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Abstract

Purpose—To determine whether multivariate machine learning models of algorithmically 

assessed magnetic resonance imaging (MRI) features from breast cancer patients are associated 

with Oncotype DX (ODX) test recurrence scores.

Methods—A set of 261 female patients with invasive breast cancer, pre-operative dynamic 

contrast enhanced magnetic resonance (DCE-MR) images and available ODX score at our 

institution was identified. A computer algorithm extracted a comprehensive set of 529 features 

from the DCE-MR images of these patients. The set of patients was divided into a training set and 

a test set. Using the training set we developed two machine learning-based models to discriminate 

(1) high ODX scores from intermediate and low ODX scores, and (2) high and intermediate ODX 

scores from low ODX scores. The performance of these models was evaluated on the independent 

test set.

Results—High against low and intermediate ODX scores were predicted by the multivariate 

model with AUC 0.77 (95% CI: 0.56–0.98, p < 0.003). Low against intermediate and high ODX 

score was predicted with AUC 0.51 (95% CI: 0.41–0.61, p = 0.75).
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Conclusion—A moderate association between imaging and ODX score was identified. The 

evaluated models currently do not warrant replacement of ODX with imaging alone.

Keywords
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regression

Introduction

In breast cancer related literature, prior studies (Paik et al., 2004, 2006, Paik et al., 2006, 

Nielsen et al., 2010, Dowsett et al., 2013, Wittner et al., 2008) have shown that multi-assay 

gene expression profiling is associated with patient outcomes and response to specific 

systemic therapies. Of the variety of multi-gene assays, the 21-gene expression assay 

Oncotype DX (ODX) (Genomic Health, Redwood City, CA) test is recommended by the 

current guidelines (2006, Paik et al., 2004, Paik et al., 2006, Coates et al., 2015) for a 

specific group of female patients (early-stage, hormone receptor-positive, node-negative, and 

HER2-negative disease with tumor size equal or greater than 1cm) and is often used in 

clinical practice for assessing chemotherapy benefit and the risk of distant recurrence. The 

10-year risk of distant recurrence is estimated by the ODX score on a scale of 0 to 100 and 

considered low if the ODX score is less than 18, and high if ODX score is greater than or 

equal than 31. Any ODX score between low and high is considered intermediate (Paik et al., 

2004). However, there are limitations to obtaining ODX scores (from tumor specimens) as 

discussed in (Harowicz et al., 2017), since it is an expensive and time-consuming procedure. 

Therefore, several surrogate measures of ODX were explored in previous studies (Klein et 

al., 2013, Gage et al., 2015, Tang et al., 2010). These surrogate measures require the 

immunohistochemical (IHC) analysis of the tumor sample.

Recently, an increased research focus has been placed on using dynamic contrast-enhanced 

magnetic resonance imaging (DCE-MRI) to predict patient outcomes and tumor genomics. 

These analyses are referred to as radiomics (Gillies et al., 2016) and 

radiogenomics(Mazurowski, 2015). Specifically several of DCE-MRI-based features have 

been shown to be associated with recurrence-free survival in breast cancer (Mazurowski et 

al., 2015, Kim et al., 2017). Also, multiple studies (Uematsu et al., 2009, Li et al., 2016a, Li 

et al., 2016b, Ashraf et al., 2014, Blaschke and Abe, 2015, Wan et al., 2016, Fan et al., 2017, 

Wu et al., 2017, Sutton et al., 2015), most of which focused on tumor intrinsic molecular 

subtype, are present in the literature. Some of the radiogenomic studies (Wan et al., 2016, 

Ashraf et al., 2014, Li et al., 2016a, Sutton et al., 2015) showed initial data on the 

association of imaging features with ODX, illustrating a potential avenue of a surrogate 

noninvasive test. In (Ashraf et al., 2014), features from the time-intensity enhancement curve 

of tumor were delineated on a central representative slice of 56 breast cancer patients from a 

single institution and were shown to distinguish between high versus low and intermediate 

risk patients. In (Li et al., 2016c), computer-extracted features quantifying size, shape, 

margin properties, enhancement texture and kinetic assessment from 3D tumor volume from 

