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Abstract

In this review we explore the similarities between spinocerebellar ataxias and dystonias, and 

suggest potentially shared molecular pathways using a gene co-expression network approach. The 

spinocerebellar ataxias are a group of neurodegenerative disorders characterized by coordination 

problems caused mainly by atrophy of the cerebellum. The dystonias are another group of 

neurological movement disorders linked to basal ganglia dysfunction, although evidence is now 

pointing to cerebellar involvement as well. Our gene co-expression network approach identified 99 

shared genes and showed the involvement of two major pathways: synaptic transmission and 

neurodevelopment. These pathways overlapped in the two disorders, with a large role for 

GABAergic signaling in both. The overlapping pathways may provide novel targets for disease 

therapies. We need to prioritize variants obtained by whole exome sequencing in the genes 

associated with these pathways in the search for new pathogenic variants, which can than be used 

to help in the genetic counseling of patients and their families.
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1. Introduction

The cerebellar ataxias are a heterogeneous group of movement disorders characterized by 

degeneration of Purkinje cells (PCs) and atrophy of the cerebellum. Motor symptoms 

include loss of balance and coordination, unstable gait, dysarthria and abnormal eye 

movements. Cerebellar ataxias can be primary (genetic), congenital (brain malformations) or 

acquired (e.g. after stroke). The spinocerebellar ataxias (SCAs), the genetically dominant 

forms of cerebellar ataxia, have an estimated prevalence of 1–3 per 100,000 in Europe with 

onset usually occurring in adulthood (Durr, 2010). Dystonia is a neurological movement 
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disorder characterized by involuntary muscle contractions that cause abnormal twisting 

movements and postures. It has many clinical manifestations, ranging from isolated and 

focal to generalized dystonia, or dystonia in combination with other neurological symptoms 

such as myoclonus or ataxia. The list of diseases that can cause or present with dystonia is 

extensive (Fung et al., 2013).

Many patients show a combination of cerebellar ataxia and dystonia. Dystonia is frequently 

seen in SCA2 (14%), SCA3 (24%) and SCA17 (53%), and regularly seen in SCA types 1, 6, 

12, 14, 15/16 and 20, in ataxia telangiectasia, in Friedreich’s ataxia, and in ataxia with 

oculomotor apraxia (Neychev et al., 2011; Prudente et al., 2014; van Gaalen et al., 2011). 

Kuoppamaki and Van de Warrenburg reported eleven patients in total who showed early 

onset, primarily cervical, dystonia in combination with slowly progressive cerebellar ataxia. 

All had tested negative for the most common SCA types, although some patients had a 

positive family history, and all the patients showed cerebellar atrophy (Kuoppamaki et al., 

2003; van de Warrenburg et al., 2007).

Taken into account the clinical and etiological heterogeneity, the exact pathophysiological 

mechanisms of SCA and dystonia are not exactly clear. For SCA, several etiological roles 

have been identified that lead to neurotransmission deficits and result in PC death, including 

transcriptional dysregulation, autophagy, mitochondrial defects and alterations in calcium 

homeostasis (Matilla-Dueñas et al., 2014). In dystonia, the basal ganglia have classically 

been attributed a key role. However, recent theories support a pathophysiological model in 

which dystonia is seen as a network disorder involving several brain regions, including the 

sensorimotor cortex, brainstem, thalamus and cerebellum (Neychev et al., 2011; Prudente et 

al., 2014). Nevertheless, it remains uncertain whether dysfunction of a single brain area, 

combined dysfunction of multiple areas, or abnormal communication between several brain 

areas leads to dystonia. Dystonia is regarded as a disorder of motor control (Hallett, 2011) 

involving the cerebellum (Shadmehr and Krakauer, 2008) and the basal ganglia, which are 

interconnected (Fig. 1). The cerebellum also plays a role in cerebellar ataxias. In this review, 

we therefore focus on the potentially shared pathophysiology of the cerebellum in SCA and 

dystonia.

2. Evidence for overlap in pathology between ataxia and dystonia

2.1. Evidence from clinical studies

Evidence of cerebellar involvement in dystonia comes from several lines of research. By the 

beginning of the 20th century it had already been recognized that tumors in the posterior 

fossa could result in the abnormal postures of the head that we would now classify as 

dystonia (Batten, 1903; Extremera et al., 2008; Grey, 1916; Krauss et al., 1997). These 

clinical findings were replicated in a larger cohort of 25 cervical dystonia patients, in which 

almost half of the patients had a lesion in the brainstem or cerebellum, whereas lesions in the 

basal ganglia were seen in only a quarter of them (LeDoux and Brady, 2003). Batla et al. 

showed cerebellar abnormalities in 26 out of 188 (14%) cervical dystonia patients (Batla et 

al., 2015). For secondary blepharospasm, a focal form of dystonia, lesions were found 

mostly in the thalamus, with the remainder equally split between basal ganglia and 

cerebellum (Khooshnoodi et al., 2013). Other cases reported oromandibular dystonia and 
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blepharospasm after cerebellar infarction (Akin et al., 2014; O’Rourke et al., 2006; 

Rumbach et al., 1995), hemidystonia caused by vertebral artery occlusion (Waln and 

LeDoux, 2010), and focal limb dystonia after isolated cerebellar tuberculoma (Alarcón et al., 

2001).

Only small case series have been reported for neuropathological changes in dystonia, 

specifically in isolated cervical dystonia. A recent review showed that no pathological 

abnormalities were found in almost all reported cases that had a high probability of suffering 

from cervical dystonia (Prudente et al., 2013). These case studies have, however, several 

shortcomings. The major limitation is that most were focused on specific brain regions that 

did not include the cerebellum or the brainstem. The authors also found that the cerebellums 

of the cervical dystonia patients had significantly lower PC density compared to healthy 

controls (Prudente et al., 2013; Zoons and Tijssen, 2013). This implies a role for the 

cerebellum in dystonia, and it is further worth noting that loss of PCs is also associated with 

other neurodegenerative disorders, such as SCA.

2.2. Evidence from imaging studies

In addition to alterations in the sensorimotor cortices and the basal ganglia, structural 

abnormalities in the cerebellum or cerebellar projections have been found in several types of 

dystonia. Diffusion tensor imaging was used to assess microstructural white matter integrity 

in different non-hereditary isolated dystonias and demonstrated alterations varying from the 

white matter tracts underlying several cortical areas (Delmaire et al., 2009; Fabbrini et al., 

2008) to connections to the cerebellar lobules and peduncles (Niethammer et al., 2011; Prell 

et al., 2013; Ramdhani et al., 2014; Sako et al., 2015; Simonyan et al., 2008; Yang et al., 

2014). See reviews by Neychev et al. (2011) and Zoons et al. (2011) for a complete 

overview of the evidence for the role of the cerebellum based on imaging studies. More 

recent findings come from studies of several groups of hereditary dystonia. In DYT1, DYT6 

and DYT11 patients, microstructural abnormalities were found close to the superior 

cerebellar peduncle (Carbon et al., 2008, 2004; van der Meer et al., 2012). A reduction in 

structural connectivity of the cerebellothalamic pathway in DYT1 and DYT6 patients was 

also seen by tractography (Argyelan et al., 2009).

