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Abstract

Estimation of individual treatment effect in observational data is complicated due to the challenges 

of confounding and selection bias. A useful inferential framework to address this is the 

counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if 

an individual had received both treatments. Making use of random forests (RF) within the 

counterfactual framework we estimate individual treatment effects by directly modeling the 

response. We find that accurate estimation of individual treatment effects is possible even in 

complex heterogenous settings but that the type of RF approach plays an important role in 

accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-

sample estimation, do best. One method found to be especially promising is counterfactual 

synthetic forests. We illustrate this new methodology by applying it to a large comparative 

effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis 

reveals important connections between risky behavior, drug usage, and sexual risk.
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1. Introduction

Even for a medical discipline steeped in a tradition of randomized trials, the evidence basis 

for only a few guidelines is based on randomized trials (Tricoci et al. 2009). In part this is 
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Supplementary Materials
Overlap in simulations: To assess the amount of overlap induced in our simulation models, we simulated a large dataset (n equal to 
one million) and calculated the overlap, ℙ T = 1 X = x , for x stratified by the 100 percentiles of the ITE. Figure S1 displays 
overlap values for each of the three simulation models. Note the wide range of treatment assignment probabilities ℙ T = 1 X = x
regardless of the ITE. This demonstrates that low to high overlap exists regardless of ITE and shows the difficulty of the simulations.
Assessing the impact of heterogeneity: Simulation model 3 was rerun with the modification described in Section 3.4 with γ = 0.5, 
0.75, 1.5 corresponding to treatment heterogeneity values of h = 3.2, 4.8, 9.7. All experimental settings were kept at previous values. 
Simulations were confined to the n = 500 sample size setting. Figure S2 displays the bias and RMSE values from the three 
heterogeneity settings. As seen, all methods improve with decreasing heterogeneity. Relative performance, however, remains the same.
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due to continued development of treatments, in part to enormous expense of clinical trials, 

and in large part to the hundreds of treatments and their nuances involved in real-world, 

heterogenous clinical practice. Thus, many therapeutic decisions are based on observational 

studies. However, comparative treatment effectiveness studies of observational data suffer 

from two major problems: only partial overlap of treatments and selection bias. Each 

treatment is to a degree bounded within constraints of indication and appropriateness. Thus, 

transplantation is constrained by variables such as age, a mitral valve procedure is 

constrained by presence of mitral valve regurgitation. However, these boundaries overlap 

widely, and the same patient may be treated differently by different physicians or different 

hospitals, often without explicit or evident reasons. Thus, a fundamental hurdle in 

observational studies evaluating comparative effectiveness of treatment options is to address 

the resulting selection bias or confounding. Naively evaluating differences in outcomes 

without doing so leads to biased results and flawed scientific conclusions.

Formally, let {(X1, T1,Y1), …, (Xn, Tn,Yn)} denote the data where Xi is the covariate vector 

for individual i and Yi is the observed outcome. Here Ti denotes the treatment group of i. For 

concreteness, let us say Ti = 0 represents the control group, and Ti = 1 the intervention 

group. Our goal is to estimate the individual treatment effect (ITE), defined as the difference 

in the mean outcome for an individual under both treatments, conditional on the observed 

covariates. More formally, let Yi(0) amd Yi(1) denote the potential outcome for i under 

treatments Ti = 0 and Ti = 1, respectively. Given Xi = x, the ITE for i is defined as the 

conditional mean difference in potential outcomes

τ(x) = 𝔼[Y i(1) Xi = x] − 𝔼[Y i(0) Xi = x] . (1)

Definition (1) relies on what is called the counterfactual framework, or potential outcomes 

model (Rubin 1974; Neyman et al. 1990). In this framework, one plays the game of 

hypothesizing what would have happened if an individual i had received both treatments. 

However, the difficulty with estimating (1) is that although potential outcomes {Yi(0),Yi(1)} 

are hypothesized to exist, only the outcome Yi from the actual treatment assignment is 

observed. Without additional assumptions, it is not possible in general to estimate (1). A 

widely used assumption to resolve this problem, and one that we adopt, is the assumption of 

strongly ignorable treatment assignment (SITA). This assumes that treatment assignment is 

conditionally independent of the potential outcomes given the variables, that is, T ⊥ {Y 
(0),Y (1)} | X. Under the assumption of SITA, we have

τ(x) = 𝔼[Y(1) X = x] − 𝔼[Y(0) X = x]
= 𝔼[Y(1) T = 1, X = x] − 𝔼[Y(0) T = 0, X = x]
= 𝔼[Y T = 1, X = x] − 𝔼[Y T = 0, X = x] .

(2)

Notice that the last expression involves conditional expectations of only observable values, 

thus making it possible to estimate τ (x). It should be emphasized that without SITA one 

cannot guarantee estimability of τ (x) in general because 𝔼[Y T = j, X = x] = 𝔼[Y( j) X = x]
does not always hold.
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Typically, causal inference focuses on the estimation of the average treatment effect (ATE), a 

standard measure of performance in nonheterogenous treatment settings. The ATE is defined 

as

τ0 = 𝔼[Y(1) − Y(0)] − 𝔼 𝔼[Y(1) X = x] − 𝔼[Y(0) X = x]
= 𝔼[τ(X)] .

(3)

Although direct estimation of (3) under SITA is possible by using mean treatment 

differences in cells with the same X, due to the curse of dimensionality this method only 

works when X is low dimensional. Propensity score analysis (Rosenbaum and Rubin 1983) 

is one means to overcome this problem. The propensity score is defined as the conditional 

probability of receiving the intervention given X = x, denoted here by e(x) = ℙ T = 1 X = x . 

