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Abstract

Over the last decade, a new understanding of tumor-immune system interplay has been ushered in, 

lead in large part by the discovery of immune checkpoints mediated through B7-CD28 family 

interactions. Therapeutic blockade of the PD-L1 immune checkpoint pathway has already shown 

great success as a cancer immunotherapy for advanced urothelial carcinoma, leading to durable 

clinical remissions in an otherwise incurable disease. There are newly described members of the 

B7-CD28 family including B7-H3, B7x, and HHLA2. These ligands are thought to play an 

essential role in suppressing T-cell response, leading to immune tolerance of tumors. This feature 

makes them attractive targets for novel immunotherapy treatment paradigms. Here, we review the 

literature of current strategies and future directions of immune checkpoint blockade therapy for 

bladder cancer.

1. Historical perspective of immunotherapy for bladder cancer

The first suggestion of interplay between tumor biology and host immunity was in the 19th 

century when William Coley observed that infections were associated with tumor regression 

[1]. This antineoplastic effect of concomitant infection was again observed by Raymond 

Pearl at Johns Hopkins in 1929. He performed autopsies on patients who died of 

tuberculosis and noticed that there was a surprisingly low rate of underlying malignancy in 

these patients [2]. Alvaro Morales was the first to introduce immunotherapy to bladder 

cancer via intravesical treatment with bacillus Calmette-Guerin (BCG). BCG is a live 
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attenuated strain of Mycobacterium bovis [3] that is reconstituted in solution and instilled 

into the bladder following transurethral resection (TUR) of non–muscle-invasive bladder 

tumors. Morales originally treated 9 patients with intravesical BCG and reported a 

significant reduction in bladder tumor recurrence [4]. This was the foundation for 

subsequent randomized controlled trials comparing patients undergoing TUR followed by 

adjuvant BCG to patients undergoing TUR alone [5, 6]. These studies convincingly 

demonstrated that BCG lowers the risk of tumor recurrence and may delay tumor 

progression. Dr Morales established the currently used regimen of 6 weekly bladder 

instillations. Although the precise mechanism of action of BCG immunotherapy remains the 

subject of continued investigation, it is believed to function by activating both the innate and 

adaptive immune systems [7]. Intravesical BCG has been validated by multiple randomized 

controlled trials as a superior therapy to intravesical chemotherapy including mitomycin and 

epirubicin [8–11]. Since its introduction nearly 4 decades ago, BCG is still considered to be 

one of the most successful immunotherapy agents for any solid malignancy [12]. It would 

not be until the 21st century that our understanding of the relationship between cancer and 

immunity would make a significant leap forward by the discovery of new tumor-immune 

evasion pathways via immune checkpoints.

2. Overview of immune checkpoint receptors and pathways

Immune evasion is considered to be one of the hallmarks of cancer and is an essential step in 

the evolution of a tumor [13]. Tumor-immune evasion is achieved through multiple 

mechanisms: (1) selective evolution of tumors with down-regulated expression of 

neoantigens; (2) decrease or loss of expression of class I MHC molecules; (3) resistance to 

T-cell–mediated cytolytic killing; (4) presence of immune suppressing cells—regulatory T 

cells (T regs), myeloid-derived suppressor cells (MDSCs), and secretion of 

immunosuppressive cytokines in the tumor microenvironment; and (5) expression of 

coinhibitory ligands and induction of T-cell exhaustion/anergy [14]. Regulation of T-cell 

activation requires 2 signals: (1) engagement of the T-cell receptor (TCR) through 

recognition of a peptide MHC complex, and (2) presence of a second (costimulatory or 

coinhibitory) signal delivered by the interaction of the family of CD28 receptors and B7 

ligands [15]. If the second signal delivered is a costimulatory signal, then T-cell activation 

takes place leading to cytolysis of the cell, whereas if it is a coinhibitory signal, this results 

in T-cell exhaustion. The CD28 family of receptors are CD28 (costimulatory), CTLA-4 

(coinhibitory), ICOS (costimulatory), PD-1 (coinhibitory) and TMIGD2 (unclear function), 

whereas the B7 family of ligands are B7-1, B7-2, PD-L1, PD-L2, B7-H3, B7x, and HHLA2. 