Metabolic imaging using [18F]-fluorodeoxyglucose-PET also shows involvement of the 

cerebellum in dystonia. The most reported pattern of altered metabolic activity involves the 

basal ganglia, pre-motor and motor areas, and the cerebellum, and is present in both 

hereditary as well as non-hereditary isolated dystonia (Eidelberg et al., 1998). More recently, 

Niethammer et al. described a motor-related activation pattern characterized by 

cerebellothalamo-cortical motor circuits, that is increased in both hereditary and non-

hereditary dystonia and even in non-manifesting carriers of DYT1 and DYT6 (Niethammer 

et al., 2011). Furthermore, the results of the eight voxel-based morphometry studies 

published to date have been inconsistent. An increase in gray matter volume of several parts 

of the cerebellum was seen in various types of isolated focal dystonia (Draganski et al., 

2003; Obermann et al., 2007; Prell et al., 2013; Ramdhani et al., 2014; Simonyan and 

Ludlow, 2012), while a decrease in gray matter volume was shown in other studies 

(Delmaire et al., 2007; Piccinin et al., 2015; Ramdhani et al., 2014).
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Lastly, cerebellar abnormalities have been frequently reported in a number of studies using 

fMRI. In addition to alterations in sensorimotor cortical areas and the basal ganglia, altered 

task-related activity (e.g. finger tapping, writing or speaking) was found in several cerebellar 

areas, including the cerebellar nuclei, posterior vermis, and paramedian cerebellar 

hemisphere. Again, however, the effects were inconsistent across and between different 

types of isolated dystonia (Beukers et al., 2010; Haslinger et al., 2005; Hu et al., 2006; 

Kadota et al., 2010; Obermann et al., 2010; Preibisch et al., 2001; Simonyan and Ludlow, 

2010; Wu et al., 2010).

2.3. Evidence from electrophysiological studies

In the past few years, electrophysiological studies on dystonia have identified three common 

themes that explain its pathophysiology: loss of inhibition, maladaptive plasticity and 

defective sensorimotor integration (Hallett, 2011). Classically in isolated dystonia, there is a 

reduction in cortical inhibition (i.e. an increase in motor-evoked potentials and a reduction of 

the short intracortical inhibition using transcranial magnetic stimulation). However, in some 

types of dystonia (e.g. myoclonus dystonia), a contrasting pattern is seen that resembles the 

excitability profile of cerebellar pathology (Meunier et al., 2008; Talelli et al., 2011). 

Maladaptive plasticity, a second common theme, has been demonstrated in several types of 

dystonia (Quartarone and Pisani, 2011). It is known, for instance, that beyond the basal 

ganglia, the cerebellum also plays a role in plasticity and motor learning (Thompson and 

Steinmetz, 2009). Eye blink classical conditioning (EBCC) is a paradigm for associative 

motor learning that has been shown to be highly dependent on cerebellar functioning 

without basal ganglia involvement (Gerwig et al., 2007; Sommer et al., 1999). Teo and co-

authors demonstrated significant abnormal EBCC in isolated dystonia patients (Teo et al., 

2009), which could be normalized by continuous theta burst stimulation; this suggests a 

secondary role for the cerebellum (Hoffland et al., 2013). A study on sensorimotor 

adaptation using a motor learning paradigm that relies on both the cerebellum and the 

sensorimotor network (split-belt paradigm) demonstrated abnormalities in patients with 

blepharospasm and writer’s cramp (Hoffland et al., 2014). Defective sensorimotor 

adaptation was also seen in writer’s cramp patients performing a visuomotor adaptation task, 

suggesting that the cerebellum had lost its ability to modulate sensorimotor plasticity of the 

motor cortex (Hubsch et al., 2013). In contrast to these findings, normal sensorimotor 

adaptation was seen in cervical dystonia patients (Hoffland et al., 2014; Sadnicka et al., 

2015). Experiments with a therapeutic focus also demonstrated cerebellar involvement in 

dystonia. In focal hand dystonia patients, cerebellar transcranial direct current stimulation 

improved handwriting and cyclic drawing kinematics, most likely by reducing cerebellar-

brain inhibition (Bradnam et al., 2015). In cervical dystonia patients, two weeks of 

cerebellar stimulation resulted in a small but significant, clinical improvement of 

approximately 15% measured by the Toronto Western Spasmodic Torticollis Rating Scale 

(Koch et al., 2014).

While these effects of non-invasive stimulation have been modest or transient so far, they 

show that manipulating cerebellar physiology can influence the severity of dystonia. More 

direct manipulations of the cerebellum, analogous to pallidotomy or deep brain stimulation 

of the basal ganglia, may be required to produce robust and lasting effects. Cerebellar 
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dentatectomy (Zervas, 1977) and direct electrical stimulation of the cerebellum (Davis, 

2000) were once routinely applied as treatments for dystonia, but these procedures were 

abandoned because the benefits were unpredictable. However, the indication for these 

procedures was “hypertonia” or “cerebral palsy”, which could reflect any combination of 

dystonia, spasticity and/or rigidity, and this grouping together of many disorders with 

potentially different causes may have been responsible for the unpredictable outcomes. Now 

that the various types of hypertonia are better distinguished, more recent studies have begun 

to discriminate between the beneficial effects of dentatectomy (Teixeira et al., 2015) and 

cerebellar stimulation (Sokal et al., 2015), although further studies are still needed.

2.4. Evidence from animal models

In line with the evidence from patients who show both dystonia and cerebellar ataxia, 

several animal models confirm the role of the cerebellum in the etiology of dystonia. Ataxia 

and dystonia were identified in a mouse model (leaner) with a spontaneous missense 

mutation in the splice donor consensus sequence, at the 5′ end of the affected intron in 

Cacna1a, which encodes the voltage-gated calcium channel Cav2.1 (Doyle et al., 1997; 

Fletcher et al., 1996; Meier and MacPike, 1971). This phenotype is associated with 

abnormal physiological activity and slow degeneration of cerebellar Purkinje neurons 

(Heckroth and Abbott, 1994; Herrup and Wilczynski, 1982; Lau et al., 2004; Meier and 

MacPike, 1971; Ovsepian and Friel, 2012, 2008; Walter et al., 2006). Mutations in 

CACNA1A have been linked to a range of movement disorders including SCA6 and benign 

paroxysmal torticollis of infancy (Giffin et al., 2002; Zhuchenko et al., 1997). Notably, in the 

leaner mouse model, the dystonia abated while the ataxia worsened as PCs were lost over 

time (Raike et al., 2015). This finding is evidence for the hypothesis that PC-dysfunction 

leads to dystonia, whereas PC-loss causes ataxia. Additionally, Cacna1a null mice also 

exhibited dystonia and highly selective cerebellar degeneration, further confirming a key 

role for PC functioning in a shared pathology of dystonia and ataxia (Fletcher et al., 1996). 

