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Abstract

Background: Most empirical studies tend to focus on microbiome dynamics within hosts or microbiome compositional
differences between hosts over short periods. However, there is still a dearth of formal models that allow us to investigate
the observed short-term dynamics of microbiomes under a unified ecological and evolutionary framework. In our
previous study, we developed a computational agent-based neutral framework that simulates microbiome dynamics
spanning many host generations with the added dimension of a genealogy of hosts. Although this long-term
framework revealed interesting microbial diversity patterns under a simple but plausible evolutionary process and
provided a platform for future elaboration of more complex systems, it does not allow us to explore microbiome
dynamics within a single host generation.

Methods: In this paper, we developed a computational, agent-based, forward-time framework of microbiome dynamics
within a single host generation. As we have done under our neutral long-term models, we incorporate neutral processes
of environmental microbiome assembly and microbe acquisition from parents and environment. We also incorporate a
Moran genealogical model of hosts, so that the dynamics of microbiome evolution can be studied within a single host
generation. Furthermore, we allow host subpopulation structure and host migration to affect microbiome recruitment.

Results: We show that microbiome diversity within hosts increases monotonically with increases in environmental
contribution, while microbiome diversity between hosts increases with increasing parental inheritance. Host population
division and dispersal limitation under high host contribution further shaped the patterns by elevating microbiome
differences between hosts and depressing microbial diversity within hosts. Microbiome diversity within the whole
population showed strong temporal stability regardless of the modes of microbiome acquisition and subpopulation
structures.

Conclusions: We present a computational framework that integrates various processes including host genealogy,
microbe recruitment, and host dispersal limitation acting on the short-term dynamics of microbiomes. Our framework
demonstrates that the neutral dynamics of microbiomes within a population of hosts is strongly influenced by transmission
mode and shared environment.
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Background
We previously developed a computational framework to
model microbiome evolution spanning many host gener-
ations with the added dimension of a genealogy of hosts
[1]. The framework allows us to investigate the effects of
different ecological processes on microbiome diversity
patterns over an evolutionary timescale measured on
several thousand host generations. However, this long-
term framework does not apply easily to most empirical
studies, because these studies tend to focus on micro-
biome dynamics within hosts over short periods [2–4]
or microbiome diversities within and between hosts [5,
6]. Many of these studies focus on microbial community
establishment and succession within hosts [7–10], and
responses to a variety of perturbations, including the ad-
ministration of antibiotics [11–13], and changes in diet
[14–16], lifestyle [17, 18], or environments [19, 20]. For
host-associated microbial communities, therefore, it may
be argued that the appropriate timescale for investigat-
ing microbiome dynamics is the lifespan of a host, or if
we consider a population of hosts, a host generation.
Over this period, microbes colonize and then proceed
through several successional stages, frequently establish-
ing a steady-state community (or, in ecological terms, a
“climax” community) within the host, albeit one which
can be altered if the host environment is disturbed [4,
21, 22]. In this paper, we develop a computational,
agent-based, forward-time framework of microbiome dy-
namics within a single host generation to explore how
microbial community composition responds under dif-
ferent conditions that affect recruitment and succession.
As we have done with the neutral models that we devel-

oped previously [1], we assume that microbial OTUs are
functionally equivalent, and thus, do not differ in their fit-
ness to survive in the host or environment. Nor do they
confer any benefit to the fitness of their hosts. In other
words, our models are selectively neutral. Unsurprisingly,
this assumption of neutrality is often questioned. The as-
sociation between host genetics and their microbiomes
has been identified experimentally and statistically in sev-
eral human and mouse studies [23–25]. Jerald et al. [26]
also show that the evolutionary patterns in genomic data
of gastrointestinal microbiomes can only be explained by
niche processes despite the fact that empirical species
abundance distributions fit the predictions of both neutral
and non-neutral theories. Ley et al. argued that microbial
diversity of host-associated microbiota is the result of
entangled evolutionary forces on both microbe and host
levels [27]. However, neutral models are commonly ap-
plied in model building: by constructing our models using
simple assumptions, we are able to discern what patterns
emerge in the absence of more complex processes, and
thus compare these to real-world observations. We
emphasize that we do not believe that host-microbe

systems are as simple as our models, but only that it is
more parsimonious to start with simple processes.
Thus, in the models presented in this paper, we also

view recruitment either from the parent or from environ-
ment as a stochastic process that is influenced only by the
relative abundance of each OTU at the source. Addition-
ally, we allow microbial recruitment to be limited by sub-
population structure. With subpopulation structure, there
is restricted exchange of hosts and microbes between sub-
populations. Dispersal limitation of microbes under such
conditions is a key component of metacommunity theory
and is widely believed to be one of the most important
ecological mechanisms that affect the assembly of micro-
bial communities. Martiny et al. [28] suggest that
geographic barriers and environmental heterogeneity are
significant drivers of spatial variation in microbial diver-
sity. Observations on free-living microbial communities
[29–31] strengthen the claim that availability of microbes
is often restricted by local environmental structures.
Costello et al. [32] made a similar argument with respect
to host-associated microbial communities by highlighting
the role of dispersal limitation in mediating the diversity
of human microbiota. Mihaljevic and others [33, 34] sum-
marized the advantages and applications of linking a
metacommunity model to symbiont communities. Other
model-fitting studies utilized neutral metacommunity the-
ory to explore the structuring mechanisms of human lung
and parasitic helminth communities [35, 36].
By taking account of metacommunity structure and

dispersal limitation, our framework views a host popula-
tion as a collection of host subcommunities and their as-
sociated microbial communities, with exchanges of hosts
and microbes that depend on the rates of host migration
among communities: as hosts move between subpopula-
tions, they carry their microbes with them and are able
to pass these microbes on to offspring or the environ-
ment within their new subpopulation.
Our results indicate that in the absence of any subpop-

ulation structure, parental contribution to microbial
availability suppresses microbial diversity within individ-
ual hosts but increases the heterogeneity between hosts.
We see the same pattern with our long-term models of
neutral microbiome evolution [1]. In contrast, more
complicated patterns of diversity are generated in the
presence of host population substructure and migration.
In particular, subdivided host populations promote local
extinction of microbial taxa and inter-host differences in
microbiome composition, although these effects are
ameliorated by frequent host migrations.

Models
Since our short-term models aim to investigate within-
generation dynamics of host-associated microbial commu-
nities, a Moran genealogical model [37] is incorporated into
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the basic framework to simulate the stochastic changes in a
host population of constant size with overlapping genera-
tions. A Moran model with host population size N has N
time steps for one host generation and allows one random
host reproduction and one random host death at each time
step (Fig. 1a). As is described in Fig. 1b, this Moran genea-
logical process is included into the overall framework in a
similar way as the Wright-Fisher process was incorporated
under our previously proposed long-term neutral models of
microbiome evolution, which allows us to model offspring
microbiome acquisition and environmental microbiome as-
sembly similarly as well (Fig. 1b).
We define the direct parental microbial contribution as

the expected average percentage of microbes from the
parent to its offspring over one host generation (i.e., over
the N time steps). In our models, the single offspring that
is produced at each time step obtains its microbiome by
sampling exclusively from the microbiome of the parent.
At each subsequent time step, some proportion of a host’s
microbiome is sampled from the environment, and the

rest is sampled from that individual’s “previous self” (i.e.,
that same individual’s microbiome in the preceding time
step). In this way, a host’s microbiome is acquired as a
mixture of parent and environmental microbial communi-
ties. We refer to this as a “mixed acquisition” process, in-
dicated by MAx, where x% is the percentage of the
microbiome recovered from the parent.
As with microbial acquisition, a mixture of processes

determine the composition of the pool of microbes avail-
able from environment:

� A “fixed” environmental component (FE), whereby
all microbial OTUs are available to hosts at every
time step at an unchanging relative abundance.

� A “pooled” environmental component (PE), in which
the microbial composition is determined by the
relative abundance of OTUs in the total microbial
pool from all hosts in the previous time step.

� A “mixed” environmental source (MEy) that contains
a percentage, y%, from the parental pool of

Fig. 1 Microbiome parental inheritance and environmental acquisition under Moran process. (a) The diagram shows a population of hosts
evolving under a standard Moran process, where the green circle indicates a dying host and the red circle indicates a reproducing host. The
reproduced offspring will replace the dead one. N (where N is the population size) time steps of the abovementioned events are equivalent to
one host generation. (b) The yellow arrows signify the flow of microbes from hosts to environment (pooled environment is a collection of microbes
available in the current host population) and from environment to hosts (both fixed environment and pooled environment contribute to host
microbiomes at next time step and the ratio of y% and 1-y% is determined by the environment assembly mode MEy). Parental inheritance of
microbes only exists for newly reproduced offspring: M (the total number of microbes per host) microbes are inherited from parents at birth.
All the hosts acquire t microbes from local environments at each time step: t ¼ aM

N , where M is the total number of microbes per host, N is the

host population size, a satisfies x ¼ 1−e−a
a , and x is the expected percentage of parental microbes over one host generation determined by MAx

(see derivations in Methods)
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microbes, and (100-y)% of microbes from the
fixed environment.

The acquisition and assembly of microbes in each
host’s microbiome, and in the environmental pools, are
driven by stochastic sampling under the assumption of
ecological equivalence of hosts and microbes. The
proportion of microbiome recruited from the host’s pre-
vious self is calculated as a function of parental contri-
bution, so that over N time steps, the contribution at
each time step will integrate to a total that is equal to
the percent parental contribution per generation, x%.
Unlike the direct contribution of a host to itself from
one time step to the next, there is no need to integrate
over all time steps for the hosts’ contribution to the en-
vironmental pool. This is because contributions from
the host population in any given time step to the envir-
onment completely replace all previous contributions by
hosts; thus, using a host contribution of y% to the envir-
onmental pool at each time step equates to y% host con-
tribution over all N time steps.
Host population structure and dispersal limitation are in-

corporated after the basic platform is built (Fig. 2). With
host population substructure, we allow a host population to
be subdivided into several small subpopulations (often
called “demes”; we use the two words interchangeably) with
each subpopulation sharing a local environmental microbial
community. Each local environment still consists of two
parts: a fixed environmental (FE) component, which is a
large multinomial sample from a common environmental
microbiome, and a pooled environmental (PE) component,

which is constituted by the microbiomes of hosts resident
in a given subpopulation. The subpopulations may be com-
pletely isolated if no host migration is allowed; alternatively,
with a non-zero host dispersal rate, a certain proportion of
hosts in a subpopulation become “migrants.” All migrants
are aggregated into a common pool, and then assigned ran-
domly to each of the subpopulations. It is possible therefore
that a “migrant” from a particular subpopulation is reas-
signed to that same population, although this probability
decreases as the number of subpopulations increases.
The initial subpopulations of hosts (and their associ-

ated microbiomes) are constructed by performing pro-
gressive bifurcations of the host population, followed by
independent resampling of microbiomes at each bifur-
cating node to generate independent instances of micro-
biomes for each subpopulation.
The Moran process allows us to model microbial flux

within the host at a relative fine-grained timescale. For
instance, in our simulations, we assume a metapopula-
tion of 4096 hosts. Each generation is divided into 4096
time steps. If we apply our framework to a human popu-
lation with an expected generation time of 30 years [38],
then each time step corresponds to 64 h. In other words,
our framework would allow hosts to recruit and ex-
change new microbes about every two-and-half days.

Results
Microbiome diversity dynamics in absence of subpopulation
structure
At each time step of our simulations, we measured
microbiome diversities within hosts (α-diversity) and

Fig. 2 Population division and host migrations. Each black rectangle represents one host subpopulation. Each subpopulation undergoes the
same process described in Fig. 1b except that only one subpopulation is randomly selected for host reproduction/death event at each time step.
Host migration is a shuffling process. At the end of each time step, a percentage (determined by host dispersal rate) of hosts are randomly
selected from all host subpopulations for migration. The original slots occupied by these migrating hosts are refilled by them in a shuffled order.
If host migration rate is zero, no individuals are exchanged
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within the whole population of hosts (γ-diversity) with
the Shannon-Wiener Index and measured microbiome
diversity between hosts (β-diversity) with the Bray-Curtis
dissimilarity measure. In the absence of any population
structure, our short-term simulations indicate that if
there is high parental inheritance of microbiomes, hosts
are apt to lose microbial species stochastically over time,
resulting in low species diversity within hosts (α-diversity)
and high differences between hosts (β-diversity) (Fig. 3b).
In contrast, if microbiomes are obtained largely from the
environment, a common environmental pool exerts a
homogenizing effect, decreasing the difference between
hosts (β-diversity) but enhancing the species richness and
evenness within hosts (α-diversity) (Fig. 3a). Diversity

across the whole population of hosts, γ-diversity, does not
vary markedly over a single host generation regardless of
how hosts acquire their microbes (Fig. 3c). Interestingly,
the differences in parental contribution to a pooled envir-
onmental do not lead to significantly different values of α-
and β-diversities in the absence of population structure
(Fig. 3a, b).
Whereas the patterns of α-diversity obtained with our

single-generation and long-term models are similar, the
two models differ in the patterns obtained for γ-diversity
and β-diversity [1]. In our long-term simulations [1],
γ-diversity gradually declines instead of staying or fluctu-
ating at the initial level, and β-diversity grows only for
the first few generations and then declines under direct

Fig. 3 Diversity trace plots over time under different MAx and MEy in absence of population division. Each row labeled with (a), (b), or (c) represents
one type of diversity (from top to bottom: α-, β-, and γ-diversities). Colors of lines indicate the percentage of parental inheritance (the left column:
MAx) or the percentage of pooled environmental contribution (the right column: MEy)
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or indirect (via contributions to the environment) paren-
tal transmission. We think these differences between our
short-term and long-term simulations result from the
augmented ecological drifts at the level of the host
population: the persistence and extinction of host line-
ages tend to intensify the demographic stochasticity in
microbiomes over time and leads to the long-term de-
pressive effects on γ- and β- diversities. This can only be
captured by our long-term simulations, since it takes
many host generations for a host population to lose a
substantial number of lineages.

Microbiome diversity patterns with subpopulation structure
and host migration
With population subdivision, different patterns of α-, β-,
and γ-diversities are obtained depending on the extent
to which hosts contribute indirectly to the environment
or directly to offspring, host migration rates, and the
number of demes in the population (Table 1). When
microbiomes are largely acquired from the environment
(Fig. 4, bottom row), the number of demes and dispersal
limitation show little effect on α-diversity, except at very
low host migration rates. However, as parental contribu-
tion increases, either directly to offspring or indirectly
through a contribution to the environment, we see that
α-diversity decreases (Fig. 4), as the number of demes
increase and the migration rate decreases.
We see the converse with between-host diversity, both

for hosts between demes (i.e., βb-diversity; Fig. 5), and
within demes (βw-diversity; Fig. 6): when direct or indir-
ect parental contribution is low and between-host diver-
sity is low. Interestingly, if we compare βb-diversity to

βw-diversity (Fig. 7), we see that as the number of demes
increase, and host migrations decrease, differences
between hosts in different demes is greater than the dif-
ferences between hosts in the same deme. This makes
sense, of course, because a highly divided population
under limited host migration is equivalent to having
many “islands” of small isolated subpopulations. βw-
diversity tend to decrease as small subpopulations are
more apt to be homogenized by a shared environ-
ment; βb-diversity tend to be elevated because
subpopulation structure and isolation allow each sub-
population to evolve with greater independence and
stochastic differences between subpopulations grad-
ually accumulate over time.
What about microbial γ-diversity of the collection of

hosts across all subpopulations, i.e., the host metapopu-
lation? As opposed to changes that may occur in the
environmental microbial component within demes,
γ-diversity across the metapopulation is not affected by
population subdivision (Additional file 1: Figure S1). In
retrospect, perhaps this is unsurprising: under a neutral
model of microbiome dynamics, a single host gener-
ation does not appear to be able to alter microbial di-
versity across the entire population. However, as the
number of demes increases, and migration rates de-
crease, within-deme γw-diversity decreases (Additional
file 2: Figure S2). This is because microbial species car-
ried by migrants diversify local communities and indi-
vidual microbiomes. As the numbers of migrants
decrease, there is less opportunity to homogenize the
microbial composition in different demes, although
metapopulation microbial diversity is maintained.
Therefore, it is possible to see microbial γ-diversity of