This pathway is essential for regulating the T-cell response, and tumors can induce T-cell 

suppression by expressing B7 coinhibitory ligands on the surface of tumor cells or by 

stimulating their expression on antigen presenting cells (APCs). The more extensively 

studied pathways are the CTLA-4/B7-1/B7-2 pathway and the PD-1/PD-L1/PD-L2 pathway. 

The characterization of these pathways has led to many important therapeutic advances. In 

this section, we discuss these pathways and review the relevant clinical trials.
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2.1. CTLA-4/B7-1/B7-2 pathway

CD28 is expressed constitutively on naïve and activated T cells, whereas CTLA-4 is 

constitutively expressed only on T regs [16]. After an antigenic stimulus, CD28 interacts 

with the B7-1/B7-2 ligands on the APC and colocalizes with the TCR (Fig. 1). This results 

in phosphorylation of TCR-dependent kinases and also activates a distinct signaling program 

including increased production of IL-2 and high expression of the IL-2 receptor, which is 

needed for clonal expansion of naïve T cells [17]. Activation of the T cell through the CD28/

B7-1/B7-2 pathway also results in movement of CTLA-4 from the intracellular compartment 

to the cell surface. As CTLA-4 has a higher binding affinity for B7-1/B7-2 than CD28, this 

results in suppression of costimulation, and the amount of CTLA-4 that translocates to the 

cell surface is proportional to the strength of the antigenic stimulus. CTLA-4 then recruits 

phosphatases such as SH-2 that decrease CD28 and TCR-dependent signaling of the T cell 

via dephosphorylation of TCR and other upstream signaling molecules. This balance 

between CD28 and CTLA-4 signaling is essential in controlling the T-cell immune response. 

Most normal tissues do not express B7-1 or B7-2, and thus cannot activate naïve T cells. In 

the absence of costimulation, activation of TCR by antigenic stimulus alone will result in 

anergy or functional inactivation of these cells. The physiological function of this pathway is 

the maintenance of self-tolerance; however, when tumor cells present an antigen in the 

absence of costimulatory molecules, this also leads to anergy and can contribute to immune 

evasion.

2.2. PD-1/PD-L1/PD-L2 pathway

PD-L1 is widely expressed in a variety of tissues including vascular endothelium and APCs, 

whereas PD-L2 is predominantly expressed in immune cells such as macrophages and 

dendritic cells. IFN-g stimulates PD-L1 expression, and IL-4 induces PD-L2 expression. 

PD-1 is not constitutively expressed on naïve T cells but can be up-regulated on T cells, B 

cells, and other myeloid cells [18]. Such wide expression of PD-L1 suggests that it is 

important for tolerance. After binding to PD-L1 or PD-L2, the PD-1 receptor similar to the 

CD28 receptor colocalizes with the TCR and inhibits the phosphorylation of CD3-E and 

Zap-70, resulting in blockage of TCR-generated antigenic signals (Fig. 2). In addition, 

phosphorylation of intracellular immunoreceptor tyrosine-based inhibitory motif of PD-1 

leads to SHP-2 activation, which in turn inhibits the PI3K/Akt pathway activated by CD28 

signaling. Similar to CTLA-4, PD-1 activation can block TCR and CD28 signaling, but their 

mechanisms of actions are different. In addition, PD-1 expression plays an important role in 

chronic viral infections and cancers. Persistent antigenic stimulation leads to a T-cell 

exhaustion phenotype characterized by high levels of coinhibitory receptors such as PD-1 on 

CD8+ T cells. T cells with an exhaustion phenotype have poor proliferative, cytokine 

producing, and cytolytic capabilities. Such an exhaustion phenotype can be found in chronic 

viral infections and malignancies, and reversal of the exhaustion phenotype results in 

improved control of infections and disease. PD-L1 expression has been shown to be 

prognostic in several cancers including melanoma, colon, cervical, renal cell cancer, and 

breast and ovarian cancer [19]. Response to PD-1/PD-L1 therapy depends on the mutational 

landscape of malignancies with malignancies having higher mutational burden 

demonstrating better responses [20].
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3. Bladder tumors as immunogenic targets

Bladder cancers express high levels of PD-L1 [21]. Inman et al. demonstrated PD-L1 

expression in bladder tumors of all stages, with particularly high levels in advanced stage 

tumors (30%) and tumors with carcinoma in situ (CIS) (45%). Furthermore, PD-L1 

expression was abundant in tumors refractory to BCG treatment, suggesting that PD-L1 may 

play a role in shielding the tumor from immune-mediated tumor destruction. Boorjian et al. 