Additionally, a mouse model for rapid-onset dystonia-Parkinsonism (RDP), which mimicked 

the effect of mutations in the α3 isoform of the Na(+)/K(+)-ATPase (sodium pump), 

exhibited ataxia quickly followed by a dystonic phenotype upon blockage of α3-sodium 

pumps with ouabain (Calderon et al., 2011). Fremont et al. showed that restricted cerebellar 

perfusion with ouabain is sufficient to induce dystonia, and in vivo recordings from these 

dystonic mice showed persistent high-frequency-burst firing of PCs (Fremont et al., 2014). 

Moreover, selective knock down of the α3-sodium pump in the substantia nigra resulted in a 

Parkinsonism phenotype, while knockdown in other basal ganglia regions had no apparent 

effect. Cerebellum-specific knockdown of the α3-sodium pump recapitulated the phenotype 

of the RDP mouse, which was again associated with altered intrinsic pacemaking of PCs, but 

it had no effect on the firing rate of neurons from the deep cerebellar nuclei (DCN) (see Fig. 

1 for projections between brain regions) (Fremont et al., 2015). However, DCN neurons 

fired irregularly in dystonic animals compared to controls, a difference most likely caused 

by aberrant PC input to the DCN (Fremont et al., 2015). Furthermore, a disynaptic 

connection between the cerebellum and the basal ganglia via the thalamic intralaminar 

nuclei, was shown to underlie the dystonic phenotype of the RDP mouse, as lesions of the 

centrolateral nucleus alleviated the dystonia (Chen et al., 2014a).
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In another model, Atcayji–hes mice, which show very low levels of the caytaxin protein, 

action-induced stiff dystonic legs can be turned into broad-based ataxic gait by partial 

cerebellectomy or lesions of the DCN (Luna-Cancalon et al., 2014). In contrast, 

homozygous missense mutations in ATCAY, the human orthologue of Atcay, cause 

autosomal recessive Cayman ataxia but not dystonia (Bomar et al., 2003). The dystonic 

phenotype in mice is most likely the consequence of increased repetitive firing of DCN 

neurons caused by absence of inhibitory repetitive firing of PCs. Thus, it is the combination 

of aberrant firing patterns of PCs and DCN neurons that likely exaggerates the 

hyperexcitability of the DCN neurons above a threshold sufficient to directly activate muscle 

groups resulting in dystonia and ataxia.

Finally, knockout of fgf14, the human disease gene underlying SCA27, resulted in ataxia 

and a paroxysmal hyperkinetic movement disorder mimicking a form of dystonia (Wang et 

al., 2002). With the notion that fgf14 was most abundantly expressed in cerebellar granule 

cells of the cerebellum, PC dysfunction rather than a direct PC deficit seems to cause the 

ataxia and dystonia-like phenotype.

Overall, these studies show a clear role for the cerebellum in the etiology of dystonia. We 

therefore hypothesize that shared genetic pathways might underlie the pathogenesis of 

dystonia and SCA, and that the cerebellum plays a major role in both disorders. To further 

elucidate this hypothesis, we first explore the current knowledge about the genetic 

background of both groups of disorders.

3. Genetics of dystonia and SCA

The introduction of high-throughput next generation sequencing (NGS), which rapidly 

detects all protein-coding variants, has led to the discovery of multiple disease genes for 

SCA (Table 1) and dystonia (Table 2). Exome sequencing has become common practice for 

gene identification of Mendelian forms of dystonia and SCA. To date, 16 genes have been 

identified using exome sequencing, including the recently discovered mutations in COL6A3 
(Zech et al., 2015) and TRPC3 (Fogel et al., 2015). However, linkage analysis is still 

commonly used to pinpoint the region of interest and to filter exome sequencing results. 

Exome sequencing has its limitations, and an alternative method would be genome 

sequencing of the complete genome (coding and non-coding parts). However, genome 

sequencing remains relatively expensive and produces a very long list of putative candidates 

with undefined pathogenicity, many of which will be located in non-coding regions, making 

pathogenicity very difficult to establish. Furthermore, many diagnostic requests come from 

independently referred patients (singletons) who lack the additional affected family 

members necessary for co-segregation analysis. In reality, conventional genetic testing is 

usually only performed for the most common SCA and dystonia types, leaving a large group 

of patients genetically undiagnosed.

Despite the many disease genes that have been identified, our knowledge of the underlying 

biological pathways and pathogenesis of dystonia and ataxia is still limited. The main 

biological pathway linked to dystonia before the introduction of NGS was dopamine 

synthesis, which was implicated via mutations in GCH1 and TH, which encode GTP 
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cyclohydrolase 1 and tyrosine hydroxylase, respectively (Ichinose et al., 1994; Lüdecke et 

al., 1995). This finding was reinforced by the observation that these patients are levodopa 

(L-DOPA) responsive (Nygaard et al., 1988). However, the majority of dystonia patients do 

not respond to L-DOPA treatment, indicating that there are other biological pathways 

involved. At first, no main biological pathway was recognized for SCA, as the functions of 

ATXN1 and ATXN3 had not then been determined. Now, however, the main pathway 

involved has been identified as altered synaptic transmission due to mutations in KCNC3, 
KCND3, CACNA1A, ITPR1, TRPC3 and PDYN. These encode various ion channels, 

receptors and a neuropeptide precursor, affecting potassium (KCNC3 and KCND3), calcium 

(CACNA1A, ITPR1 and TRPC3) and opioid receptor signaling (PDYN). See reviews of the 

genetics of dystonia and SCA by (Balint and Bhatia, 2015; Matilla-Dueñas, 2012; Storey 

and Phil, 2014; Xiao et al., 2014) for further details.

4. Investigating the shared genetic background

For this review we brought together dystonia and SCA genes to identify the shared genetic 

components and expose possible common underlying biological pathways. Our focus lies on 

dominantly inherited SCAs and dystonias and we have therefore used 16 autosomal 

dominant dystonia genes and 28 SCA genes, including polyQ-SCA genes, as input seeds for 

further analysis (Tables 1 and 2). To gain insight into the common biological pathways we 

used GeneNetwork (http://129.125.135.180:8080/GeneNetwork/cytoscape.html), a co-

expression tool based on approximately 80,000 microarrays from Gene Expression Omnibus 

(Pers et al., 2015), and PANTHER software to analyze gene ontologies (Mi et al., 2013). 

