Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1998 Feb;89(2):228–234. doi: 10.1111/j.1349-7006.1998.tb00553.x

1‐Methyl‐3‐propyl‐7‐butylxanthine, a Novel Biochemical Modulator, Enhances Therapeutic Efficacy of Adriamycin

Yasuyuki Sadzuka 1,, Ayano Iwazaki 1, Tomomi Sugiyama 1, Takayuki Sawanishi 2, Ken‐ichi Miyamoto 3
PMCID: PMC5921768  PMID: 9548452

Abstract

We have screened xanthine derivatives for activity as novel biochemical modulators by assay of their inhibitory effect on adriamycin efflux from tumor cells. Strong inhibition of adriamycin efflux was shown by some xanthine derivatives with various alkyl or oxoalkyl substituents at the 1‐, 3‐ and 7‐positions. 1‐Methyl‐3‐propyl‐7‐butylxanthine (XT‐77), which had the greatest inhibitory effect on adriamycin efflux in vitro among the compounds tested, potentiated adriamycin‐induced antitumor activity by causing an increase of adriamycin concentration in the tumor in vitro. Furthermore, XT‐77 reduced the adverse drug reactions of adriamycin by decreasing the adriamycin concentrations in the heart and the liver. Thus, the combination of XT‐77 with adriamycin not only increased the antitumor activity of adriamycin, but also decreased the adverse drug reactions.

Keywords: Xanthine derivative, Biochemical modulation, Adriamycin, 1‐Methyl‐3‐propyl‐7‐butylxanthine

Full Text

The Full Text of this article is available as a PDF (73.6 KB).