Under the assumption of SITA, the propensity score possesses the so-called balancing 

property. This means that T and X are conditionally independent given e(X). Thus, variables 

X are balanced between the two treatment groups after conditioning on the propensity score, 

thereby approximating a randomized clinical trial (Rubin 2007). Importantly, the propensity 

score is the coarsest possible balancing score, thus not only does it balance the data, but it 

does so by using the coarsest possible conditioning, thus helping to mitigate the curse of 

dimensionality. To use the propensity score for treatment effect estimation, Rosenbaum and 

Rubin (1983) further showed if SITA holds (which includes the assumption that the 

propensity score is bounded 0 < e(X) < 1), then treatment assignment is conditionally 

independent of the potential outcomes given the propensity score, that is, T ⊥ {Y (0),Y (1)} 

| e(X). This result is the foundation for ATE estimators based on stratification or matching of 

the data on propensity scores. However, this is not the only means for using the propensity 

score to estimate treatment effect. Another approach is to use SITA to derive weighted 

estimators for the ATE. Analogous to (2), under SITA one has

𝔼 TY
e(X) X = x = 𝔼[Y |T = 1, X = x],

𝔼 (1 − T)Y
1 − e(X) X = x = 𝔼[Y |T = 0, X = x],

which is the basis for ATE weighted propensity score estimators. See, for example, Hirano, 

Imbens, and Ridder (2003) and Lunceford and Davidian (2004).

1.1. Individual Treatment Effect Estimation

As mentioned, our focus is on estimating the ITE. Although effectiveness of treatment in 

observational studies has traditionally been measured by the ATE, the practice of 

individualized medicine, coupled with the increasing complexity of modern studies, have 

shifted recent efforts toward a more patient-centric view (Lamont et al. 2016). However, 

accommodating complex individual characteristics has proven challenging, and for this 

reason there has been much interest in leveraging cutting-edge approaches, especially those 

from machine learning, for ITE analysis. Machine learning techniques such as random 

forests (Breiman 2001) (RF) provide a principled approach to explore a large number of 

predictors and identify replicable sets of predictive factors. In recent innovations, these RF 
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approaches have been used specifically to uncover subgroups with differential treatment 

responses (Su et al. 2009, 2011; Foster, Taylor, and Ruberg 2011). Some of these, such as 

the virtual twins approach (Foster, Taylor, and Ruberg 2011), build on the idea of 

counterfactuals. Virtual twins uses RF as a first step to create separate predictions of 

outcomes under both treatment and control conditions for each trial participant by estimating 

the counter-factual treatment outcome. In the second step, tree-based predictors are used to 

uncover variables that explain differences in the person-specific treatment and the 

characteristics associated with subgroups. In a different approach, Wager and Athey (2017) 

described causal forests for ITE estimation. Others have sought to use RF as a first step in 

propensity score analysis as a means to nonparametrically estimate the propensity score. 

Lee, Lessler, and Stuart (2010) found that RF estimated propensity scores resulted in better 

balance and bias reduction than classical logistic regression estimation of propensity scores.

In this article, we look at several different RF methods for estimating the ITE. A common 

thread among these methods is that they all directly estimate the ITE, and each does so 

without making use of the propensity score. Although propensity score analyses have 

traditionally been used for estimating the ATE, non-ATE estimation generally takes a more 

direct approach by modeling the outcome. Typically this is done by using some form of 

regression modeling. For example, this is the key idea underlying the widely used “g-

formula” algorithm (Robins, Greenland, and Hu 1999). Another example is Bayesian tree 

methods for regression surface modeling, which have been successfully used to identify 

causal effects (Hill 2011). The basis for all of these approaches rests on the assumption of 

SITA. Assuming that the outcome Y satisfies

Y = f (X, T) + ε,

where E(ε) = 0 and f is the unknown regression function, and assuming that SITA holds (2), 

we have

τ(x) = 𝔼[Y T = 1, X = x] − 𝔼[Y T = 0, X = x]
= f (x, 1) − f (x, 0) .

(4)

Therefore, by modeling f (x, T), we obtain a means for directly estimating the ITE.

Our proposed RF methods for direct estimation of the ITE are described in Section 2. In 

Section 3, we use three sets of challenging simulations to assess performance of these 

methods. We find those methods with greatest adaptivity to potential confounding, when 

combined with out-of-sample estimation, do best. One particularly promising approach is a 

counterfactual approach in which separate forests are constructed using data from each 

treatment assignment. To estimate the ITE, each individual’s predicted outcome is obtained 

from their treatment assigned forest. Next, the individual’s treatment is replaced with the 

counterfactual treatment and used to obtain the counterfactual predicted outcome from the 

counterfactual forest; the two values are differenced to obtain the estimated ITE. This is an 

extension of the virtual twin approach, modified to allow for greater adaptation to potentially 

complex treatment responses across individuals. Furthermore, when combined with 
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synthetic forests (Ishwaran and Malley 2014), performance of the method is further 

enhanced due to reduced bias. In Section 4, we illustrate the new counterfactual synthetic 

method on a large comparative effectiveness trial, Project Aware (Metsch et al. 2013). An 

original goal of the project was to determine if risk reduction counseling for HIV negative 

individuals at the time of an HIV test had an impact on cumulative incidence of sexually 

transmitted infection (STI). However, secondary outcomes included continuous and count 

outcomes such as total number of condomless sexual episodes, number of partners, and 

number of unprotected sex acts. This trial had a significant subgroup effect in which men 

who have sex with men showed a surprising higher rate of STI when receiving risk-

reduction counseling. This subgroup effect makes this trial ideal for looking at heterogeneity 

of treatment effects in randomized studies. The trial also had significant heterogeneity by 

drug use. In particular, substance use is associated with higher rates of HIV testing, and 

Black women showing the highest rates of HIV testing in substance use treatment. Drug use 

is a modifiable exposure (treatment) variable and we can therefore use our methods for 

addressing heterogeneity in observational data to study its impact on sexual risk. As detailed 

in Section 4, we show how our methods can be used to examine whether observed drug use 

differences are merely proxies for differences on other observed variables.

2. Methods for Estimating Individual Treatment Effects

Here, we describe our proposed RF methods for estimating the ITE (1). Also considered are 

two comparison methods. The methods considered in this article are as follows:

1. Virtual twins (VT).

2. Virtual twins interaction (VT-I).

3. Counterfactual RF (CF).

4. Counterfactual synthetic RF (synCF).

5. Bivariate RF (bivariate).

6. Casual RF (causalRF).

7. Bayesian Adaptive Regression Trees (BART).

Virtual twins is the original method proposed by Foster, Taylor, and Ruberg (2011) 

mentioned earlier. We also consider an extension of the method, called virtual twins 

interaction, which includes forced interactions in the design matrix for more adaptivity. 

Forcing treatment interactions for adaptivity may have a limited ceiling, which is why we 

propose the counterfactual RF method. In this method, we dispense with interactions and 

instead fit separate forests to each of the treatment groups. Counterfactual synthetic RF uses 

this same idea, but uses synthetic forests in place of Breiman forests, which is expected to 

further improve adaptivity. Thus, this method, and the previous RF methods, are all 

proposed enhancements to the original virtual twins method. All of these share the common 

feature that they provide a direct estimate for the ITE by estimating the regression surface of 

the outcome. This is in contrast to our other proposed procedure, bivariate RF, which takes a 

missing data approach to the problem. There has been much interest in the literature in 

viewing casual effect analysis as a missing data problem (Ghosh, Zhu, and Coffman 2015). 
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Thus, we propose here a novel bivariate imputation approach using RF. Finally, the last two 

methods, causalRF and BART, are included as comparison procedures. Like our proposed 

RF methods, they also directly estimate the ITE. Note that while BART (Chipman, George, 

and McCulloch 2010) is a tree-based method, it is not actually an RF method. We include it, 

however, because of its reported success in applications to causal inference (Hill 2011). In 

the following sections, we provide more details about each of the above methods.

2.1. Virtual Twins

Foster, Taylor, and Ruberg (2011) proposed Virtual Twins (VT) for estimating counterfactual 

outcomes. In this approach, RF is used to regress Yi against (Xi, Ti). To obtain a 

counterfactual estimate for an individual i, one creates a VT data point, similar in all regards 

to the original data point (Xi, Ti) for i, but with the observed treatment Ti replaced with the 

counterfactual treatment 1 − Ti. Given an individual i with Ti = 1, one obtains the RF 

predicted value Ŷi(1) by running i’s unaltered data down the forest. To obtain i’s 

counterfactual estimate, one runs the altered (Xi, 1 − Ti) = (Xi, 0) down the forest to obtain 

the counterfactual estimate Ŷi(0). The counterfactual ITE estimate is defined as Ŷi(1) − 

Ŷi(0). A similar argument is applied when Ti = 0. If ŶVT(x, T) denotes the predicted value 

for (x, T) from the VT forest, the VT counterfactual estimate for τ (x) is

τVT(x) = YVT(x, 1) − YVT(x, 0) .

As noted by Foster, Taylor, and Ruberg (2011), the VT approach can be improved by 

manually including treatment interactions in the design matrix. Thus, one runs an RF 

regression with Yi regressed against (Xi, Ti, XiTi). The inclusion of the pairwise interactions 

XiTi is not conceptually necessary for VT, but Foster, Taylor, and Ruberg (2011) found in 

numerical work that it improved results. We write τVT−I(x) to denote the ITE estimate under 

this modified VT interaction model.

There is an important computational point that we mention here that applies not only to the 

above procedure, but also to many of the proposed RF methods. That is when implementing 

an RF procedure, we attempt to use out-of-bag (OOB) estimates whenever possible. This is 

because OOB estimates are generally much more accurate than insample (inbag) estimates 

(Breiman 1996). Because inbag/OOB estimation is not made very clear in the RF literature, 

it is worth discussing this point here as readers may be unaware of this important distinction. 

OOB refers to out-of-sample (cross-validated) estimates. Each tree in a forest is constructed 

from a bootstrap sample, which uses approximately 63% of the data. The remaining 37% of 

the data is called OOB and are used to calculate an OOB predicted value for a case. The 

OOB predicted value is defined as the predicted value for a case using only those trees 

where the case is OOB. For example, if 1000 trees are grown, approximately 370 will be 

used in calculating the OOB estimate for the case. The inbag predicted value, on the other 

hand, uses all 1000 trees.
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To illustrate how OOB estimation applies to VT, suppose that case x is assigned treatment T 

= 1. Let YVT
∗ (x, T) denote the OOB predicted value for (x, T). The OOB counterfactual 

estimate for τ (x) is

τVT(x) = YVT
∗ (x, 1) − YVT(x, 0) .

Note that ŶVT(x, 0) is not OOB. This is because (x, 0) is a new data point and technically 

speaking cannot have an OOB predicted value as the observation is not even in the training 

data. In a likewise fashion, if x were assigned treatment T = 0, the OOB estimate is

τVT(x) = YVT(x, 1) − YVT
∗ (x, 0) .

OOB counterfactual estimates for VT interactions, τVT−I(x), are defined analogously.

2.2. Counterfactual RF

As mentioned earlier, adding treatment interactions to the design matrix may have a limited 

ceiling for adaptivity and thus we introduce the following important extension to τVT−I. 

Rather than fitting a single forest with forced treatment interactions, we instead fit a separate 

forest to each treatment group to allow for greater adaptivity. This modification to VT was 

mentioned briefly in the article by Foster, Taylor, and Ruberg (2011) although not 

implemented. A related idea was used by Dasgupta et al. (2014) to estimate conditional odds 

ratios by fitting separate RF to different exposure groups.

In this method, forests CF1 and CF0 are fit separately to data {(Xi,Yi) : Ti = 1} and {(Xi,Yi) : 

Ti = 0}, respectively. To obtain a counterfactual ITE estimate, each data point is run down its 

natural forest, as well as its counterfactual forest. If ŶCF,j(x, T) denotes the predicted value 

for (x, T) from CFj, for j = 0, 1, the counterfactual ITE estimate is

τCF(x) = YCF, 1(x, 1) − YCF, 0(x, 0) .