Based on the assumption that co-expressed genes are more likely to be involved in similar 

biological pathways, this guilt-by-association approach enabled us to assess which genes 

generally tend to be activated simultaneously, and are thus under similar transcriptional 

regulation with known autosomal dominant dystonia and ataxia genes. By applying 

independent GeneNetwork analyses for both known autosomal dominant dystonia and ataxia 

genes (Supp. Figs. S1 and S2) and with manual assessment of the overlap in genes between 

these gene networks, we identified 99 genes shared by the two disorders (Fig. 2). No data 

was filtered out of the analysis. In contrast, when we compared either the dystonia gene 

network or the ataxia gene network with a “control” gene network based on 26 known 

autosomal dominant Charcot-Marie-Tooth (CMT) genes, we did not find any significant 

overlap (p = 0.2153 for CMT/SCA and p = 0.1222 for CMT/Dystonia), thereby validating 

our approach. Additionally, six of the 99 genes shared between dystonia and SCA were 

known dystonia or ataxia genes (ATP1A3, ANO3, GNAL, SPTBN2, PRKCG, and PDYN) 

and their presence further validates our hypothesis that shared co-expression networks likely 

point towards shared pathogenesis. Using PANTHER, we were able to categorize most of 

the 99 shared genes into two major neurological pathways: synaptic transmission and 

nervous system development (Fig. 2). We observed a 14-fold enrichment (p = 8.39E-31) for 

genes playing a role in synaptic transmission (39/99 genes; see Fig. 2) and a 3.8-fold 

enrichment (p = 8.96E-10) for genes involved in nervous system development (38/99 genes). 

However, not all genes fit into these two categories (see Fig. 2), indicating that there are 

other biological pathways/mechanisms playing a role in the molecular pathology of ataxia 
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and dystonia. In the next section, we focus on these two major neurological pathways and 

highlight their role in disease pathogenesis.

4.1. Genes involved in synaptic transmission

4.1.1. Ion channels—We observed that 40 of the shared genes identified by our network 

approach were involved in synaptic transmission, a finding that was validated by recent 

studies showing that both dystonia and ataxia are characterized by altered excitability of 

neurons (Coutelier et al., 2015a; Duarri et al., 2015b; Groen et al., 2014a,b). One-third of the 

shared genes identified as involved in synaptic transmission encode ion channel subunits that 

regulate neuronal potassium, calcium or chloride signaling. Notably, 13.1% of the shared 

genes encode ion channels compared to 2% of all genes in the complete exome (p < 0.0001), 

further emphasizing the importance of ion channels in the etiology ataxia and dystonia. In 

contrast, no ion channels were present among the genes that were shared between CMT and 

SCA and between CMT and dystonia (data not shown).

The role of ion channels in the pathophysiology of both dystonia and SCA is underscored by 

the identification of human mutations leading to these diseases in CACNA1B (DYT23; 

voltage-gated calcium channel Cav2.2), KCNC3 (SCA13; voltage-gated potassium channel 

Kv3.3), KCND3 (SCA19; voltage-gated potassium channel Kv4.3), CACNA1A (SCA6; 

voltage-gated calcium channel Cav2.1), CACNA1G (SCA42; voltage-gated calcium channel 

Cav3.1), ITPR1 (SCA15/16; Type 1 Inositol 1,4,5-Trisphosphate Receptor) and TRPC3 
(SCA41; Transient Receptor Potential Cation Channel, Subfamily C, Member 3) (Coutelier 

et al., 2015b; Duarri et al., 2012; Fogel et al., 2015; Groen et al., 2014a,b; Huang et al., 

2012; Lee et al., 2012; Waters et al., 2006; Zhuchenko et al., 1997). Additionally, various ion 

channel mutations in mouse models lead to dystonia and/or ataxia including cacna1a 
knockout and cacna1a mutants, such as leaner mouse with generalized dystonia/ataxia, 

tottering mouse displaying ataxia plus paroxysmal generalized dystonia and rocker mouse 

exhibiting ataxia with paroxysmal focal dystonia. In contrast, lethargic cacna1b mutant 

mouse models appear to have ataxia with paroxysmal exertional dystonia (Meisler et al., 

1997; Shirley et al., 2008). A putative role for calcium channels in human dystonia was 

proposed based on the fact that mice treated with an L-type calcium channel agonist 

developed a phenotype resembling generalized dystonia (Jinnah et al., 2000). Furthermore, 

in addition to ataxia, posture dystonia was observed in the opisthotonos mouse, which 

carries a spontaneous mutation in itpr1 (ITPR1 is the human SCA15/16 gene) that codes for 

the type 1 inositol 1,4,5-trisphosphate receptor, which is involved in calcium release from 

the endoplasmatic reticulum (Street et al., 1997). While many ion channels are associated 

with various forms of epilepsy, this topic lies outside the scope of this review and will not be 

described in further detail here. In the following paragraphs, we discuss the evidence for a 

role of the shared ion channel genes in the pathogenesis of dystonia and ataxia based on both 

human and mouse data and according to the pathway in which these genes function.

The shared genes shown to be involved in potassium signaling are KCHIP2 (Kv channel 

interacting protein 2), KCNAB1 (regulatory beta subunit Kvβ1), and KCNJ4 and KCNJ6 
(inwardly rectifying potassium channels Kir2.3 and Kir3.2/GIRK2, respectively). KCHIP2 
has been implicated in the pathogenesis of SCA19 (Duarri et al., 2015a) and mutations in 
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KCNA1 encoding Kv1.1, the alpha subunit of Kvβ1, cause episodic ataxia (EA1) in humans 

(Browne et al., 1994). In mouse striatum, Kir2.3 is specifically located in matrix 

compartments, which may primarily influence motor circuits within basal ganglia, 

suggesting it has a role in dystonia (Prüss et al., 2003). A homozygous point mutation in the 

pore region of Girk2 (G156S) causes the weaver phenotype in mice, which is characterized 

by cerebellar granule cell death, dopaminergic neuronal cell death in substantia nigra, severe 

ataxia and spontaneous seizures. In contrast, heterozygous mutant mice showed a thinner 

granule cell layer and a disorganized PC layer, but no motor phenotype (Signorini et al., 

1997). Furthermore, GIRK2 modulates the degree of opioid inhibition upon opioid receptor 

activation (Kotecki et al., 2015), a pathway known to be affected in SCA23 (Bakalkin et al., 

2010). GIRK2 has also been shown to be a key determinant of the sensitivity of 

dopaminergic neurons of the ventral tegmental area to the motor-stimulatory effects of 

opioids (Kotecki et al., 2015). However, its effect in dopaminergic neurons of the substantia 

nigra is not yet known.

There is increasing evidence that GABAergic signaling is altered in various movement 

disorders, including dystonia, ataxia, epilepsy and tremor (Boecker, 2013). The shared 

GABA type A receptor subunits GABRA1, GABRA4, GABRA5 and GABRD identified in 

our network are ligand-gated chloride channels responsible for the inhibitory effects 

mediated by the neurotransmitter GABA (γ-aminobutyric acid) in the brain. Multiple 

cerebellar neurons use GABA as their output neurotransmitter, including GABAergic 

inhibitory projection neurons and small GABAergic interneurons in the cerebellar nuclei and 

Purkinje, Golgi, Lugaro, stellate, basket and candelabrum cells in the cerebellar cortex (Hori 

and Hoshino, 2012). Additionally, GABAergic projections are present in basal ganglia 

arising from striatum, globus pallidus and substantia nigra reticula (Fig. 1) (Segawa and 

Nomura, 2014). Loss of inhibition is thought to be a crucial causal component in the 

pathogenesis of dystonia (Quartarone and Hallett, 2013), and alterations in GABAA 

receptors may affect inhibition of action potential firing, thus contributing to disease 

(Hirose, 2014). Differential expression of GABAA receptors was observed in a SCA6 mouse 

model caused by mutations in Cacna1a (Kaja et al., 2015). In contrast, mice with PC-

specific knockdown of Vgat, which encodes a vesicular GABA transporter, showed an ataxic 

phenotype that did not coincide with visible brain malformations at 40 weeks of age. This 

suggests that GABA release is important for PC functioning, and alterations in PC-specific 

GABA release cause ataxia (Kayakabe et al., 2014).