84 patients (from four institutions) were considered to discriminate between patients with 

low to medium risk versus high risk. Sutton et al.(Sutton et al., 2015) explored 
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morphological and texture features from a central slice of tumor in addition to clinical 

features (age, menopausal status, histologic and nuclear grades, pathological tumor size and 

lymph node status) and developed a regression model to compute a surrogate ODX for 95 

invasive ductal carcinoma patients having ODX scores in the range (0–45). In a recent study 

by Wan et al. (Wan et al., 2016), 96 patients with low and high risk ODX scores were 

included and features of textural kinetics were explored to differentiate between high and 

low risk groups. While these studies showed promise for this radiogenomic association, the 

patient population in each of these studies was restricted to under 100 subjects, a limited 

number of imaging characteristics were explored, and no independent test set was used to 

validate the findings.

The purpose of our study is to validate the association of imaging features with ODX in an 

independent cohort of 261 patients. Our approach includes analysis of a comprehensive set 

of 529 imaging features from each of the patients, development and evaluation of a 

multivariate model for prediction of the ODX score.

Materials and Methods

Patient Population

We secured an Institutional Review Board approval for this study. For our analysis, we 

identified 298 consecutive female patients with an available ODX recurrence score from 

January 1st, 2000 to March 23rd, 2014 with invasive breast cancer and available pre-

operative MRI at our institution, without having any breast surgery, history of breast cancer 

or neo-adjuvant therapy prior to the MRI acquisition. From these 298 patients, 37 patients 

were excluded from the study for reasons shown in Fig.1. We divided the remaining 261 

patients into training and test sets having 131 and 130 patients respectively.

Imaging Data

Axial breast DCE-MR images that were acquired by 1.5T or 3T scanners in the prone 

position were collected for all patients. The following MR sequences were available: a non-

fat saturated T1-weighted sequence and a fat-saturated gradient echo T1-weighted pre-

contrast sequence, typically with four post-contrast T1-weighted sequences. The 

postcontrast sequences were acquired using a weight based protocol of 0.2 mL/kg of the 

contrast agent (IV administration).

The tumors were annotated by eight fellowship-trained breast radiologists (1– 22 years of 

post-fellowship experience). The following MR sequences were displayed to the reader: (a) 

the pre-contrast, (b) the first post-contrast, and (c) the subtracted sequence (obtained by 

subtracting the pre-contrast sequence from the first post-contrast) using an internal GUI 

(graphical user interface) developed in our laboratory. A three-dimensional bounding box, 

containing the tumor, was indicated by a reader. Each tumor was annotated by one reader.

Image Segmentation

Using a reader’s bounding box, we obtained the tumor mask by a fuzzy C-means automatic 

segmentation. Using the N4 corrected (Tustison et al., 2010) T1-non-fat saturated (T1-NFS) 
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images and first post-contrast sequences, the breast and fibroglandular tissue masks were 

extracted automatically. Thus, apart from the semi-automatic tumor mask, we had three 

more masks extracted automatically for each patient: (a) breast mask (b) FGT mask from 

T1-NFS (c) FGT mask from post-contrast sequence as described in (Saha et al., 2017).

Imaging Feature Extraction and Organization

We extracted 529 imaging features from DCE-MR image sequences. The feature 

implementation and extraction where guided mostly by the imaging features existing in the 

literature and shown to have an association with diagnosis, prognosis and molecular 

subtypes or considered by different research groups as a potential descriptor of breast cancer 

characteristics. We selected features that describe the breast, FGT (from T1-NFS or first post 

contrast sequences), and tumor. The exact list of all features along with references aiding 

their implementation can be found in the Supplementary Material A of our previous work 

(Saha et al., 2017). A summary of the feature categories is listed below:

a. Features of breast and FGT volume (5): The sources of these features are breast 

mask and FGT mask. DCE-MR voxel values are not required after the 

corresponding mask has been extracted.

b. Features of tumor size and morphology (10): The source of these features is the 

tumor mask, however, DCE-MR voxel values are not required after the 

corresponding mask has been extracted.