[22] observed that increased PD-L1 expression was associated with advanced urothelial 

cancer and independently predicted all-cause mortality.

Urothelial carcinoma genomes harbor a large number of somatic mutations. In a recent 

comprehensive genomic analysis by Lawrence et al. [23], a high frequency of somatic 

mutations was identified in exome sequences of human bladder tumors. Of the solid tumors 

evaluated to date, lung cancer, melanoma, and bladder cancer are characterized by the 

highest observed levels of mutational burden. Mutated cellular transcripts are processed into 

tumor neoantigens that are presented on the surface of APCs. This can lead to enhanced host 

immune recognition, a critical first step in generating a robust antitumor response.

4. Clinical trials of checkpoint inhibitors in urothelial carcinoma

Until 2016, there had been no new systemic treatments for advanced urothelial carcinoma 

approved by the FDA in 3 decades [12]. Recent clinical trials have demonstrated 

considerable therapeutic benefit of anti-CTLA-4 and anti-PD-1/PD-L1 agents in metastatic 

melanoma [24–26], leading to durable clinical remissions in an otherwise incurable disease.

The first phase I study of an anti-PD-L1 antibody (atezolizumab) in urothelial carcinoma 

was reported by Powles et al. [27]. Study participants had metastatic urothelial carcinoma 

who had failed prior systemic therapy. Sixty-seven patients received treatment and were 

stratified by their tumor PD-L1 expression status. Of these, 30/67 (45%) had high levels of 

PD-L1 expression and 35/67 (52%) had low levels of PD-L1 expression (2 patients had 

unknown expression). The objective response rate was 43% in PD-L1 high expression 

tumors and 11% in PD-L1 low expression tumors. Additionally, the study drug was tolerated 

remarkably well, with only 4% of the cohort experiencing grade 3 or greater toxicity. 

Immune-related adverse events (AEs) were the most common toxicities experienced. These 

preliminary data demonstrated a promising safety and efficacy profile for atezolizumab. In 

an effort to accelerate clinical trial expansion and increase patient access to the study drug, 

the FDA granted atezolizumab breakthrough designation in June 2014. The phase II study 

IMVigor 210 demonstrated an objective response rate of 18% in PD-L1+, platinum-

pretreated tumors, and a grade 3/4 treatment-related AE rate of 16%, further supporting the 

safety and efficacy profile of atezolizumab for advanced urothelial carcinoma [28]. Based on 

these encouraging data, the FDA approved atezolizumab for treatment of metastatic or 

locally advanced bladder cancer in patients who have failed prior platinum-based 

chemotherapy in May 2016. More recently, the phase III study Keynote-045 demonstrated a 

survival benefit with anti-PD-1 antibody pembrolizumab vs. second-line chemotherapy in 

platinum refractory metastatic bladder cancer (10.3 vs. 7.4 mo, respectively) [29]. There 

were significantly less grade 3 to 5 AEs observed in the pembrolizumab arm compared to 
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the chemotherapy arm (15% vs. 49%, respectively). The most common immune-related AEs 

of any grade associated with checkpoint inhibitor therapy is transaminitis, hyper/

hypothyroidism, pneumonitis, and colitis [30].

Multiple additional checkpoint inhibitors targeting PD-1/ PD-L1 have been evaluated and 

have demonstrated activity in urothelial carcinoma (Table 1). Based on these encouraging 

early results, multiple phase III trials are planned or are underway (Table 2). Additional 

clinical trials are currently exploring the use of immune checkpoint inhibitors in the 

perioperative setting, in combination with radiotherapy, and in non–muscle-invasive disease. 