Shared genes CACNG2 and CACNG3, which encode voltage-dependent calcium channels 

γ-subunits 2 and 3, play a role in regulation of glutamate signaling by their function as 

transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs). The AMPAR-

TARP complexes are involved in long-term potentiation and long-term depression, and 

therefore play a role in memory and motor learning, which has been implicated in various 

mouse ataxia models (Armbrust et al., 2014; Nomura et al., 2012; Wozniak et al., 2007). 

Stargazer mice show distinctive head-tossing and ataxic gait caused by mutant CACNG2 
(TARP-γ2, stargazin) (Letts et al., 1998). In zebrafish, Cacng2a was shown to be required 

for trafficking of the AMPAR to the membrane that mediates normal AMPAR functioning 

(Roy et al., 2015). The role of glutamate in the pathogenesis of both dystonia and ataxia is 

further highlighted by a shared gene, GRIN1, which encodes the N-methyl-D-aspartate 
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(NMDA)-type glutamate receptor subunit, GluN1. GLuN1 can interact with the dopamine 

receptor D1R (de Bartolomeis et al., 2014), and mutations in this gene are likely to affect 

both NMDA and dopamine signaling, causing non-syndromic intellectual disability and 

epileptic encephalopathy, encephalopathy with infantile-onset epilepsy, and hyperkinetic and 

stereotyped movement disorders (Hamdan et al., 2011; Ohba et al., 2015). Glutamate 

excitotoxicity has been postulated as a possible disease mechanism for various 

neurodegenerative disorders, including SCA (Miladinovic et al., 2015). The GRIN1 

interaction with DR1 suggests that putative mutations in GRIN1 or alterations in GRIN1 
expression may lead to aberrant dopamine signaling and subsequently to dystonia 

(Charlesworth et al., 2013).

Sodium signaling, amongst others mediated by the shared gene SCN2B that encodes the 

auxiliary β2-subunit of voltage-gated sodium channels, has only recently been implicated in 

dystonia. A spontaneous mouse mutant carrying a mutation in scna8 developed a chronic 

movement disorder with early onset tremor and adult onset dystonia (Jones et al., 2016). 

Given that Nav1.6 (encoded by scna8) is important for the initiation of action potentials, loss 

of Nav1.6 function might affect the repetitive firing of PCs. Thus, genes encoding 

components of sodium signaling could be considered as candidate genes for human 

movement disorders, including dystonia.

4.1.2. Regulation of neurotransmitters—Our search also identified a group of shared 

genes involved in the regulation of neurotransmitters, and a clear role for neurotransmitter 

regulation can be seen in the pathogenesis of dopamine-responsive dystonias. Most of the 

shared genes are associated with neurotransmitter-containing vesicles and thus play a role in 

the release of neurotransmitters and control synaptic transmission. Interestingly, the majority 

of these genes are involved in glutamatergic and GABAergic signaling. Shared genes SYT5 
(synaptotagmin V) and CADPS2 (Ca2+-dependent activator protein for secretion) are both 

linked to dense-core vesicles. Syt5 is involved in Ca2+-dependent exocytosis in mouse brain 

(Saegusa et al., 2002), and cadps2 is involved in secretion of vesicles containing brain-

derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) that play a pivotal role in 

neuronal differentiation and survival (Sadakata et al., 2007). BDNF goes on to induce 

presynaptic glutamate release, increase NMDA-receptor density and increase the dendritic 

complexity of the GABAergic neurons (Caldeira et al., 2007; Vicario-Abejon et al., 1998). 

Furthermore, cadps2 knockout mice showed deficits in cerebellar development accompanied 

by aberrant motor coordination and eye movement (Sadakata et al., 2007). Solute carrier 

family 17, member 7, encoded by shared gene SLC17A7 (VGLUT1), is a vesicular 

glutamate transporter necessary for filling glutamate vesicles that thereby influences 

synaptic transmission efficiency (Bellocchio, 2000). VGLUT1-deficient mice appeared 

normal until postnatal week two, after which they started to lag in development and differ in 

movement and behavior, with death occurring between postnatal week P18 and P21 (Wojcik 

et al., 2004).

Among the shared genes identified in our search, there are also components of the SNARE-

complex involved in exocytosis of neurotransmitter vesicles. We identified STX1B 
(syntaxin-1B) and vesicle-associated membrane proteins (VAMP1/synaptobrevin1 and 

VAMP2/synaptobrevin2) in our network. Decreased spontaneous GABAergic transmission 
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frequencies were detected in STX1B knockout cerebellar cultures (Wu et al., 2015), whereas 

mutations in VAMP1 have been identified as causing dominant hereditary spastic ataxia 

(SPAX1) (Bourassa et al., 2012). Moreover, VAMP1-deficient mice (lethal-wasting (lew)) 

showed premature death at P15 and were found to have neurological deficits, including 

profound motor impairments that were most likely caused by reduced functioning of 

neuromuscular junctions (Liu et al., 2011; Nystuen et al., 2007). VAMP2-deficient mice 

demonstrated a critical role for VAMP2 in Ca2+-dependent vesicle exocytosis (Schoch, 

2001) and in postsynaptic insertion of GluA1-containing AMPA receptors into the synaptic 

plasma membrane (Hussain and Davanger, 2015). However, an association with a human 

disorder has yet to be found. Another shared gene is SYN1 (synapsin I), which encodes a 

synaptic-vesicle-associated phosphoprotein involved in organization of the vesicles at the 

presynaptic terminal and in axonal development (Chin et al., 1995; Li et al., 1995).

The only gene in this shared group not specifically linked to vesicles is histamine receptor 

H3 (H3R), which is selectively expressed in brain (Lovenberg et al., 1999) and present on 

presynaptic terminals, where it acts as an autoreceptor inhibiting histamine production and 

release. H3R is also present on postsynaptic nerve terminals where it functions as a 

heteroreceptor that inhibits the release of other neurotransmitters such as norepinephrine, 

serotonin, GABA, acetylcholine, glutamate and dopamine (Schneider et al., 2014). While no 

mutations in H3R have been reported, hrh3-knockout mice showed reduced locomotor 

activity, indicating that H3R is a plausible candidate gene for movement disorders 

(Takahashi et al., 2002; Toyota et al., 2002).