We note that just as with VT estimates, OOB values are used whenever possible to improve 

stability of estimated values. Thus, if x is assigned treatment T = 1, the OOB ITE estimate is

τCF(x) = YCF, 1
∗ (x, 1) − YCF, 0(x, 0) .

where YCF, 1
∗ (x, 1) is the OOB predicted value for (x, 1). Likewise, if x is assigned treatment 

T = 0, the OOB estimate is

τCF(x) = YCF, 1(x, 1) − YCF, 0
∗ (x, 0) .

Lu et al. Page 7

J Comput Graph Stat. Author manuscript; available in PMC 2018 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. Counterfactual Synthetic RF

In a modification to the above approach, we replace Breiman RF regression used for 

predicting ŶCF,j (x, T) with synthetic forest regression (Ishwaran and Malley 2014). The 

latter is a new type of forest designed to improve prediction performance of RF. Using a 

collection of Breiman forests (called base learners) grown under different tuning parameters, 

each generating a predicted value called a synthetic feature, a synthetic forest is defined as a 

secondary forest calculated using the new input synthetic features, along with all the original 

features. Typically, the base learners used by synthetic forests are Breiman forests grown 

under different nodesize and mtry parameters. The latter are tuning parameters used in 

building a Breiman forest. In RF, prior to splitting a tree node, a random subset of mtry 

variables are chosen from the original variables. Only these randomly selected variables are 

used for splitting the node. Splitting is applied recursively and the tree grown as deeply as 

possible while maintaining a sample size condition that each terminal node contains a 

minimum of nodesize cases. The two tuning parameters mtry and nodesize are fundamental 

to the performance of RF. Synthetic forests exploit this and use RF base learners grown 

under different mtry and nodesize parameter values. To distinguish the proposed synthetic 

forest method from the counterfactual approach described above, we use the abbreviation 

synCF and denote its ITE estimate by τsynCF(x):

τsynCF(x) = YsynCF, 1(x, 1) − YsynCF, 0(x, 0),

where ŶsynCF, j (x, T) denotes the predicted value for (x, T) from the synthetic RF grown 

using data {(Xi, Ti,Yi) : Ti = j} for j = 0, 1. As before, OOB estimation is used whenever 

possible. In particular, bootstrap samples are held fixed throughout when constructing 

synthetic features and the synthetic forest calculated from these features. This is done to 

ensure a coherent definition of being out-of-sample.

2.4. Bivariate Imputation Approach

We also introduce a new bivariate approach making use of bivariate RF counterfactuals. For 

each individual i, we assume the existence of bivariate outcomes under the two treatment 

groups. One of these is the observed Yi under the assigned treatment Ti, the other is the 

unobserved Yi under the counterfactual treatment 1 − Ti. This latter value is assumed to be 

missing. To impute these missing outcomes a bivariate splitting rule is used (Ishwaran et al. 

2008; Tang and Ishwaran 2017). In the first iteration of the algorithm, the bivariate splitting 

rule only uses the observed Yi value when splitting a tree node. At the completion of the 

forest, the missing Yi values are imputed by averaging OOB terminal node Y values. This 

results in a dataset without missing values, which is then used as the input to another 

bivariate RF regression. In this, the bivariate splitting rule is applied to the bivariate response 

values (no missing values are present at this point). At the completion of the forest, Y values 

that were originally missing are reset to missing and imputed using mean terminal node Y 
values. This results in a dataset without missing values, which is used once again as the 

input to another bivariate RF regression. This process is repeated a fixed number of times. At 

the completion of the algorithm, we have complete bivariate Yi responses for each i, which 

we denote by Ŷbivariate,i = (Ŷbivariate,1, Ŷbivariate,0). Note that one of these values is the 
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original observed (nonmissing) response. The complete bivariate values are used to calculate 

the bivariate counterfactual estimate

τbivariate(x) = Ybivariate, 1(x) − Ybivariate, 0(x) .

2.5. Causal RF

As a comparison procedure, we consider the causal RF method described in Procedure 1 of 

Wager and Athey (2017). In this method, an RF is run by regressing Yi on (Xi, Ti), but using 

only a randomly selected 50% subset of the data. When fitting RF to this training data, a 

modified regression splitting rule is used. Rather than splitting tree nodes by maximizing the 

node variance, casual RF instead uses a splitting rule, which maximizes the treatment 

difference within a node (see Procedure 1 and Remark 1 in Wager and Athey 2017). Once 

the forest is grown, the terminal nodes of the training forest are repopulated by replacing the 

training Y with values from the hold out data. The purpose of this hold out data is to provide 

“honest estimates” and is akin to the role played by the OOB data used in our previous 

procedures. The difference between the hold out Y values under the two treatment groups is 

determined for each terminal node and averaged over the forest. This forest averaged value 

represents the casual forest ITE estimate. We denote the casual RF estimate by τcasualRF(x).

2.6. BART

Hill (2011) described a causal inferential approach based on BART (Chipman, George, and 

McCulloch 2010). The BART procedure is a type of ensembled backfitting algorithm based 

on Bayesian regularized tree learners. Because the algorithm repeatedly refits tree residuals, 

BART can be intuitively thought of as a Bayesian regularized tree boosting procedure. Hill 

(2011) proposed using BART to directly model the regression surface to estimate potential 

outcomes. Therefore, this is similar to VT, but where RF is replaced with BART. The BART 

ITE estimate is defined as

τBART(x) = YBART(x, 1) − YBART(x, 0),

where ŶBART(x, T) denotes the predicted value for (x, T) from BART. Note that due to the 

highly adaptive nature of BART, no forced interactions are included in the design matrix.