c. Features of FGT enhancement (82): The sources of these features are the FGT 

mask and DCE-MR voxel intensities corresponding to the mask, but the spatial 

relationship between the voxels or variation of feature values within voxels is not 

used.

d. Features of tumor enhancement (30): The sources of these features are tumor 

mask and DCE-MR voxel intensities corresponding to the mask, but the spatial 

relationship between the voxels or variation of feature values within voxels is not 

used.

e. Combined FGT and tumor enhancement (18): The sources of these features are 

tumor mask, FGT mask and DCE-MR voxel intensities corresponding to the 

mask, but the spatial relationship between the voxels or variation of feature 

values within voxels is not used.

f. Features of FGT enhancement texture (176): The sources of these features are 

FGT mask and DCE-MR voxel intensities corresponding to the mask along with 

the spatial relationship of the voxels.

g. Features of tumor enhancement texture (135): The sources of these features are 

tumor mask and DCE-MR voxel intensities corresponding to the mask along 

with the spatial relationship of the voxels.

h. Features of tumor enhancement spatial heterogeneity (4): The sources of these 

features are tumor mask and DCE-MR voxel intensities, and these features 
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extract information about the spatial relationship of the clusters formed by tumor 

enhancement features.

i. Features of FGT enhancement variation (34): The sources of these features are 

FGT mask and DCE-MR voxel intensities, dispersion or variation of FGT 

enhancement feature values only or feature values over timepoints are 

considered, without considering the spatial relationship between the voxels.

j. Features of tumor enhancement variation (35): The sources of these features are 

tumor mask and DCE-MR voxel intensities, dispersion or variation of FGT 

enhancement feature values only or feature values over timepoints are 

considered, without considering the spatial relationship between the voxels.

Multivariate predictive models

We considered two prediction tasks (a) prediction of high (i.e., scores greater than or equal 

to 31 are high) versus low and intermediate ODX scores (b) prediction of high and 

intermediate (i.e., scores less than 18 are low) versus low. The cut-off values are same as 

followed in (Paik et al., 2004).

To develop the models, we first selected features from the set of 529 features using our 

training set. First, we computed the area-under the receiver operating characteristic (ROC) 

curve (AUC) for each of the two prediction tasks in the training set. Then, we sorted the 

features in descending order according to AUC and iteratively selected low correlated 

features (|c| <= 0.8) to form sets of top 5 or 10 features for each of the two predictive tasks. 

Based on the selected features we generated two multivariate logistic regression models for 

each of the two discrimination tasks. For each one of the tasks, we constructed 2 models: 

one based on 5 selected features and one based on 10 selected features.

Model evaluation and statistical analysis

The models were evaluated using the test set. We used the AUC (DeLong et al., 1988) as the 

performance metric. To test if the trained models show a statistically significant association 

(for each of the two predictive tasks), we fitted a logistic regression between the values 

predicted by a model in the test set and corresponding labels (depending on the predictive 

task) in the test set. As an exploratory analysis to identify which individual features had the 

highest association with ODX in test set, we graphically demonstrated the relationship of the 

top 5 features in the test set for each of the two tasks. Since in this study we evaluated 4 

models (2 models for 2 classification tasks), we considered p<0.0125 (0.05/4) as statistically 

significant.

Results

The clinicopathologic characteristics for these patients are shown in Table. 1.

The variety of scanning equipment and contrast agents used for the patient population are 

shown in Table 2.

The details of different MR image acquisition parameters are presented in Table 3.
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The performance of the models for prediction of the ODX category in the test set is shown 

in Table 4. The models trained to distinguish between high versus intermediate and low 

recurrence risk achieved an AUC of 0.77 and 0.74. However, the model for discriminating 

high and intermediate vs low failed to separate patients into these two groups. The 

performances of the models with 5 features were slightly better than those with 10 features.