4.1.3. Synapse organization—The third group of shared genes that emerged from our 

network analysis plays a role in the organization of synapses and encodes scaffolding 

proteins necessary for proper synapse formation and vesicular structures. On the 

postsynaptic site, we identified DLG4 (Disc large 4, or postsynaptic density protein 95; 

PSD95) and CLSTN3 (calsyntenin-3/alcadein-β) as shared genes between ataxia and 

dystonia. DLG4 is involved in clustering of NMDA-receptors, potassium channels and 

interacting proteins (Kim et al., 1996), some of which some, e.g. KCNC3, KCND3, and 

KCTD17, are already linked to ataxia or dystonia. Additionally, a DLG4 knockout mouse 

model showed enhanced long-term potentiation accompanied by impairments in spatial 

learning, but no motor phenotype (Migaud et al., 1998). CLSTN3 is a cadherin protein that 

forms a functional complex with α-neurexin and is mainly involved in regulating inhibitory 

synaptic functions including GABAergic signaling (Lu et al., 2014; Pettem et al., 2013; Um 

et al., 2014). We also identified dopamine receptor D1 (DRD1) in the network, which is a G-

protein-coupled receptor for the neurotransmitter dopamine that also regulates NMDA 

receptor functions (Lee et al., 2002). Variants in D1R have been associated to tardive-like 

dystonia(Groen et al., 2014a,b) and D1R-knockout mice showed reduced dynorphin 

expression in the striatum and increased locomotor activity (Xu et al., 1994). However, loss 

of dopaminergic neurons does not necessarily lead to Parkinsonism in SCA2 and SCA3 

patients (Schöls et al., 2015). Moreover, SEZ6 (seizure-related 6 homolog) and SNCB (β-

synuclein) were identified in our search, and the exact functions of these genes are still 

unclear. However, sez-6 knockout mice do display altered dendritic branching, a smaller 

number of excitatory synapses and defects in excitatory synaptic transmission leading to 
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reduced motor coordination (Gunnersen et al., 2007; Miyazaki et al., 2006). Bassoon, a 

presynaptic scaffold protein encoded by BSN, is primarily involved in ribbon synapses in 

retina and cochlear hair cells, and thus shows no direct link to movement disorders (Frank et 

al., 2010).

4.1.4. Other shared genes involved in synaptic transmission—We identified 13 

other shared genes involved in synaptic transmission that did not match the GO-terms ion 
channel, neurotransmitter regulation or synapse organization. A number of these genes are 

involved in intracellular signal transduction. PRKCG, for example, encodes the neuron-

specific protein kinase C gamma that mediates neuronal signal transduction. PRKCG is the 

causative gene for SCA14, in which dystonic phenotypes, including writer’s cramp, 

myoclonus and focal dystonia are regularly reported (Ganos et al., 2014; Miura et al., 2009; 

van de Warrenburg et al., 2003; Visser et al., 2007). We also identified MAPK8IP2 
(mitogen-activated protein kinase 8-interacting protein 2/JNK-interacting protein 2 (JIP2)), a 

synaptic scaffolding protein involved in the JNK-signaling cascade (Yasuda et al., 1999). 

Jip2 knockout mice showed sensorimotor deficits and impaired social interaction due to 

changes in the morphology of dendritic arbors of PCs associating with aberrant NMDA-and 

AMPA-receptor-mediated glutamatergic signaling (Giza et al., 2010). Notably, Jip1/Jip2 

double knockouts were severely ataxic (Kennedy et al., 2007), demonstrating a role for JIP2 

in the underlying pathology of cerebellar ataxias.

Two other shared genes are directly implicated in dystonia: ADCY5 encoding adenylyl 

cyclase 5 (Ludwig and Seuwen, 2002) and GNAL encoding stimulatory G-protein α-subunit 

Gαorf (Hervé, 2011). Mutations in ADCY5 have been found to cause familial dyskinesia 

with facial myokymia (FDFM) (Chen et al., 2012, 2014b) and (benign) chorea with dystonia 

(Carapito et al., 2015; Mencacci et al., 2015a,b), while mutations in GNAL underlie adult-

onset cervical and segmental dystonia (DYT25) (Fuchs et al., 2013). Additionally, RASD2 
(RASD family, member 2/tumor endothelial marker 2 (TEM2)/Ras homolog enriched in 

striatum (RHES)) encodes a small GTPase that plays a role in dopaminergic signaling 

(Harrison and He, 2011; Quintero et al., 2008) and enhances L-dopa induced dyskinesia via 

activation of mTOR (Subramaniam et al., 2011), giving it a putative role in dystonia.

Three other shared genes, SLC12A5, HTR2C and KIF5A, are involved in regulation of 

receptor functioning, thereby mediating post-synaptic neurotransmission. SLC12A5 (solute 

carrier family 12, member 5/potassium-chloride cotransporter 2 (KCC2)) encodes a neuron-

specific ion transporter that is the main extruder of the intracellular chloride used to create 

the chloride gradient necessary for GABA- and glycine-receptor functioning, and which 

ultimately promotes post-synaptic inhibition (Hübner et al., 2001; Rivera et al., 1999). 

KIF5A encodes a neuron-specific kinesin heavy chain protein involved in microtubule-based 

cargo transport of, among others, the GABAA-receptor (Campbell et al., 2014; Nakajima et 

al., 2012).

For the remainder of the genes in this group, brain functions are not yet completely 

established, but some, including GAD2, PDYN, MINK1 and CPNE6, seem to link to GABA 

neurotransmitter synthesis and synaptic plasticity (Almuedo-Castillo et al., 2011; Cerpa et 

al., 2009; Nakayama et al., 1998; Pan, 2012). Of this list, only PDYN, the precursor for the 
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neuropeptides α-neoendorphin, dynorphin A (Dyn A) and dynorphin B (Dyn B), is directly 

linked to ataxia. Notably, dynorphins are involved in pain sensing, addiction and depression 

via opioid signaling (Hauser et al., 2005), while mutations in PDYN have been shown to 

cause SCA23 and suggestively affect glutamate signaling (Bakalkin et al., 2010). Lastly, 

CDH8 mediates Ca2+-dependent cell–cell adhesion involved in presynaptic organization and 

synaptic remodeling (Togashi et al., 2002). Cdh8 knockdown in rat primary neurons led to 

aberrant dendritic arborization and decreased self-avoidance of dendritic branches (Friedman 

et al., 2015).

4.2. Genes involved in neurodevelopment

Beyond the large group of genes involved in synaptic transmission, we identified many 

shared genes involved in development of the nervous system. Indeed, many disorders that 

combine dystonia with other neurological features are developmental (Fung et al., 2013). 

Neurodevelopmental abnormalities have already been linked to DYT1 dystonia and include 

alterations in the cerebello-thalamo-cortical pathways (Carbon and Eidelberg, 2009). 

Recently, cerebellar neurogenesis was found to be compromised in mouse models of DYT1 

dystonia (Vanni et al., 2015), demonstrating that loss of Tor1A induces important 

developmental alterations in the cerebellum, and thereby contributing to the development of 

dystonia in DYT1 mutation carriers. To date, no clear evidence has been reported for 

alterations in brain development in the pathology of dominant hereditary ataxias. However, 

developmental delay has been reported for SCA27, SCA2, SCA5 and SCA13 (Di Fabio et 

al., 2012; Jacob et al., 2013; Planes et al., 2015; Waters et al., 2006). In SCA13, differences 

in axonal pathfinding were observed in zebrafish motor neurons expressing mutant F448L-

KCNC3 (Issa et al., 2012), which is also indicative of aberrant neurogenesis. More evidence 

that abnormalities in cerebellum development and deficits in axon elongation may give rise 

to ataxia came from a mice lacking neuron navigator 2 (Nav2) (McNeill et al., 2011). These 

mice exhibited a small cerebellum at E17.5 and ataxia at age 5 months due to aberrant 

migration of post-mitotic granule cells. Given that all these examples showed a young age of 

onset or juvenile ataxia, in contrast to the late age of onset found in the majority of SCAs, it 

seems difficult to recocel them with playing a role in neurodevelopment in disorders with a 

late age of onset. However, some preliminary evidence has been reported for a role of 

neurodevelopment in Alzheimer’s disease and Parkinson’s disease (Doehner and Knuesel, 

2010; Grilli et al., 2003; Wilkaniec et al., 2016). Therefore, we will now address the 

overlapping ataxia-dystonia network genes in the context of their putative role in the central 

nervous system (CNS) development, including neurogenesis and brain/cerebellum 

development.

4.2.1. Neurogenesis—The shared genes involved in this group are implicated in axon 

path finding, regulation of dendrite/axon extension, or dendrite morphogenesis. Many of 

these genes (GABRA5, GRIN1, SEZ6, ATP2B2, BCL11B, CDK5R2, CEND1 and 

SPTBN2) were also listed in the group for brain/cerebellum development and these will be 

discussed in the next section. Additionally, some genes that are involved in neurogenesis 

and/or neurodevelopment (GABRA5, GRIN1, SEZ6, KCNIP2, DLG4 (PSD-95), CPNE6, 

KIF5A, MAPK8IP2 and MINK1) are also involved in synaptic transmission and have 

already been discussed in the Synaptic transmission section.
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Of the genes involved in neurogenesis, Copine1, which is encoded by CPNE9, regulates 

neurite outgrowth and differentiation of hippocampal progenitor cells (Park et al., 2012). In 

contrast, LCAM1 and NCDN, which encode cell adhesion molecule L1 and neurochondrin, 

respectively, modify neurite growth either in cerebellar neurons(Huang et al., 2013) or PC12 

cells (Wang et al., 2013). The paired-like homeobox domain protein Phox2b is a key 

determinant of neuronal identity, as it is required for the initial phase in neuronal 

differentiation, giving rise to noradrenergic neurons that may be involved in the pathology of 

dystonia (Adams and Foote, 1988; Brunet and Pattyn, 2002). For PSD, RSG14 and SCRT1, 
not much is known about their role in neurogenesis. However, the relation of PSD to DLG4 
(see section on Synaptic transmission), and the fact that RSG14 and SCRT1 are highly 

expressed during early postnatal development (Evans et al., 2014; Marín and Nieto, 2006), 

suggest a role for these genes in brain development.

4.2.2. Brain/cerebellum development—Data highlighting GABAergic signaling as a 

shared pathway in movement disorders including dystonia, ataxia, epilepsy and tremor, was 

mentioned in the Synaptic transmission section, but GABAergic signaling also plays a role 

in brain development. Cerebellar maturation was reported to depend on modulation of the 

pool of GABAergic interneurons via exogenous Sonic hedgehog (De Luca et al., 2015). For 

example, direct neuronal migrations of cortical interneurons expressing GABAB receptors 

are regulated by Gαi-Go-coupled receptor signaling in which the G-protein-regulator of 

neurite outgrowth 1, encoded by shared gene GRIN1, seemingly participates (López-Bendito 

et al., 2003; Masuho et al., 2008). In situ data showed that GRIN1 was expressed on a 

migrating subpopulation of neurons from the caudal rhombic lip to the pre-cerebellar nuclei 

of the brainstem, and moderate GRIN1 expression was seen in the cerebellum, suggesting it 

has a role in cerebellum development (Masuho et al., 2008; Wang et al., 2005). NEUROD6, 

a member of the basic helix-loop-helix transcription factors is involved in neuronal 

differentiation of GABAergic and glycinergic interneurons (Kay et al., 2011).

The role of the plasma membrane Ca2+-Pump 2 encoded by shared gene ATP2B2 in 

cerebellar development was established by studies of cerebellar organotypic slice cultures. 

Here, inhibition of the Ca2+-pump resulted in a reduction of the PC dendritic tree, 

confirming the importance of calcium signaling in controlling dendritic growth (Sherkhane 

and Kapfhammer, 2013). Mutations in ATP2B3, which is also expressed in the cerebellum, 

led to X-linked congenital cerebellar ataxia (Zanni et al., 2012), further emphasizing the 

importance of these pumps in the pathology of cerebellar ataxias. Additionally, cell-type-

restricted and time-dependent expression of the neuron-specific calcium-binding protein 

hippocalcin, which is encoded by shared gene HPCA and underlies DYT2, was observed in 

the developing brain; this suggests that hippocalcin plays a role in neuronal differentiation in 

the early stages of development (Saitoh et al., 1994). Furthermore, mutations in overlapping 

gene SPTBN2 cause SCA5 (Ikeda et al., 2006), and mutant B-III-spectrin led to 

mislocalization and dysfunction of mGluR1α at dendritic spines (Armbrust et al., 2014). 

These findings further connect glutamatergic dysfunction and aberrant calcium homeostasis 

to brain/cerebellar development. Potassium signaling may also play a role in the proper 

development of the CNS, as differential regulation of distinct potassium channel beta 

Nibbeling et al. Page 14

Neurosci Biobehav Rev. Author manuscript; available in PMC 2018 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subunits, including Kvbeta 1 (KCNAB1), was observed to mediate neuronal survival and 

maturation (Downen et al., 1999).

Neuronal-specific gene Cell Cycle Exit And Neuronal Differentiation 1 (CEND1) is required 

for normal cerebellar development. Mice lacking Cend1 showed impaired cerebellar 

development and motor dysfunction due to an increased proliferation of granule cell 

precursors, delayed granule cell migration, and alterations in PC differentiation (Sergaki et 

al., 2010). In contrast, CDK5R2, which encodes the neuronal-specific activator of CDK5 

kinase, indirectly regulates dendrite development and axon guidance by regulating gene 

expression and phosphorylation of key targets such as Connexin 43 and PIPKI gamma 90 

during brain development (Liang et al., 2015; Qi et al., 2015; Tojima et al., 2014). However, 

no direct role for Tau Tubulin Kinase 1, TTBK1, in brain development has yet been reported.

4.2.3. Other genes not tagged as involved in neurogenesis or brain cerebellum 
development—In this last group, ten genes were identified that did not fit the GO terms 

neurogenesis and/or brain-cerebellum development. We have already discussed GABRA4, 

SCN2B, BSN and PRKCG, which have been previously linked to synaptic transmission, but 

apparently they also play a role in CNS development. Of the remaining genes, not much is 

known about their respective functions or role in brain development. However, calcium 

signaling again plays a role, as CLSTN3, HPCAL4, PCP4 and Ly6h are all seemingly 

involved in mediating intracellular calcium homeostasis (Mouton-Liger et al., 2014; Pettem 

et al., 2013; Puddifoot et al., 2015).

Shared gene ACTL6B is part of a neuronal-specific chromatin-remodeling complex that 

mediates long-term memory formation via the coordinated regulation of gene expression 

(Vogel-Ciernia and Wood, 2014). This complex also contains the rBAF factor that regulates 

the expression of genes involved in the dendritic development required for synaptic plasticity 

and memory. Deficits in plasticity were also already reported in DYT1 dystonia mice and 

various ataxia mouse models (Huynh et al., 2009; Mark et al., 2015; Martella et al., 2014; 

Wozniak et al., 2007).

Shared gene RGS9, which encodes a regulator of G-protein signaling, was found to have a 

restricted expression in the basal ganglia and suggestively plays a role in local signaling 

pathways that include mu-opioid receptor signaling (Psifogeorgou et al., 2007; Thomas et 

al., 1998). Aberrant opioid signaling was reported in a hamster model of paroxysmal 

dystonia (Nobrega et al., 2004), and mutations in the precursor protein of the opioid 

dynorphin peptides, prodynorphin, cause SCA23 (Bakalkin et al., 2010). However, no clear 

evidence has been published with regard to its postulated role in CNS development. Further 

studies are required to establish a role for these shared genes in neurodevelopment.

5. Discussion

By combining gene co-expression networks for dystonia and SCA, we have identified a set 

of 99 shared genes that may play a role in the pathogenesis of both disorders. These results 

further validate the clinical observations of comorbidity of ataxia and dystonia and show a 

role for the cerebellum in dystonia. Additionally, a “control” network based on known CMT 

Nibbeling et al. Page 15

Neurosci Biobehav Rev. Author manuscript; available in PMC 2018 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genes showed no significant overlap with dystonia or SCA gene network, confirming that 

dystonia and SCA are biologically closer related. The key shared molecular pathways 

between ataxia and dystonia were synaptic transmission and neurodevelopment, with the 

involvement of synaptic transmission in both disorders well recognized, as mutations in 

many ion channels have already been shown to cause these diseases (Charlesworth et al., 

2012; Coutelier et al., 2015a; Duarri et al., 2012; Groen et al., 2014a,b; Lee et al., 2012; 

Waters et al., 2006; Zhuchenko et al., 1997). On the other hand, molecular pathways related 

to neurodevelopment had not been as clearly linked to ataxia and dystonia, although a recent 

review mentioned neurodevelopment as a common theme in dystonia (Domingo et al., 

2016), and developmental defects have been described in DYT1 (Carbon and Eidelberg, 

2009) and developmental delay is known in SCA27, SCA13, SCA5 and SCA2 (Di Fabio et 

al., 2012; Jacob et al., 2013; Planes et al., 2015; Waters et al., 2006). Moreover, genes 

involved in neurodevelopment may not exert their function solely during development of the 

CNS because they also appear to play a role in Alzheimer’s disease and Parkinson’s disease 

(Doehner and Knuesel, 2010; Grilli et al., 2003; Wilkaniec et al., 2016), thus providing a 

link between development and degeneration. Identifying common pathways may aid the 

development of therapies because restoring a pathway will help patients with different 

genetic backgrounds.

Within both major pathways, the importance of glutamatergic-, and especially GABAergic 

signaling was strikingly demonstrated by the identification of four GABA receptor genes in 

the overlapping gene set. While mutations in these genes are not currently known to cause 

SCA or dystonia, they have been linked to epilepsy (Cossette et al., 2012; Hirose, 2014; 

Kim, 2014), making them potential candidate genes for movement disorders. Furthermore, 

we also identified a number of genes that indirectly affect GABAergic signaling, including 

CADPS2, STX1B, H3R, SLC12A5, KIF5A, GAD2 and GRIN1. We therefore suggest 

prioritizing genes involved in GABAergic signaling in genetic studies of SCA and dystonia 

patients, as these genes are likely candidate genes in genetically unexplained cases. This is 

particularly important because GABAergic signaling can be targeted by drugs; this is a 

treatment approach used in multiple neuropsychiatric disorders (Goddard, 2016) that has 

also been proven to relieve rotenone-induced Parkinsonism-like symptoms (Sharma et al., 

2016).

There were 37 genes that did not fit within the GO-terms synaptic transmission or nervous 
system development. This does not, however, mean that these genes are not involved in these 

pathways, but rather that their functions may be unknown or that they might have more than 

one function, in both cases this would contribute to their lack of representation in the GO 

annotations. Alternately, the existence of this group of genes may indicate the involvement 

of other molecular pathways, in addition to the two major ones we have described here. 

Other pathways have certainly been described as triggering SCA and/or dystonia pathology 

and include transcriptional dysregulation, mitochondrial defects, autophagy, dopaminergic 

signaling, ER stress and alterations in calcium homeostasis (Bragg et al., 2011; Matilla-

Dueñas et al., 2014).

Further unraveling of the common pathways in SCA and dystonia will improve our 

understanding of disease pathologies and may open the way to novel therapies by 
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identifying new drug targets. Furthermore, our sophisticated network approach strongly 

suggests that the molecular pathways of ataxia and dystonia are indeed closely related. Both 

should be tested for simultaneously in genetic diagnostics work on ataxia and dystonia 

patients. As up to 100 genes need to be screened, this will be easier to achieve with the 

implementation of disease-focused gene panels or dedicated exome strategies. Genes that 

have been identified in the gene set that overlaps between ataxia and dystonia should be 

prioritized when searching for disease gene mutations in patients wthout a genetic diagnosis, 

because variants in these genes are more likely to be involved in their disease pathology. 

Overall, this gene co-expression network provides useful insights into the possible shared 

molecular mechanisms of ataxia and dystonia and it will lead to a better understanding of 

their pathogenesis.
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DCN deep cerebellar nuclei

EBCC eye blink classical conditioning

GABA gamma aminobutyric acid
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NMDA N-methyl-D-aspartate

PC Purkinje Cell
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Fig. 1. 
Schematic representation of connections between basal ganglia and cerebellum. Blue arrows 

represent excitatory glutamatergic projections. Green arrows represent inhibitory 

GABAergic projections. Yellow arrow represents dopaminergic projections. CB = 

cerebellum; GC = granule cells; PC = Purkinje cells; DCN = deep cerebellar nuclei; STN = 

subthalamic nucleus; SNr = substantia nigra pars reticulata; SNc = substantia nigra pars 

compacta; GPe = globus pallidus externus; GPi = globus pallidus internus. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 2. 
Shared genes between SCA and dystonia. We found 99 genes are shared between the SCA 

and dystonia gene co-expression networks. Two main pathways were identified that involved 

synaptic transmission (39 genes) and nervous system development (38 genes).
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