There are also several clinical trials studying combined checkpoint blockade targeting both 

CTLA-4 and PD-1/PD-L1 for advanced urothelial carcinoma [31, 32]. Although there are no 

data published yet regarding outcomes for combination immunotherapy in urothelial 

carcinoma, combination therapy has led to clinical remission in metastatic melanoma, 

although there is significant cumulative toxicity associated with dual therapy [33]. Initial 

results exploring the combination of nivolumab (anti-PD-L1) with ipilimumab (anti-

CTLA-4) from the phase I/II CheckMate 032 study was presented at the Society for 

Immunotherapy of Cancer meeting in November 2016. Among 103 patients with urothelial 

carcinoma treated with nivolumab 3 mg/kg and ipilimumab 1 mg/kg IV every 3 weeks for 4 

cycles followed by nivolumab 3 mg/kg every 2 weeks, the overall response rate was 26%. 

Among the 26 patients treated with nivolumab 1 mg/kg and ipilimumab 3 mg/kg IV every 3 

weeks for 4 cycles followed by nivolumab 3 mg/kg every 2 weeks, the response rate was 

38.5%. In the 78 patients treated with single-agent nivolumab at 3 mg/kg IV every 2 weeks, 

the response rate was 25.6% [34]. Final results of CheckMate 032 are eagerly anticipated. A 

randomized phase III clinical trial (DANUBE) is underway comparing combination 

immunotherapy (anti-CTLA-4 + anti-PD-L1) vs. single-agent immunotherapy (anti-PD-L1) 

vs. standard combination, platinum-based chemotherapy in the first-line metastatic or locally 

advanced setting (NCT02516241). DANUBE will be the first reported phase III trial 

evaluating combination immunotherapy in urothelial carcinoma.

5. New immune checkpoints B7-H3, B7x, and HHLA2

The evolution of the B7 family members can be divided into 3 groups based on amino acid 

similarity. B7-H3 [35], B7x [36–38], and HHLA2 [39] form the third group of molecules 

[36] (Fig. 3). These molecules are widely expressed in many urologic malignancies, and 

their expression is associated with a poor prognosis [22, 40]. Tumor cell surface 

overexpression of these ligands is thought to play an essential role in suppressing T-cell 

response, leading to immune tolerance of malignancies. This feature makes them attractive 

targets for novel immunotherapy strategies. In this section, we review the new immune 

checkpoint ligands B7-H3, B7x, and HHLA2.

5.1. B7-H3

B7-H3 (also known as CD276) is a ligand of the B7 family with a complex set of functions 

that is still being explored. Initial in vitro studies indicated that it stimulates proliferation, 

increases cytokine production of IFNγ [35], and promotes antitumor immunity [41]. Later 

studies demonstrated the opposite, however, showing that it inhibits proliferation, cytokine 
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production, and T-cell immunity [42]. These apparently conflicting results may not be 

contradictory, but could instead entail multiple receptors (as in B7-1 with CD28 and 

CTLA-4), distinct functional isoforms, or posttranslational regulation. As of yet, the receptor 

for B7-H3 has not been identified.

B7-H3 mRNA is widely transcribed in somatic tissues; however, its protein is only found on 

certain cell types. It is constitutively expressed at low levels on nonlymphoid cells such as 

fibroblasts [43] and osteoblasts [44]. It is not constitutively expressed on immune cells, but 

can be induced on T cells, natural killer cells, dendritic cells, and monocytes [35]. This 

limited expression pattern suggests posttranscriptional regulation, which is at least partly due 

to RNA interference mediated by microRNA such as miR-29 [45]. Although B7-H3 

expression is limited in normal tissues, it is found on many cancer types and in tumor 

vasculature [46]. As with the early in vitro experiments, some studies of human pancreatic 

[47] and gastric [48] cancer specimens seemed to indicate that B7-H3 is associated with 

improved patient survival. Conversely, other analyses of pancreatic [49], colorectal [50], 

breast [51], lung [52], liver [53], kidney [54] and bladder cancers show that it is associated 

with a greater risk of progression and worse prognosis. In urothelial cancer of the bladder, 

preoperative bacillus Calmette-Guerin treatment is associated with B7-H3 overexpression 

[22]. Subsequent studies on urothelial cell tumors confirmed that B7-H3 overexpression is 

present in bladder tumors across all pathologic stages [22, 55] and is likely a consequence of 

increased B7-H3 mRNA expression in urothelial carcinoma cells [56].