REFERENCES

  • 1. ) Bertino , J. R. , Sawicki , W. L. , Lindquist , C. A. and Gupta , V. S.Schedule dependent antitumor effects of methotrexate and 5‐fluorouracil . Cancer Res. , 37 , 327 – 328 ( 1977. ). [PubMed] [Google Scholar]
  • 2. ) Budd , G. T. , Fleming , R. M. , Bukowski , R. M. , McCracken , J. D. , Rivkin , S. E. , O'Bryan , R. M. , Balcerzak , S. P. and MacDonald , J.S.5‐Fluorouracil and folinic acid in the treatment of advanced colorectal cancer . J. Clin. Oncol. , 5 , 272 – 277 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Hidalgo , O. F. , Gonzalez , F. , Gil , A. , Campbell , W. , Barrajon , E. and Lacave , A. J.120 Hours simultaneous infusion of cisplatin and fluorouracil in metastatic breast cancer . Am. J. Clin. Oncol. , 12 , 397 – 401 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Iliakis , G. , Nusse , M. , Ganapathi , R. , Egner , J. and Yen , A.Differential reduction by caffeine of adriamycin induced cell killing and cell delay in Chinese hamster V79 cells . Int. J. Rad. Oncol. Biol. Phys. , 12 , 1987 – 1995 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Shishir , K. D. , Ching , C. L. and Arthur , B. P.Comparative analysis of caffeine and 3‐aminobenzamide as DNA repair inhibitors in Syrian baby hamster kidney cells . Mutat. Res. , 131 , 71 – 79 ( 1984. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Tomita , K. and Tsuchiya , H.Enhancement of cytocidal and antitumor effect of cisplatin by caffeine in human osteosarcoma . Clin. Ther. , 11 , 43 – 52 ( 1989. ). [PubMed] [Google Scholar]
  • 7. ) Tomita , K. , Tsuchiya , H. and Sasaki , T.DNA repair and drug resistance: enhancement of the effects of anticancer agents by DNA repair inhibitors . Jpn. J. Cancer Che-mother. , 16 , 576 – 584 ( 1989. ). [PubMed] [Google Scholar]
  • 8. ) Tsuchiya , H. , Tomita , K. , Yasutake , H. , Ueda , Y. , Tanaka , M. and Sasaki , T.Growth inhibition and differentiation of murine melanoma B16‐BL6 cells caused by the combination of cisplatin and caffeine . Jpn. J. Cancer Res. , 80 , 1246 – 1251 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. ) Sadzuka , Y. , Mochizuki , E. and Takino , Y.Caffeine modulates the antitumor activity and toxic side effects of adriamycin . Jpn. J. Cancer Res. , 84 , 348 – 353 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. ) Sadzuka , Y. , Mochizuki , E. and Takino , Y.Mechanism of caffeine modulation of the antitumor activity of adriamycin . Toxicol. Lett. , 75 , 39 – 49 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Sadzuka , Y. , Mochizuki , E. , Iwazaki , A. , Hirota , S. and Takino , Y.Caffeine enhances adriamycin antitumor activity in Ehrlich ascites carcinoma‐bearing mice . Biol. Pharm. Bull. , 18 , 159 – 161 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Sadzuka , Y. , Iwazaki , A. , Miyagishima , A. , Nozawa , Y. and Hirota , S.Effects of methylxanthine derivatives on adriamycin concentration and antitumor activity . Jpn. J. Cancer. Res. , 86 , 594 – 599 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. ) Sakai , R. , Konno , K. , Yamamoto , Y. , Sanae , F. , Takagi , K. , Hasegawa , T. , Iwasaki , N. , Kakiuchi , M. , Kato , H. and Miyamoto , K.Effects of alkyl substitutions of xanthine skeleton on bronchodilation . J. Med. Chem. , 35 , 4039 – 4044 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Tanizawa , H. , Sazuka , Y. and Takino , Y.Micro‐determination of lipoperoxide in the mouse myocardium by thiobarbituric acid fluorophotometry . Chem. Pharm. Bull. , 29 , 2910 – 2914 ( 1981. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Hafeman , D. G. , Sunde , R. A. and Hoekstra , W. G.Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat . J. Nutr. , 104 , 580 – 587 ( 1974. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Beavo , J. A. , Rogers , N. L. , Crofford , O. B. , Hardman , J. G. , Sutherland , E. W. and Newman , E. V.Effects of xanthine derivatives on lipolysis and on adenosine 3′5′‐mono‐phosphate phosphodiesterase activity . Mol. Pharmacol. , 6 , 597 – 603 ( 1970. ). [PubMed] [Google Scholar]
  • 17. ) Farrukh , I. S. , Gurtner , G. H. and Michael , J. R.Pharmacological modification of pulmonary vascular injury: possible role of cAMP . J. Appl. Physiol. , 62 , 47 – 54 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Karlsson , J. A. , Kjellin , G. and Persson , C. G. A.Effects on tracheal smooth muscle of adenosine and methylxanthines, and their interaction . J. Pharm. Pharmacol. , 34 , 788 – 793 ( 1982. ). [Google Scholar]
  • 19. ) Murray , K. J. and England , P. J.Inhibitors of nucleotide phosphodiesterase as therapeutic agents . Biochem. Soc. Trans. , 20 , 460 – 464 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Miyamoto , K. , Takagi , K. , Sakai , R. , Wakusawa , S. , Koshiura , R. , Nadai , M. , Apichartpichean , R. and Hasegawa , T.Correlation between hydrophobicity of N‐alkylxanthine derivatives and their biological activities on guinea‐pig isolated tracheal smooth muscle . J. Pharm. Pharmacol. , 41 , 844 – 847 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Miyamoto , K. , Sakai , R. , Yamamoto , Y. , Konno , K. , Sanae , F. , Hasegawa , T. and Takagi , K.Selective bronchodilators from 1‐(5′‐oxohexyl)xanthines . J. Pharm. Pharmacol. , 44 , 888 – 892 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 22. ) Miyamoto , K. , Yamamoto , Y. , Kurita , M. , Sakai , R. , Konno , K. , Sanae , F. , Ohshima , T. , Takagi , K. , Hasegawa , T. , Iwasaki , N. , Kakiuchi , M. and Kato , H.Bronchodilator activity of xanthine derivatives substituted with functional groups at the 1‐ or 7‐position . J. Med. Chem. , 36 , 1380 – 1386 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Miyamoto , K. , Sakai , R. , Kurita , M. , Ohmae , S. , Sanae , F. , Sawanishi , H. , Hasegawa , T. and Takagi , K.Effects of alkyl substituents of xanthine on phosphodiesterase isoenzymes . Biol. Pharm. Bull. , 18 , 431 – 434 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Takagi , K. , Hasegawa , T. , Kuzuya , T. , Ogawa , K. , Watanabe , T. , Satake , T. , Miyamoto , M. , Wakusawa , S. and Koshiura , R.Structure‐activity relationship in N3‐alkylxanthine derivatives . Jpn. J. Pharmacol. , 46 , 373 – 378 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Sanae , F. , Ohmae , S. , Kurita , M. , Sawanishi , H. , Takagi , K. and Miyamoto , K.Structure‐activity relationships of alky‐Ixanthines: alkyl chain elongation at the N1 or N7‐position decreases cardiotopic activity in the isolated guinea‐pig heart . Jpn. J. Pharmacol. , 69 , 75 – 82 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 26. ) Myers , C. E. , Mcguire , W. P. and Young , R. C.Adriamycin: amelioration of toxicity by α‐tocopherol . Cancer Treat. Rep. , 60 , 961 – 962 ( 1976. ). [PubMed] [Google Scholar]
  • 27. ) Myers , C. E. , Mcguire , W. P. , Liss , R. H. , Ifrim , I. , Grotzinger , K. and Young , R. C.Adriamycin: the rule of lipid peroxidation in cardiac toxicity and tumor response . Science , 197 , 165 – 167 ( 1977. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) Sazuka , Y. , Hirose , T. , Hashimoto , J. , Tanizawa , H. and Takino , Y.Species, strain, sex and weekly age differences of lipid peroxide levels in animal tissues before and after adriamycin administration . Chem. Pharm. Bull. , 32 , 4110 – 4116 ( 1984. ). [DOI] [PubMed] [Google Scholar]
  • 29. ) Sazuka , Y. , Yoshikawa , K. , Tanizawa , H. and Takino , Y.Effect of doxorubicin on lipid peroxide levels in tissues of mice . Jpn. J. Cancer Res. , 78 , 1280 – 1286 ( 1987. ). [PubMed] [Google Scholar]
  • 30. ) Sazuka , Y. , Tanizawa , H. and Takino , Y.Effect of adriamycin on the activities of superoxide dismutase, glutathione peroxidase and catalase in tissues of mice . Jpn. J. Cancer Res. , 80 , 89 – 94 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. ) Sazuka , Y. , Tanizawa , H. and Takino , Y.Effect of adriamycin on DNA, RNA and protein biosynthesis in mouse tissues, in connection with its cardiotoxicity . Jpn. J. Cancer Res. , 80 , 1000 – 1005 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. ) Tanizawa , H. , Sazuka , Y. and Takino , Y.Change of lipid peroxide levels in mouse organs after adriamycin administration . Chem. Pharm. Bull. , 31 , 1714 – 1718 ( 1983. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES