For the midpoint impact-based abiotic resource depletion potential, we relied on the
weighting factors for abiotic resources depletion potential derived from the CML 2001 and
EPS 2000 methods, as previously described.18-20 For the hazard-based occupational toxicity
potential, the weighting factors were derived by taking the inverse of the exposure limits,
either the threshold limit value (TLV)-time weighted average (TWA),2! the permissible
exposure limit (PEL)-TWA, 2L or the reference exposure limit (REL)-TWA.2! For the hazard-
based TPI-derived toxicity potential,2223 the weighting factors are calculated using R-phase
(hazardous substance declarations such as flammability, reactivity, and toxicity), water
hazard class, maximum admissible concentration (MAK), European Union carcinogenity,
and the technical guidance concentration (TRC) data, derived from the TPI calculator.22 We
have recently described the conditions and assumptions required to harmonize TPI with
similar models.2* For the impact-based toxicity potentials, the weighting factors for human
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toxicity, and ecotoxicity potential were calculated using the CML method and the Tool for
the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI).18:25

The hazard potentials evaluated are based on metal concentrations in the batteries and do not
take into account the materials used in the manufacturing processes or the transport
pathways for the metals in the landfill and incinerator facilities due to the lack of data on
distribution ratios for metals into the flue gas and ashes, as noted previously.28 The average
cumulative total potential within each battery type, Li-ion, Lipoly, or smartphone, is
calculated to assess and compare potential human health and environmental impacts
between the battery types.

RESULTS AND DISCUSSION

Metallic Contents of Li-ion Batteries

The results of TTLC assessment reported as milligrams of specific metal per kilogram of
total battery material (Table 1) indicated that the three categories of batteries contained high
levels of aluminum (ranging from 51 800 to 341 000 mg/kg), cobalt (ranging from 58 000 to
278 000 mg/kg), copper (ranging from 54 100 to 152 000 mg/kg), and lithium (ranging from
9800 to 37 200 mg/kg). Copper and aluminum are used as current conductors in the Li-ion
batteries, and LiCoO, is used as the cathode material.# On average, these four metals
accounted for 97.32% of the total metals (Table D of the Supporting Information). In
comparison, the levels for nickel (ranging from 120 to 30 500 mg/kg), manganese (ranging
from 5.93 to 3060 mg/kg), and iron (ranging from 254 to 24 500 mg/kg) were much lower
and varied substantially according to whether the cathode material was combined with
LiNiOy, LiMnyQOy, LiFePOy, or Li(NiC0)-O, or not.# The other metals that were detected at
very low levels were barium, chromium, silver, thallium, vanadium, zinc, and lead.
Antimony, arsenic, beryllium, cadmium, mercury, molybdenum, and selenium were not
detected in any of the analyzed lithium batteries. The combined weight of these metals
corresponds to approximately one-half of the total lithium battery weight, with the
remaining weight being accounted for by the anode material, electrolytes, diaphragm and
plastic housing.

Hazardous Waste Potential

The results of the TTLC, TCLP, and WET metal leaching tests are presented in Tables 1, 2,
and 3, respectively. The results show that all lithium batteries should be classified as
hazardous waste under California regulations due primarily to excessive levels of cobalt and
copper, and in some cases, nickel. These results provide new justification for lithium
batteries to be included in California’s Universal Waste regulation consisting of seven
categories of hazardous wastes that are widely produced by households and many different
types of businesses, including electronic devices, nickel-cadmium batteries, electric lamps
containing mercury, and nonempty aerosol cans.2’ Moreover, according to U.S. regulations,
some of the Li-ion batteries can be categorized as hazardous waste due to excessive levels of
lead (Pb) (two of the eight Li-ion batteries exceeded the limit 5 mg/L: 6.71 mg/L and 33.10
mg/L), according to TCLP results. None of the Lipolymer and smartphone batteries
exceeded the TCLP limit for Pb. Specifically, for the TTLC results, three metallic
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constituents, cobalt (limit 8000 mg/kg, ranging from 58 000 to 278 000 mg/kg), copper
(limit 2500 mg/kg, ranging from 54 100 to 152000 mg/kg) and nickel (9 of all 16 batteries
tested exceeded the limit 2000 mg/kg: range from 2274 to 30 500 mg/kg), exceeded the
regulatory thresholds. In addition, for the WET procedure, some batteries exceeded the
regulatory limits for chromium (1 of 16 exceeded the limit 5 mg/L: 6.14 mg/L), lead (1 of 16
exceeded the limit 5 mg/L: 5.57 mg/L), and thallium (2 of 16 exceeded the limit 7 mg/L:
7.86 and 7.61 mg/L).

Previous research on cellphones without batteries’ showed that Pb concentrations extracted
by TCLP exceeded the regulation limit at an extremely high average concentration, 87.42
mg/L (range = 38.2-147.0 mg/L), more than 17 times of its regulation limit. However, in the
current research, 12.5% cellphone batteries exceeded the regulation threshold, which
supports results from other studies.8 The low levels of Pb leached from batteries could be
due to the absence of Zn, Fe, and other metals that affect the mobility of Pb in the
procedures.28

Table 2 shows that according to U.S. federal regulations, only Li-ion batteries qualify as
hazardous waste, whereas Li-polymer and smartphone batteries do not. This finding is
consistent with the WET results presented in Table 3. TTLC results reported in Table 1 show
that all three categories of lithium batteries exceeded regulatory limits for Co and Cu, so all
the lithium batteries tested could be classified as hazardous due to their Co and Cu content
under CA regulation. However, only 75%, 50%, and 25% of the batteries exceeded the
threshold for Ni content in Li-ion, Li-poly, and smartphone batteries, respectively.
Specifically, the average concentrations of Co in Li-ion, Lipoly, and smartphone batteries
were 124213 (o =52926), 180750 (o = 37942), and 225000 (o = 47420) mg/kg (limit 8000
mg/kg), respectively. The average concentrations of copper were 10 3963 (o = 25408), 104
025 (o = 40727), and 82 825 (o = 22703) mg/kg (limit 2500 mg/kg), respectively, and for
nickel, the average concentrations were 13430 (o = 12507), 4774 (o = 8886), and 6468 (o =
11266) mg/kg (limit 2000 mg/kg), in Li-ion, Li-poly, and smartphone batteries, respectively.
Correspondingly, the levels of Co, Cu, and Ni in Li-ion were at least an order of magnitude
larger than those of Li-poly and smartphone batteries, and improvements in designfor-the-
environment (DfE) strategies could focus on reducing the concentration of these three metals
in lithium batteries.