The results for the exploratory univariate analysis of individual features potentially 

associated with specific ODX categories are shown in Fig.2 (high vs. intermediate and low 

risk) and Fig. 3 (high and intermediate vs low risk). The features that were selected as most 

predictive of recurrence score (high vs. intermediate and low) were as follows: signal 

enhancement ratio based washout tumor volume, mean and variance of the washin slope of 

tumor voxels that had maximum intensity (across all time points) in the first postcontrast 

sequence, proportion of tumor voxels that enhanced at their maximum intensity in the first 

postcontrast sequence, and proportion of tumor voxels that enhanced at a particular intensity 

level when the proportion of FGT voxels reached a certain value of the mean enhancement 

of the tumor. Consistent with the results of the multivariate analysis, individual features 

show notably higher discriminative power when distinguishing high risk from intermediate 

and low risk scores.

Discussion

We conducted a study to evaluate a comprehensive set of imaging features from DCE-MRI 

in terms of their ability to predict the distant recurrence risk using ODX scores. Our cohort 

of 261 patients, showed variability in terms of MRI scanner parameters, MRI acquisition 

parameters, and contrast agents used. This cohort was divided into training and test sets of 

approximately equal size and multivariate models were developed to predict the ODX risk 

categories. Our multivariate models were able to discriminate between high versus 

intermediate and low ODX scores. However, we found no discriminative power of the 

examined features for distinguishing high and intermediate ODX score from the low score.

The choice of classification tasks considered in this study was mostly motivated by the 

literature, where more work has been concentrated on discriminating high risk versus low 

risk (Wan et al., 2016) or high risk versus intermediate and low risk patients (Li et al., 

2016a, Ashraf et al., 2014). However, as discussed in (Harowicz et al., 2017), low ODX 

scores are important for decision making in chemotherapy by potentially sparing patients 

from chemotherapy because of their low risk of recurrence. Therefore, we considered 

discrimination of low versus intermediate and high to be an important classification task. 

Our results for discriminating high versus low and intermediate ODX in the test set were 

very close to the AUC values reported in studies (Ashraf et al., 2014, Li et al., 2016a). For 

ODX score prediction, these two studies differed between themselves in the following 

aspects (a) multi-institutional versus single-institutional (b) use of 3D tumor volume versus a 

central tumor slice, and (c) types of features considered. We have included features from 

both of these studies in our set. In the trained model, including 10 features, features from 

both of these studies were selected. Other features selected included signal enhancement 

ratio (SER) based features (Arasu et al., 2011) extracted from the tumor. An enhancement 

feature extracted using both tumor and tissue enhancement (Mazurowski et al., 2014) was 
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also selected. A direct comparison of our results with (Sutton et al., 2015, Wan et al., 2016) 

cannot be discussed, as the entire range (0–100) of ODX scores was not considered for both 

of these studies though features from both of these studies were included in our set of 529 

features.

A strength of our study is the use of an independent test set used to validate the multivariate 

model developed in training set. This is of high importance given the large number of 

features evaluated in this and similar studies. A lack of a validation set could result in 

obtaining high values of correlation between imaging features and genomic features by 

chance and lack of generalizability of the conclusions.

Our study had some limitations. The proportion of high risk ODX patients in our set is lower 

compared to the other studies. The proportion of high ODX patients is lower in the test set 

than in the training set. This results in a wide confidence interval for performance calculated 

in our study. However, the fact that the multivariate models could learn from small 

proportion high risk patients shows high robustness of the imaging features found predictive 

in our study.

An important aspect of our study is the heterogeneity of the cohort in terms of imaging. The 

acquired images spanned 14 years and varied in terms of the MR scanners used, the MR 

acquisition parameters and the types of contrast agent used. On one hand, this allowed us to 

show that some imaging variables are associated with outcomes despite a considerable 

variability in imaging protocols making the result robust to such changes and more likely 

generalizable to other data. On the other hand, it is possible that prognostic values of some 

imaging variables were obscured by this variability and not found in this study. Accounting 

for variability in imaging is largely an unsolved problem with increasing research attention 

devoted to it (Saha et al., 2016). Future studies, could repeat this analysis in more controlled 

imaging conditions with uniform scanning and contrast protocol.

The highest obtained performance of AUC=0.77, even if thoroughly validated, is likely not 

sufficient for replacing the ODX tissue-based biomarker. However, it shows promise for 

potential use as a selection criterion for which patients should undergo this expensive test. 

Furthermore, the imaging surrogate should be used in combination with the pathology-based 

surrogate (Klein et al., 2013, Gage et al., 2015, Tang et al., 2010) to obtain a more accurate 

prediction of the ODX recurrence score.

The negative finding of this study is that despite a comprehensive set of imaging features 

and a considerable sample size, we were not able to identify imaging predictors of which 

patients will have a low ODX recurrence score (vs. intermediate and high) in the univariate 

and multivariate settings. This is a limitation of using imaging in this context since 

distinguishing these categories is of high importance when deciding on usage of 

chemotherapy in estrogen receptor positive patients.

In conclusion, we found that there is an association between recurrence risk obtained using 

multi-gene assay with computer extracted features. However, this association strictly 

depends on the stratification of ODX scores considered. Therefore, the imaging-based 

models evaluated in this study are not an appropriate replacement for the ODX scores.
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Figure 1. 
Flowchart explaining the cohort used in our study.
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Figure 2. 
Boxplot of individual top 5 selected features for discriminating high versus intermediate and 

low ODX
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Figure 3. 
Boxplot of individual top 5 selected features for discriminating high and intermediate versus 

low ODX
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Table 1

Clinicopathologic characteristics of the patients included in our study

Patient Characteristics
All

Patients

Patients in
Training

Set

Patients
in Test

Set

Number of Patients 261 131 130

Median Age(years) 54 53 56

Age Range(years) 28–83 32–83 28–77

Race

  White 223 108 115

  Black 25 14 11

  Asian 3 2 1

  Native 0 0 0

  Hispanic 3 3 0

  Multi 2 0 2

  Hawaiian 0 0 0

  American Indian 0 0 0

  Not Available 5 4 1

Menopausal Status

  Pre 102 49 53

  Post 156 80 76

  Not Available 3 2 1

Oncotype DX Score

Low 145 77 68

Intermediate 93 38 55

High 23 16 7

Median ODX 16 16 17
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Table 2

Information about the scanner parameters and contrast agents used

Characteristics Technical
Details

Manufacturer
Details

Patient
Count

Magnetic Field Strength 1.5 T

Optima MR450w, GE Healthcare, Little Chalfont, UK 35

Signa HDx, GE Healthcare, Little Chalfont, UK 9

Signa HDxt, GE Healthcare, Little Chalfont, UK 51

Avanto, Siemens, Munich, Germany 47

3 T

Signa Excite, GE Healthcare, Little Chalfont, UK 1

Signa HDx, GE Healthcare, Little Chalfont, UK 53

Signa HDxt, GE Healthcare, Little Chalfont, UK 31

Skyra, Siemens Healthcare, Little Chalfont, UK 15

Trio, Siemens, Munich, Germany 1

Trio Tim, Siemens, Munich, Germany 18
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Table 3

Values of Different MRI acquisition parameters in the dataset

MRI Acquisition
Parameters

Value
Details

Values

Slice Thickness (mm)
Range 1.1 – 2.5

Median 2

Repetition Time (ms)
Range 3.54–7.11

Median 5.25

Echo Time (ms)
Range 1.25–2.76

Median 2.4

Acquisition Matrix
Minimum Array Size 320 × 320

Maximum Array Size 448 × 448

Flip Angle (degrees)
Range 12-Jul

Median 10

FOV(mm)
Range 250–400

Median 340
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Table 4

Performance of the trained models in the test set

Name of the task Model
Details

AUC in test set
with 95%
confidence

interval

p-
value

for the
model
in the
test set

High vs Intermediate and Low ODX
multivariate model using 5 selected features 0.77 (0.56–0.98) <0.003

multivariate model using 10 selected features 0.74 (0.51–0.96) <0.004

High and Intermediate vs Low ODX
multivariate model using 5 selected features 0.51 (0.41–0.61) 0.75

multivariate model using 10 selected features 0.50 (0.40–0.60) 0.74
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