3. Simulation Experiments

Simulation models with differing types of heterogenous treatment effects were used to 

assess performance of the different methods. We simulated p = 20 independent covariates, 

where covariates X1, …, X11 were drawn from a standard N(0, 1), and covariates X12, …, 

X20 from a Bernoulli (0.5). Three different models were used for the outcome Y, while a 

common simulation model was used for the treatment variable T ∈ {0, 1}. For the latter, a 

logistic regression model was used to simulate T in which the linear predictor F(X) defined 

on the logit scale was
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F(X) = − 2 + 0.028X1 − 0.374X2 − 0.03X3 + 0.118X4
− 0.394X11 + 0.875X12 + 0.9X13 .

For the three outcome models, the outcome was assumed to be Yi = fj(Xi, Ti) + εi, where εi 

were independent N(0, σ2). The mean functions fj for the three simulations were

f 1(X, T) = 2.445 − 1 T = 0 × (0.4X1 + 0.154X2 − 0.152X11
− 0.126X12) − 1 T = 1, g(X) > 0
f 2(X, T) = 2.445 − 1 T = 0 × sin(0.4X1 + 0.154X2 − 0.152X11
− 0.126X12) − 1 T = 1, g(X) > 0
f 3(X, T) = 2.445 − 1 T = 0 × sin(0.4X1 + 0.154X2 − 0.152X11
− 0.126X12) − 1 T = 1, h(X) > 0

where g(X) = 0.254X2
2 − 0.152X11 − 0.4X11

2 − 0.126X12 and 

h(X) = 0.254X3
2 − 0.152X4 − 0.126X5 − 0.4X5

2. Therefore in all three models, X1, X2, X11, X12 

were confounding variables, meaning that they were related to both the treatment and the 

outcome variable. In model 3, variables X3 and X4 are additionally confounded. Also, 

because all three models contain treatment-covariate interactions, all models simulate 

scenarios of confounded heterogeneous treatment effect (CHTE). The type of CHTE 

simulated is different for each model. In model 1, there is a nonlinear effect for treatment T 
= 1. For model 2, there are nonlinear effects for both treatment groups, and in model 3, 

nonlinear effects are present for both treatment groups, and there is nonoverlap in covariates 

across treatment groups. Figure S1 of the supplementary materials displays the overlap in 

patients as a function of the treatment assignment probability to the true ITE value. The 

figure demonstrates that all simulations have a wide range of overlap regardless of ITE.

3.1. Experimental Settings and Parameters

The three simulation models were run under two settings for the sample size, n = 500 and n 
= 5000. All simulations used σ = 0.1 for the standard deviation of the measurement errors. 

The smaller sample size experiments n = 500 were repeated independently B = 1000 times, 

the larger n = 5000 experiments were repeated B = 250 times. All random forests were based 

on 1000 trees with mtry = p/3 and a nodesize of 3 with the exception of bivariate RF and 

synthetic RF. For bivariate forests, a nodesize of 1 was used (following the strategy 

recommended by Tang and Ishwaran 2017), while for synthetic RF, the RF base learners 

were constructed using all possible combinations of nodesize values 1–10, 20, 30, 50, 100 

and mtry values 1, 10, and 20 (for a total of 42 forest base learners). The bivariate procedure 

was iterated five times (i.e., each run used a five-step iteration procedure). All forest 

computations except for causalRF were implemented using the randomForestSRC R-

package (Ishwaran and Kogalur 2016) (hereafter abbreviated as RF-SRC). The RF-SRC 

package implements all forms of RF data imputation, fits synthetic forests, multivariate 

forests, and uses openMP parallel processing for rapid computations. For causalRF, we used 

the R-package causalForest available at github https://github.com/swager/causalForest. The 

nodesize was set to 1 and 1000 trees were used. For BART, we used the bart function from 
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the R-package BayesTree (Chipman and McCulloch 2016). A total of 1000 trees were 

used.

3.2. Performance Measures

Performance was assessed by bias and root mean squared error (RMSE). When calculating 

these measures, we conditioned on the propensity score, e(x). This was done to assess how 

well a procedure could recover treatment heterogeneity effects and to provide insight into its 

sensitivity to treatment assignment. A robust procedure should perform well not only in 

regions of the data where e(x) = 0.5, and treatment assignment is balanced, but also in those 

regions where treatment assignment is unbalanced, 0 < e(x) < 0.5 and 1 > e(x) > 0.5. 

Assume the data is stratified into groups based on quantiles q1, …, qM of e(x). Given an 

estimator τ  of τ, the bias for group 𝒢m was defined as

Bias(m) = 𝔼[τ (X) X ∈ 𝒢m] − 𝔼[τ(X) X ∈ 𝒢m],
m = 1, …, M .

Recall that our simulation experiments were replicated independently B times. Let 𝒢m, b

denote those x values that lie within the qm quantile of the propensity score from realization 

b. Let τb be the ITE estimator from realization b. The conditional bias was estimated by

Bias(m) = 1
B ∑

b = 1

B
τm, b − 1

B ∑
b = 1

B
τm, b,

where

τm, b = 1
# 𝒢m, b

∑
xi ∈ 𝒢m, b

τb(xi) τm, b = 1
# 𝒢m, b

∑
xi ∈ 𝒢m, b

τ(xi) .

Similarly, we define the conditional RMSE of τ  by

RMSE(m) = 𝔼[(τ (X) − τ(X))2 |X ∈ 𝒢m], m = 1, …, M,

which we estimated using

RMSE(m) = 1
B ∑

b = 1

B 1
# 𝒢m, b

∑
xi ∈ 𝒢m, b

[τb(xi) − τ(xi)]
2 .

3.3. Results

Figure 1 displays the conditional bias and RMSE for each method for each of the simulation 

experiments. Light and dark boxplots display results for the small and larger sample sizes, n 
= 500 and n = 5000; the left and right panels display bias and RMSE, respectively. Each 
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boxplot displays M values for the performance measure evaluated at each of the M stratified 

propensity score groups. We used a value of M = 100 throughout.