Resource Depletion, Human Toxicity, and Ecotoxicity

The results of abiotic resource depletion potentials were based on the CML 2001 and EPS
2000 methods, and results of hazard-based human toxicity assessments were based on the
TLV, PEL, REL, and TPI methods. Human toxicity potential from emission to air, water and
soil, were based on the CML and TRACI methods. Freshwater ecotoxicity potentials from
emission to air, water, and soil were based on the CML and TRACI methods. Terrestrial
ecotoxicity potentials from emission to air, water, and soil were based on the CML method.
The results of ecotoxicity potential from environmental emissions are presented in Figures
S1-S12 (Supporting Information) respectively. For comparison, the average total potential
within each battery type, Li-ion, Li-poly, and smartphone, for all resource depletion
potential, human toxicity potential and ecotoxicity potential methods are shown in Table 4.
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Table 5 gives the average relative contribution, across all battery types, of each metal to the
total resource depletion potential, total human toxicity potential, and total ecotoxicity
potential for each method.

Total resource depletion potential, human toxicity potential, and ecotoxicity potential for
each battery were calculated by summing the potentials for each individual metal in each
battery. Then, the average total potential within each battery type, Li-ion, Li-poly, and
smartphone, were calculated with one standard deviation for all resource depletion potential,
human toxicity potential, and ecotoxicity potential methods (Table 4). All the total potentials
were within one standard deviation of each other, except for in the CML method, where
smartphone batteries show a slightly higher than one standard deviation total potential than
the Li-ion batteries for the total human toxicity potential and total ecotoxicity potential. For
freshwater ecotoxicity, the average of all relative contributions for all metals, across
emission to air, water, and soil, has one standard deviation of less than 0.5%. For terrestrial
ecotoxicity, the average of all relative contributions for all metals have one standard
deviation of less than 0.1%, except for cobalt, with one standard deviation of 2.3%, copper,
with one standard deviation of 0.7%, and nickel, with one standard deviation of 1.5%.

Cobalt, copper, and nickel are the main contributors to the total hazard potential for all
assessment methods used (Table 5). Cobalt contributed to the total potential across all
resource depletion potential, human toxicity potential, and ecotoxicity potential methods,
except in the results collected through TRACI for human toxicity potential, which does not
include toxicity data for cobalt. Cobalt has a large, and oftentimes majority relative
contribution to the total hazard potential in all results generated by nearly all the methods,
with only three methods producing results of moderate hazard potential contribution,
namely, the TPl method, CML method for human toxicity potential from emission to water,
and the TRACI method for freshwater ecotoxicity potential. The only method that produced
results of a small relative hazard potential for Co (~2%) is the CML method for abiotic
resource depletion potential, which attributes the majority of the contribution of the total
potential to copper (~75%), and most of the remainder (~18%), of the total resource
depletion potential to silver. Similarly, copper has a mostly large to medium relative
contribution to the total potential across all methods, only showing a minimal contribution
for the human toxicity potential from emission to water based on the CML method. While
nickel does not show large contributions for any method, nickel is present as a nontrivial
contributor to the total potential for all methods, showing minimal, small, and medium
contributions across all methods, notably exhibiting medium contributions to the total
human toxicity potential for the TRACI method.

Thallium and silver were the metals, after cobalt, copper, and nickel, with the most prevalent
relative contributions to the total potentials across the methods. Both thallium and silver had
sizable relative contributions to abiotic resource depletion and human toxicity potential, with
thallium notably having large relative contributions regarding human toxicity potentials, and
silver notably having medium relative contributions to the human toxicity potential for
TRACI. Zinc, lead, barium, and antimony, which all had sufficient toxicity data for all
methods, were the only other metals that showed small or greater relative contributions to
the total potential for any of the methods. Specifically, Zn, Pb, and Ba have medium relative
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contributions in the human toxicity potential for TRACI, barium has small relative
contributions in the hazard based human toxicity potential for the PEL and REL method, and
antimony has a small relative contribution to resource depletion potential for the CML
method. Both aluminum and lithium show medium relative contributions to the hazard based
human toxicity potential; however, their relative contribution to all the human toxicity
potentials and ecotoxicity potentials could not be estimated due to insufficient aluminum and
lithium toxicity data in CML and TRACI.

Results of this research indicate that rechargeable lithium based batteries associated with
portable electronic products are potential sources of hazardous metal pollutants in the
environment. These metal pollutants can adversely impact environmental quality and human
health, particularly in regions of the world that lack infrastructure for solid waste collection,
sorting, and recycling. This study has identified metals, Co, Cu, Ni, and Pb that, under
simulated landfill conditions, would leach out concentrations that would exceed regulatory
limits, thereby rendering their respective lithium batteries hazardous under U.S. federal and
state laws. These results call for increased coordination of regulatory policies to support the
recycling of portable rechargeable batteries, and for improved DfE strategies to reduce the
levels of hazardous chemical components of consumer electronic products.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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