Therapeutics targeting B7-H3 are being actively explored. The anti-B7-H3 monoclonal 

antibody Enoblituzumab (MGA271) was shown to reduce growth of renal cell and bladder 

carcinoma xenografts in mice [57]. It is currently being tested as a monotherapy in a phase I 

dose-escalation study in patients with refractory cancers (NCT01391143), and interim 

results show that it is well tolerated and has antitumor activity [58]. It is also being evaluated 

in combination with ipilimumab (anti-CTLA-4 mAb) or pembrolizumab (anti-PD-1 mAb) in 

safety studies of refractory cancers (trial NCT02381314 and NCI201501495). The murine 

mAb 8H9 was found to target an unknown antigen on many solid tumors, and only recently 

has this antigen been discovered to be B7-H3 [59]. Radioimmunoconjugated 8H9 with 

cytotoxic I131 is currently in phase I trials for central nervous system and peritoneal tumors 

(NCT01099644 and NCT01502917), and other groups are testing 8H9 with other toxic 

conjugates [60] in murine models. Targeting B7-H3 in combination with other treatments 

has synergistic effects in animal models, as seen in pancreatic tumor grafts treated with 

gemcitabine [61] and lymphoma xenografts with idarubicin and cytarabine [62]. Thus, 

targeting B7-H3 has been effective in preclinical models, and depending on the results of 

ongoing clinical trials, may be a viable treatment option for bladder cancer in the future.

5.2. B7x

B7x (also known as B7-H4, VTCN1, or B7S1) is a B7 family member discovered in 2003 

that is shown to inhibit T-cell–mediated immunity. This coinhibitory ligand inhibits T-cell 

proliferation, reduces cytokine production [36], and induces cell-cycle arrest [37] in vitro. 

Further, it promotes the development of immunosuppressive immune cells such as regulatory 

T cells [63], tumor-associated macrophages [64], and MDSCs [65], which in turn inhibit T-
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cell function. B7x also has a role in the innate immune system: In a Listeria model of 

infection, it inhibited the proliferation of neutrophil progenitors [66]. The receptor for B7x 

has not yet been identified, though in vitro binding assays indicate that it must be distinct 

from known members of the B7 family [36] and is found on T cells [36] and MDSCs [65].

The B7x gene is widely transcribed, and its mRNA can be detected in tissues and cell types 

across the body [36]. Conversely, protein expression of B7x is fairly limited and found on 

tissues of lung [67]; pancreas [68]; breast, gynecological tract, and placenta [67], suggesting 

posttranscriptional regulation similar to B7-H3. Despite its restricted expression on healthy 

somatic tissues, B7x is frequently expressed in many cancer types including those of the 

breast, lung [52], colon [69], ovary [70], endometrium [71], kidney [72], pancreas [73], 

prostate [40], and bladder. B7x expression in renal cell carcinoma is associated with a 

greater cancer progression and decreased overall survival [72]. Likewise, in prostate cancer, 

strong intensity of staining with immunohistochemistry for B7x is associated with greater 

cancer spread, recurrence, and risk of death [40]. In urothelial carcinoma, B7x 

overexpression is associated with increased TNM stage, pathological grade, and poorer 

outcomes [74]. Serum B7x is also elevated in patients with urothelial carcinoma, suggesting 

that it may be useful as a diagnostic marker [75].

Considering the immunosuppressive effects of B7x and its expression profile in human 

cancers, it is a prime target for immunotherapy. Some strategies to target B7x include 

monoclonal antibodies, single-chain fragment variables (scFVs, that is, recombinant 

antibodies with single binding sites), and chimeric antigen receptor (CAR) T cells. Anti-B7x 

monoclonal antibodies reduce lung metastases of B7x-expressing colon cancer cells in a 

mouse experimental metastasis model [76]. Similarly, anti-B7x scFVs reduced the growth of 

ovarian tumor xenografts [77]. B7x-targeted CAR T-cell therapy proved to be effective in 

eliminating xenografts of B7x-expressing ovarian tumors, but also caused lethal, delayed 

toxicity 6 to 8 weeks postengraftment [78]. Thus, for the CAR T-cell strategy to be clinically 

feasible, a suicide-gene or comparable “off” switch would need to be incorporated to prevent 

long-term adverse effects. Taken together, B7x shows promise as an anticancer target, but 

further research is needed to refine the treatment strategies.

5.3. HHLA2

The newest member of the B7 family, HHLA2 (also known as B7-H5 or B7-H7) is unique 

among B7 family molecules in that it is found in humans but not in murine organisms. 

Within the B7 family, it shares the greatest amino acid similarity to B7-H3 and B7x [39]. In 

vitro experiments with human immune cells indicate that it inhibits T-cell function by 

reducing proliferation and cytokine release [39], although it was also reported that it can act 

as a costimulatory molecule to promote T-cell function [79]. Like B7-H3, HHLA2 may also 

have multiple receptors or functional isoforms that mediate distinct effects. Based on the 

consensus of in vitro and clinical data, HHLA2 has a largely inhibitory role on the immune 

system.

In humans, it can be found constitutively expressed on monocytes and can be induced on B 

cells [39]. It has limited expression in somatic tissues, but it can be found in the placenta, 

gut, kidney, and breast [80]. A receptor for HHLA2 is TMIGD2 (CD28H or IGPR-1), a 
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protein present on endothelial cells believed to have a role in angiogenesis [81]. TMIGD2 

mRNA is broadly transcribed in somatic tissues [81], and the protein can be found on resting 

T cells as well as monocytes, dendritic cells, and B cells but not on activated T cells [79], 

despite recombinant HHLA2 protein binding activated T cells in vitro. This suggests that 

there is a yet undiscovered receptor for HHLA2 that is responsible for its inhibitory effects.

HHLA2 is overexpressed in many cancers, including lung, breast, kidney, prostate, and 

bladder [80]. The prognostic significance of HHLA2 overexpression has been identified for 

triple-negative breast carcinoma, non–small cell lung carcinoma, and osteosarcoma. In 

triple-negative breast cancer, HHLA2 overexpression is associated with lymph node 

metastasis and higher stage [80]. Similarly, EGFR mutational status and high tumor-

infiltrating lymphocyte density are associated with HHLA2 expression in non–small cell 

lung carcinoma [82]. In osteosarcoma, HHLA2 expression is associated with advanced 

disease and almost universally found in metastatic specimens, and confers a poorer 

prognosis [83]. HHLA2 is also overexpressed in over half of high-grade urothelial tumors 

[84]. Taken together, these data suggest that HHLA2 may be an important therapeutic target 

for cancer immunotherapy, but further work is needed to elucidate its value as a diagnostic 

or prognostic tool, and to develop therapeutics that can target it.

6. Summary

The understanding of the regulation of T-cell activation and function along with the 

discovery of immune checkpoints with respect to the CD28 and B7 family has led to major 

advances scientifically and therapeutically in cancer. Clinical trials of agents targeting the 

PD-L1 checkpoint pathway have demonstrated durable clinical remissions in patients with 

otherwise untreatable advanced bladder cancer. Future studies should aim to further 

characterize the role of the newest B7 family molecules B7-H3, B7x, and HHLA2 in the 

mechanisms of bladder tumor-immune evasion pathways. This will surely lead to the 

development of new therapeutic strategies to enhance immune-mediated tumor destruction.
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Fig. 1. 
Antigen presenting cells (APC) present tumor cell antigens to T cells alongside 

costimulation via B7-1 and B7-2; however, when these ligands bind CTLA-4, this leads to T-

cell coinhibition. CTLA-4 can be blocked with anti-CTLA-4 antibodies, leading to enhanced 

antitumor immunity. (Color version of the figure available online.)
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Fig. 2. 
PD-L1 can be expressed on both APCs and tumor cells. PD-L1 binds to PD-1 on the T-cell 

surface, leading to coinhibition of T-cell activity. The PD-1/PD-L1 pathway can be blocked 

with anti-PD-1/PD-L1 antibodies, leading to immune-mediated tumor destruction. (Color 

version of the figure available online.)
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Fig. 3. 
Phylogenetic tree of the human B7 and CD28 families. Group I (green) includes B7-1/B7-2/

CD28/CTLA-4, and B7h/ICOS/CD28/CTLA-4. Group II (blue) consists of PD-L1/PD-L2/

PD-1, PD-L1/B7-1, and PD-L2/RGMb. Group III (red) contains B7-H3, B7x, and HHLA2/

TMIGD2. (Color version of the figure available online.)
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