Considering the RMSE results (right panels), it is clear that counterfactual synthetic forests, 

τsynCF, is generally the best of all procedures, with results improving with increasing n. The 

BART procedure, τBART, is comparable or slightly better in simulations 1 and 2 when n = 

500, but τsynCF dominates when the sample size increases to n = 5000. In simulation 3, 

τsynCF is superior regardless of sample size. It is interesting to observe that counterfactual 

forests, τCF, which do not use synthetic forests for prediction, is systematically worse than 

τsynCF. In fact, its performance is generally about the same as τVT−I and the same as τBART
when n = 5000. Regarding τVT−I, it is interesting to observe how it systematically 

outperforms τVT regardless of simulation or sample size. This shows that augmenting the 

design matrix to include treatment interactions really improves adaptivity of VT forests. 

Finally, the least successful procedure (for the large sample size simulations) was the 

bivariate imputation method, τbivariate. Recall that the bivariate procedure differs from the 

other procedures in that it uses mean imputation rather than regression modeling of the 

outcome for ITE estimation. This may explain its poorer performance. Following τbivariate in 

terms of overall performance, are τVT and τcasualRF, with τcasualRF somewhere in between 

τVT and τVT−I. This completes the discussion of the RMSE. The results for bias (left panels) 

generally mirror those for RMSE. One interesting finding, however, is the tightness of the 

range of bias values for τsynCF when n = 5000. This shows that with increasing sample size, 

τsynCF gives consistently low bias even across extreme propensity score values.

3.4. The Impact of Heterogeneity

To assess effectiveness of methods to level of heterogeneity of treatment effect, we reran 

simulation 3 under a slight modification to f3(X, T). We defined

f 3(X, T) = 2.445 − γ[1 T = 0 × sin(0.4X1 + 0.154X2
− 0.152X11 − 0.126X12) − 1 T = 1, h(X) < 0 ] .

The value of γ was varied from small to large to induce low to high values of heterogeneity. 

We assessed level of heterogeneity by the statistic

h = var(τ(X))
var(ε) = var(τ(X))

σ2 .

As illustration, the value γ = 1 used in the original simulation 3 yielded a heterogeneity of h 
= 6.5 (we note that using a similar modification to simulations 1 and 2 yielded values h = 

6.4, 6.2). To assess the effect of heterogeneity, we reran simulation 3 with values γ = 0.5, 

0.75, 1.5 corresponding to heterogeneities of h = 3.2, 4.8, 9.7. All experimental settings were 

kept the same. Simulations were run for the n = 500 sample size setting. The results are 
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displayed in Figure S2 of the supplementary materials. As can be seen there, all methods 

improve with decreasing heterogeneity. Relative performance, however, remains the same.

4. Project Aware: A Counterfactual Approach to Understanding the Role of 

Drug Use in Sexual Risk

Project Aware was a randomized clinical trial performed in nine sexually transmitted disease 

clinics in the United States. The primary aim was to test whether brief risk-reduction 

counseling performed at the time of an HIV test had any impact on subsequent incidence of 

sexually transmitted infections (STIs). The results showed no impact of risk-reduction 

counseling on STIs. Neither were there any substance use interactions of the impact of risk-

reduction counseling; however, substance use was associated with higher levels of STIs at 

follow-up. Other research has shown that substance use is associated with higher rates of 

HIV testing, and Black women showing the highest rates of HIV testing in substance use 

treatment clinics (Hernández et al. 2016). Since substance use is associated with risky sexual 

activity, detecting the dynamics of this relationship can contribute to preventive and 

educational efforts to control the spread of HIV. Our procedures for causal analysis of 

heterogeneity of effects in observational data should equalize the observed characteristics 

among substance use and nonsubstance use participants, thereby removing any impact of 

background imbalance in factors that may be related to relationship of substance use on 

sexual risk. Our procedure then allows an exploration of background factors that are truly 

related to this causal effect, conditional on all confounding factors being in the feature set.

To explore this issue of how substance use plays a role in sexual risk, we pursued an analysis 

in which the treatment (exposure) variable T was defined as drug use status of an individual 

(0 = no substance use in the prior 6 months, 1 = any substance use in the prior 6 months 

leading to the study). For the outcome, we used number of unprotected sex acts within the 

last 6 months as reported by the individual. Although Project Aware was randomized on the 

primary outcome (risk-reduction counseling), analysis of secondary outcomes such as 

substance use should be treated as if from an observational study. Indeed, unbalancedness of 

the data for drug use can be gleaned from Table 1, which displays results from a logistic 

regression in which drug use status was used for the dependent variable (n = 2813, p = 99). 

The list of significant variables suggests the data is unbalanced and indicates that inferential 

methods should be considered carefully. Thus, Table 2, which displays the results from a 

linear regression using number of unprotected sex acts as the dependent variable, should be 

interpreted with caution. Table 2 suggests there is no overall exposure effect of drug use, 

although several variables have significant drug interactions.

To avoid drawing potentially flawed conclusions from an analysis like Table 2, we applied 

our counterfactual synthetic approach, τsynCF. Note that for this analysis to be correct, we 

rely on the assumption of SITA, which in this setting assumes drug use to be independent of 

number of unprotected sex acts with or without drug use, conditionally on X. With this 

caveat in mind, we applied our counterfactual approach by fitting a synthetic forest 

separately to each exposure group. Number of unprotected sex acts was used as the 

dependent variable. Estimated causal effects were defined as {τsynCF(xi), i = 1, …, n}, where τ 
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(x) equals mean difference in number of unprotected sex acts for drug versus nondrug users. 

These estimated causal effects were then used as dependent variables in a linear regression 

analysis. This was done because of the convenient interpretation of estimated coefficients in 

terms of subgroup causal differences (this point will be elaborated on shortly). To derive 

valid standard errors and confidence regions for the estimated coefficients, the entire 

procedure was subsampled. That is, we drew a sample of size m without replacement. The 

subsampled data were then fit using synthetic forests as described above, and the resulting 

estimated causal effects used as the dependent variable in a linear regression. The procedure 

was repeated 1000 times independently. A subsampling size of m = n/10 was used. The 

confidence regions of the resulting coefficients are displayed in Figure 2. Table 3 displays 

the coefficients for significant values (p-values < 0.05). We note that bootstrapping could 

have been used as another means to generate nonparametric p-values and confidence 

regions. However, we prefer subsampling because of its computational speed and general 

robustness (Politis, Romano, and Wolf 1999).

To interpret the coefficients in Table 3, it is useful to write the true model for the outcome 

(number of unprotected sex acts) as Y = f (X, T) + ε, where

f (X, T) = α0T + h(X, T),

and h is some unknown function. Under the assumption of SITA, and using the same 

calculations as (4), we have

τ(x) = f (x, 1) − f (x, 0) = α0 + h(x, 1) − h(x, 0) .

Now since we assume a linear model α + ∑ j = 1
p β jx j for the ITE, we have

α0 + h(x, 1) − h(x, 0) = α + ∑
j = 1

p
β jx j .

From this we can infer that the intercept in Table 3 is an overall measure of the exposure 

effect of drug use, α0 (this is why the intercept term is listed as drug use). Here the estimated 

coefficient is 17.0. The positive coefficient implies that on average drug users have 

significantly more unprotected sex acts than nondrug users (significance here is slightly 

larger than 5%).

The remaining coefficients in Table 3 describe how the effect of drug use on sexual risk is 

modulated by other factors. Under our linear model, we have

h(x, 1) − h(x, 0) = ∑
j = 1

p
β jx j .
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Because h(x, 1) − h(x, 0) represents how much a subgroup deviates from the overall causal 

effect, each coefficient in Table 3 quantifies the effect of a specific subgroup on drug use 

differences. Consider, for example, the variable “Frequency of injection,” which is a 

continuous variable representing frequency of injections in drug users. Because its estimated 

coefficient is 3.6, this means the difference in unprotected sex acts between drug and 

nondrug users, which is positive, becomes even wider for high frequency drug users. 

Another risky factor is “No health insurance,” which is an indicator of lack of health 

insurance coverage. Because its estimated coefficient is 2.7, we can take this to mean that 

the increase in sexual risk for an individual without health insurance is more pronounced in 

drug users. As another example, consider the variable “Condom change,” which is an 

ordinal categorical variable measuring an individual’s stage of change with respect to 

condom use behavior. The baseline level is a “precontemplator,” who is an individual who 

has not envisioned using condoms. The second level “contemplator” is an individual 

contemplating using condoms. Further increasing levels measure even more willingness to 

use condoms. All coefficients for Condom change in Table 3 are negative, and therefore if an 

individual is more willing to use safe condom practice (relative to the baseline condition), 

the difference in number of unprotected sex acts diminishes between drug and nondrug 

users. Other variables that have a subgroup effect are Marriage (whether an individual is 

married), CESD (Center for Epidemiological Studies Depression Scale), and SU treatment 

last 6 months (substance abuse treatment in last 6 months). In all of these, the pattern is 

similar to before. With more risky behavior (with depression) the number of unprotected sex 

acts increases for nondrug users relative to drug users, but as risky behavior decreases (e.g., 

married), the effect of drug use diminishes.

Figure 3 displays a coplot of the RF estimated causal effects {τsynCF(xi), i = 1, …, n} as a 

function of several variables. The coplot is another useful tool that can be used to explore 

causal relationships. We use it to uncover relationships that may be hidden in the linear 

regression analysis. The RF causal effects are plotted against CESD depression for 

individuals with and without health insurance. Conditioning is on the variables Condom 

change (vertical conditioning) and HIV risk (horizontal conditioning). HIV risk a self-rated 

variable and of potential importance and was included even though it was not significant in 

the linear regression analysis. For patients with potential to change condom use (rows 2 

through 5), increased depression levels leads to an increased causal effect of drug use, which 

is slightly accentuated for high HIV risk (plots going from left to right). The effect of health 

insurance is however minimal. On the other hand, for individuals with low potential to 

change condom use (bottom row), the estimated exposure effect is generally high, regardless 

of depression, but is reduced if the individual has health insurance.

5. Discussion

In observational data with complex heterogeneity of treatment effect, individual estimates of 

treatment effect can be obtained in a principled way by directly modeling the response 

outcome. However, successful estimation mandates highly adaptive and accurate regression 

methodology and for this we relied on RF, a machine learning method with well-known 

properties for accurate estimation in complex nonparametric regression settings. However, 
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care must be used when applying RF for casual inference. We encourage the use of out-of-

bag estimation, a simple but underappreciated out-of-sample technique for improving 

accuracy. We also recommend that when selecting an RF approach, that it should have some 

means for encouraging adaptivity to confounding, that is, that it can accurately model 

potentially separate regression surfaces for each of the treatment groups. One example of 

this is the extension to VT, which expands the design matrix to include all pairwise 

interactions of variables with the treatment, a method we call τVT−I, and described in the 

article by Foster, Taylor, and Ruberg (2011). We found that this simple extension, when 

coupled with out-of-bagging, significantly improved performance of VT. Another promising 

method was counterfactual synthetic forests τsynCF, which generally had the best 

performance among all methods, and was superior in the larger sample size simulations, 

outperforming even the highly adaptive BART method. The larger sample size requirement 

is not so surprising as having to grow separate forests causes some loss of efficiency; this 

being however mitigated by its superior bias properties, which take hold with increasing n.

In looking back, we can now see that the success of counterfactual synthetic RF can be 

attributed to three separate effects: (a) fitting separate forests to each treatment group, which 

improves adaptivity to confounding; (b) replacing Breiman forests with synthetic forests, 

which reduces bias; and (c) using OOB estimation, which improves accuracy. 

Computationally, counterfactual synthetic RF are easily implemented with available 

software and have the added attraction that they reduce parameter tuning. The latter is a 

consequence and advantage of using synthetic forests. A synthetic forest is constructed using 

RF base learners, each of these being constructed under different nodesize and mtry tuning 

parameters. Correctly specifying mtry and nodesize is important for good performance in 

Breiman forests. The optimal value will depend on whether the setting is large n, large p, or 

large p and large n. With synthetic forests this problem is alleviated by building RF base 

learners under different tuning parameter values.

Importantly, and underlying all of this, is the potential outcomes model, a powerful 

hypothetical approach to causation. The challenge is being able to properly fit the potential 

outcomes model and for this, as discussed above, we relied on the sophisticated machinery 

of RF. We emphasize that the direct approach of the potential outcomes model is well suited 

for personalized inference via the ITE. Estimated ITE values from RF can be readily 

analyzed using standard regression models to yield direct inferential statements for not only 

overall treatment effect, but also interactions, thus facilitating inference beyond the 

traditional ATE population-centric viewpoint. Using the Aware data we showed how 

counterfactual ITE estimates from counterfactual synthetic forests could be explored to 

understand causal relations. This revealed interesting connections between risky behavior, 

drug use, and sexual risk. The analysis corrects for any observed differences by the exposure 

variable, so to the extent that we have observed the important confounding variables, this 

result can tentatively be considered causal, though caution should be used due to this 

assumption. Clearly, this type of analysis, which controls for observed confounding gives 

additional and important insights above simple observed drug usage differences. We also 

note that although we used linear regression for interpretation in this analysis, it is possible 

to use other methods as well. The counterfactual synthetic forest procedure provides a 
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pipleline that can be connected with many types of analyses, such as the conditional plots 

that were also used in the Aware data analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bias and RMSE results from simulation experiments. Note that methods improve with 

increasing n.
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Figure 2. 
Assessing causal effects from counterfactual synthetic random forests analysis using linear 

regression (see Table 3). Displayed are confidence intervals for coefficients from linear 

model. Darker colored boxplots with squares indicate variables with p-value < 0.05.
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Figure 3. 
RF estimated causal effect of drug use plotted against CESD depression for individuals with 

and without health insurance. Values are conditioned on Condom change (vertical 

conditional axis) and HIV risk (horizontal conditional axis).
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Table 1

Illustration of unbalancedness of Aware data. Only significant variables (p-value < 0.05) from logistic 

regression analysis are displayed for clarity.

Estimate Std. error Z p-Value

Race −028 0.11 −2.50 0.01

Chlamydia 0.34 0.15 2.30 0.02

Site 2 −0.62 0.16 −3.94 0.00

Site 4 −053 0.16 −3.23 0.00

Site 6 0.44 0.18 2.43 0.01

Site 7 −0.65 0.15 −4.22 0.00

Site 8 0.95 0.21 4.51 0.00

HIV risk 0.17 0.03 5.14 0.00

CESD 0.02 0.01 3.13 0.00

Condom change 2 −0.24 0.12 −2.07 0.04

Marriage 0.08 0.03 2.76 0.01

In Jail ever 0.42 0.10 4.07 0.00

AA/NA last 6 months 1 0.69 0.23 3.04 0.00

Frequency of injection 0.18 0.07 2.49 0.01

Gender −0.39 0.10 −4.00 0.00
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Table 2

Naive causal effect analysis using linear regression where dependent variable is number of unprotected sex 

acts from Aware data. Only variables with p-value < 0.10 from regression analysis are displayed for clarity.

Estimate Std. error Z p-Value

Intercept −5.06 22.17 −0.23 0.82

Drug 9.59 29.72 0.32 0.75

HCV2 8.14 4.09 1.99 0.05

Site 2 −14.00 6.82 −2.05 0.04

HIV risk 3.89 1.41 2.76 0.01

Condom change 3 −17.23 6.52 −2.64 0.01

Condom change 5 −21.98 6.65 −3.30 0.00

Visit ophthalmologist −16.46 8.17 −2.01 0.04

Number visit ophthalmologist 9.13 3.93 2.33 0.02

Marriage −2.13 1.17 −1.81 0.07

Smoke 53.13 16.26 3.27 0.00

Number cigarette per day −14.63 4.76 −3.07 0.00

Drug × CESD 0.88 0.47 1.88 0.06

Drug × Condom change 2 −24.70 6.83 −3.62 0.00

Drug Condom × change 3 −25.82 8.75 −2.95 0.00

Drug Condom × change 4 −37.58 14.20 −2.65 0.01

Drug Condom × change 5 −28.78 9.33 −3.08 0.00

Drug Visit × dentist −16.36 8.26 −1.98 0.05

Drug × Smoke −34.71 20.53 −1.69 0.09

Drug × Number cigarette per day 9.81 5.95 1.65 0.10
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Table 3

Understanding causal effects from counterfactual synthetic random forests analysis using linear regression 

with dependent variable equal to the estimated causal effects {τsynCF(xi), i = 1, …, n}. Causal effect is defined 

as the mean difference in unprotected sex acts for drug users versus nondrug users. Standard errors and 

significance of linear model coefficients were determined using subsampling. For clarity, only significant 

variables with p-value < 0.05 are displayed (the intercept is provided for reference but is not significant).

Estimate Std. error Z

Intercept (drug use) 16.97 9.36 1.81

CESD 0.60 0.13 4.54

Condom change 2 −19.38 2.96 −6.56

Condom change 3 −23.33 3.23 −7.22

Condom change 4 −21.46 3.39 −6.32

Condom change 5 −24.02 3.41 −7.04

Usual care 3 4.91 2.11 2.33

Marriage −1.61 0.73 −2.21

No health insurance 2.72 0.99 2.75

SU treatment last 6 months 2 6.38 3.20 2.00

Frequency of injection 3.59 1.77 2.02
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