Table 1 Summary of α-, β-, and γ-diversity patterns under different scenariosa

Number of
subdivision

Low number
of demes

High number
of demes

High migration rate Low migration rate High migration rate Low migration rate

High parental contribution α ↓ ↓
β ↑ ↑
γ~

α ↓ ↓
β ↑ ↑
βw ↑ ↑
βb ↑ ↑
γ~
γw~

α ↓ ↓ ↓
β ↑ ↑ ↑
βw ↑ ↑
βb ↑ ↑ ↑
γ~
γw↓

α ↓ ↓ ↓
β ↑ ↑ ↑
βw ↑ ↑
βb ↑ ↑ ↑
γ~
γw ↓ ↓ ↓

α ↓ ↓ ↓ ↓
β ↑ ↑ ↑ ↑
βw↑
βb ↑ ↑ ↑ ↑
γ~
γw ↓ ↓ ↓

High environmental contribution α ↑ ↑
β ↓ ↓
γ~

α ↑ ↑
β ↓ ↓
βw ↓ ↓
βb ↓ ↓
γ~
γw~

α ↑ ↑
β ↓ ↓
βw ↓ ↓
βb ↓ ↓
γ~
γw~

α ↑ ↑
β ↓ ↓
βw ↓ ↓
βb ↓ ↓
γ~
γw ↓ ↓ ↓

α ↑ ↑
β ↓ ↓
βw ↓ ↓
βb ↓ ↓
γ~
γw ↓ ↓ ↓

High parental contribution (long term) α ↓ ↓
β ↑ ↓
γ ↓ ↓

– – – –

High environmental contribution (long term) α ↑ ↑
β ↓ ↓
γ ↑ ↑

– – – –

a↓: declining; ↑: increasing; more consecutive ↓/↑ represents a greater change; ↑↓:first increasing then declining; ~: fluctuation and no obvious trend
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the metacommunity of hosts remaining relatively stable
for different degrees of population fragmentation but
decreasing within each subpopulation.

Discussion
In this paper, we introduce an agent-based computa-
tional framework that implements short-term neutral
models of microbiome dynamics using a Moran process.
The framework presented here has many points of simi-
larity with the long-term computational framework de-
veloped earlier [1], including the application of different
acquisition and environmental assembly modes. How-
ever, unlike the Wright-Fisher process that was used in
our long-term framework, the Moran process allows us
to investigate the temporal dynamics and diversity pat-
terns of microbiomes within a single host generation.
We have included host dispersal and subpopulation
structure in our short-term models to help us explore
the effects of dispersal limitation on microbiome diver-
sities. Empirically, these subpopulations may correspond
to different host communities, locales, or family groups.
Although our short-term models do not include non-

random shifts in microbial composition and/or host
dynamics caused by dietary or environmental changes,
illness, antimicrobial therapies, etc., it is theoretically
easy to incorporate these types of events into the Moran
model, because we are able to perturb the dynamics of
the system at discrete time steps. Adding these exten-
sions to our framework is an obvious next step.
Under our short-term framework, each host’s first

microbes are acquired from parents at birth (vertical
transmission). The seeding effects of early exposure to
maternal environments on initial microbial communities
have been studied for humans and other mammals [39–
41]. Postnatal microbial succession is abstracted in our
models via a constant process of microbial recruitment
from a host’s previous self (i.e., the same host in the pre-
vious time step) and the environment (horizontal trans-
mission). In fact, as hosts age, both human and plant
examples [4, 42, 43] show a successional trend in indi-
vidual microbiomes from low diversity to high diversity
gradually reaching a steady state, most likely a conse-
quence of persistent microbial colonization from the en-
vironment. Our simulations here also recover the same

Fig. 4 Heatmaps of α-diversity across a range of subpopulation sizes and host dispersal rate under different combinations of MAx and MEy. Each
heatmap corresponds to a combination of MAx and MEy both of which has three levels (10%, 50%, and 90%). For each heatmap, horizontal and
vertical axes represent the host dispersal rate and number of host subpopulations, respectively. The scales are logarithmic with range from 1 to
4096 for vertical axes and range from 1 to e−10 for horizontal axes. The color on the right of the heatmaps indicates the corresponding values for
diversity (warm color: high diversity; cold color: low diversity)
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trend (Additional file 3: Figure S3). Varying the propor-
tion of parental contribution and environmental contri-
bution under the short-term models has similar impacts
on α- and β-diversities as they do with our the long-
term models (Table 1) [1], although population subdiv-
ision appears to intensify these effects. Similar patterns
were also observed in some natural communities; for in-
stance, cnidarian hosts that acquire their algal symbionts
horizontally appear to harbor more diverse communities
than hosts that acquire their symbionts vertically [44].
A point of contrast between our short-term and long-

term models was observed with γ-diversity, with the
long-term models having lower levels of whole-
population diversity relative to our short-term models.
We believe that this is a consequence of imposing a
Wright-Fisher genealogical model on our long-term sim-
ulations. Under such a genealogy, we expect that after a
sufficient number of generations have elapsed (on aver-
age 2 N generations, for haploid hosts, or 4 N, for dip-
loid hosts), all individuals will be descended from a
common ancestor. Depending on the rates of parental
contribution to the environment, we are likely to see

greater loss of whole-population microbial diversity in
long-term models, relative to our short-term models.
Our short-term models also include the effects of dis-

persal limitation in a structured host population, and
they allow us to recover the patterns of diversity shaped
by shared environments that we see in real-world situa-
tions. For example, a comparative study on the human
gut microbiome indicated significant species diversity
differences between a farming group and an urban con-
trol group as well as between males and females in the
farming group [45]. The uncommon sexual differenti-
ation of gut microbiomes in Hadza is believed to be as-
sociated with the sexual division of labor and diet in this
special hunter-gatherer community. This marked hetero-
geneity between different social groups provides empir-
ical evidence for the predictions of our models about
population division and shared environment on β-diver-
sity. Similarly, more skin and oral microbiota were found
to be shared between cohabiting adults than with other
individuals regardless of host genetic relatedness [46–
48]. These interesting observations are consistent with
our predictions of increased microbiome similarity

Fig. 5 Heatmaps of βb-diversity across a range of subpopulation sizes and host dispersal rates under different combinations of MAx and MEy. With
a similar layout, all heatmaps are also plotted in the same way as those in Fig. 4 except that β-diversity between subpopulations instead of overall β-
diversity is measured

Zeng and Rodrigo Microbiome  (2018) 6:80 Page 8 of 13



within-host subpopulations and decreased microbiome
similarity between host subpopulations (Figs. 5, 6, and 7)
and highlight the dominant role of shared environments
in determining microbiome compositions that contrast
with the effects of selective factors from host genetics.
To summarize, in this paper, we present a computa-

tional framework to model the host-microbe dynamics
with and without population subdivision, over a single
host generation. As with our previously proposed long-
term framework [1], we model microbiome dynamics
within a host population and consider a shared evolution-
ary history between hosts and microbes by simulating host
genealogy. Our results confirm what theory tells us to ex-
pect: as we increase the number of subpopulations and
decrease the rate of host exchanges between the subpopu-
lations, we see decreasing levels of within-host diversity
and increasing levels of between-host diversity [49]. Both
are likely consequences of the increasing effects of eco-
logical drift acting on microbial communities from local
environmental and/or host communities. The incorpor-
ation of host subpopulation structure and dispersal limita-
tion also highlights the significant effects of shared
environment in shaping core microbiome within subpop-
ulations in the absence of selection.

But if our models confirm what community microbial
theory predicts, what value do these models have? We
believe that the value of our computational models re-
sides in the assumptions and processes that underlie the
models’ framework. By stating explicitly what these as-
sumptions and processes are, our models can be exam-
ined and modified. In effect, our models, and others like
them, serve as computational “proofs” of microbial eco-
logical theory. And by making our models as simple as
possible, they also serve as “null hypotheses” for statis-
tical tests, allowing researchers to perform forward neu-
tral simulations using their own empirical microbiome
data as the initial microbiomes to forecast short-term
dynamics under custom settings of parental/environ-
ment contribution and host population structures.
The Moran model used here is also particularly flexible,

allowing users to intercept simulated populations at any
time step to accommodate transient or sustained changes
in hosts, microbes, and environments. It is also possible to
extend the framework to include the effects of selection
acting on hosts and/or microbes, as we have done recently
[50]. As we noted above, the important role of non-
neutral effects in microbiome assembly has been investi-
gated and demonstrated by others [25, 27, 51]. We expect

Fig. 6 Heatmaps of βw-diversity across a range of subpopulation sizes and host dispersal rates under different combinations of MAx and MEy.
With a similar layout, all heatmaps are also plotted in the same way as those in Fig. 4 except that β-diversity within subpopulations instead of
overall β-diversity is measured
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the incorporation of selection into our current framework
may further drive the differentiation of microbiomes be-
tween host subpopulations and facilitate the establishment
of core microbiomes within each deme.

Conclusions
Previous empirical studies suggest a need for ecological
and evolutionary frameworks to investigate short-term dy-
namics of microbiomes. Here we present a computational
framework that incorporates models that take account of
multiple ecological or evolutionary processes including
host genealogy, microbe acquisition, environmental
microbiome assembly, host subpopulation structures, and
migration to model microbiome dynamics within a single
host generation. Our simulated results indicate that high
parental inheritance raised microbiome differences
between hosts, while high environmental contribution in-
creased microbiome diversity within hosts. Our frame-
work also shows that host subpopulation structure and
dispersal limitation can further reshape the diversity pat-
terns when host contribution to offspring microbiome is
high. Highly fragmented host population with limited dis-
persal rate increases the overall β-diversity and β-diversity

between subpopulations and decreases β-diversity within
subpopulations and α-diversity.

Methods
As mentioned before, we implemented our short-term
simulations in a similar way as we did for our long-term
neutral framework. The simulated host population has a
constant size of N hosts (N = 4096). Each host is allocated
a virtual microbiome with capacity of M microbes
(M = 107). In order to initialize the simulations, we
obtained empirical human microbiome data at the genus
level from HMP website (https://www.hmpdacc.org/
HMSMCP/). The initial microbiomes are resampled from
a truncated and rescaled multivariate normal distribution
(trMVN) which is fitted to the empirical microbiome data
from human stool samples [52]. A Kolmogorov-Smirnov
test demonstrates that the resampled microbiome data
still maintains the same microbial abundance and diversity
distributions of empirical data.
For the sake of simplicity, we have the same number

of hosts in each subpopulation (the methods can be
modified to allow different subpopulation sizes to be
simulated). As noted above, the total number of hosts is

Fig. 7 Heatmaps of ratio of βb-diversity to βw-diversity across a range subpopulation sizes and host dispersal rates under different combinations
of MAx and MEy. With a similar layout, all heatmaps are also plotted in the same way as those in Fig. 4 except that β-diversity ratio instead of α-
diversity is measured
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4096 = 212. To construct k subpopulations, we construct
a complete binary tree with k levels. For example, when
k = 1, there is a root node on the tree, and two terminal
nodes, representing the two host subpopulations. The
microbiome at the root node is described by the trMVN
fitted with empirical data. The microbiomes at any node
that represents a subpopulation are also described by a
trMVN drawn from the trMVN of its parental node.
The hosts within each subpopulation represent random
draws from the microbiome of the subpopulation. In
this way, we are able to generate host microbiomes in 2k

equally sized subpopulations, where k ∈ [ℤ; 0, d].
The fixed environmental microbiome was simulated by

pooling all empirical human stool microbiome data. Thus,
the total number of OTUs we simulated is the total num-
ber of genera contained in this empirical human micro-
biome dataset (g = 129). Of course, simulating less or
more OTUs at higher or lower taxonomical ranks is also
possible. It is plausible to conjecture that increasing the
total number of OTUs will be expected to reduce the aver-
age population size per microbial taxon and thus increase
the sensitivity of microbiomes to the effect of ecological
drifts since rare OTUs are more likely to be affected by
demographic stochasticity [53–55]. Therefore, under high
host contribution with/without subpopulation structures,
α-diversity may decrease further and β-diversity may in-
crease further. We do not believe that this will alter the
qualitative results that we have obtained.
Under the scenario of MEy, environmental micro-

biomes e! are updated at each time step by mixing two
environmental components as follows:

e!¼ 1−yð Þ f!þ yp;!

where f
!

and p! represent the fixed environment and
pooled environment, respectively. As noted above, the
pooled environmental microbiomes p! are constructed
by pooling all the microbes in the current host popula-
tions if no host population structure is simulated, or in
the corresponding host subpopulations when the host
population is segmented:

p!¼ 1
n

Xn

i¼1

a!i;

where a!i represent the microbiome composition of host
i in current subpopulation/population of size n.
Under the scenario of MAx, the newborn offspring

always inherits their initial microbiome (107 microbes)
from the parent and then continues to acquire
microbes at a constant rate (v microbes per time
step) from the environment. Let T be the total
number of microbes acquired from the environment
within one host generation; at each time step, one

host receives t = T/N microbes from the environment.
Let M denote the total number of microbes in one
microbiome. The expected average percentage of
parental microbes over one host generation, x, can be
written as follows:

x ¼ 1
N

XN−1

i¼0

M
M þ t

� �i

≈ lim
N→∞

1
N

XN−1

i¼0

M
M þ t

� �i

¼ 1−e−a

a
;

where a ¼ T
M ¼ Nt

M . By solving the abovementioned
equation, we can find out the value of a correspond-
ing to any parental contribution; this gives us the
number of microbes each host acquires from the en-
vironment at one time step for the implementation of
simulations. Since our long-term models also interpret
parental contribution as the expected percentage of
parental microbes over one host generation, the par-
ental contribution x defined above is equivalent with
the parental contribution parameter defined under
our long-term models.
As is mentioned before, the initial host population

structure is formed by performing progressive bifur-
cation of the host population and hierarchical clustering
of the initial microbiomes. Each cluster of host micro-
biomes represents an initial host subpopulation. At each
time step, we randomly select one host subpopulation
for the event of host reproduction and death. Then, we
draw zj hosts from host subpopulation j as migrating
hosts with zj~Bin(nj, q). Bin(nj, q) represents a binomial
distribution, where nj is the size of subpopulation j and
q is the host dispersal rate. We shuffle all the migrating
hosts from the whole population and randomly reassign
them back to their new subpopulations.
Three diversities are measured by the Shannon-

Wiener index (α- and γ-diversities) and the Bray-Curtis
dissimilarity index (β-diversity). The Shannon-Wiener
index is a popular diversity index in ecological studies
and quantifies both species richness and evenness in a
community while the Bray-Curtis index is a non-
Euclidean distance measurement and often used to
quantify the compositional dissimilarity between two
sites. More specifically, we have three types of β-diver-
sities: overall, between-subpopulation, and within-
subpopulation. For overall β-diversity, we did a pairwise
comparison to compute the average microbiome
difference between hosts. For between-subpopulation/
within-subpopulation β-diversity, we only considered
host pairs from two different subpopulations/from the
same subpopulation. We also have measured γ-diversity
within subpopulation by averaging γ-diversities of all
subpopulations.
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Additional files

Additional file 1: Figure S1. Heatmaps of γ-diversity across a range
subpopulation sizes and host dispersal rates under different combinations
of MAx and MEy. With a similar layout, all heatmaps are also plotted in
the same way as those in Fig. 4 except that γ-diversity instead of α-
diversity is measured. (TIF 3353 kb)

Additional file 2: Figure S2. Heatmaps of average γw-diversity across a
range subpopulation sizes and host dispersal rates under different
combinations of MAx and MEy. With a similar layout, all heatmaps are also
plotted in the same way as those in Fig. 4 except that γw-diversity within
subpopulations instead of α-diversity is measured. (TIF 1286 kb)

Additional file 3: Figure S3. α-diversity trace plots of individual
microbiomes over host lifespan. Individual within-host diversity plots
show under both structured population (1024 demes and host migration
rate = e− 10) and unstructured population, individual α-diversity increases
along time after birth. The blue lines represent hosts who are still alive
before our simulation ends. The red lines represent hosts whose death
events are observed by the end of our simulation. (TIF 5367 kb)

Abbreviations
MAx: Mixed acquisition with x% from parental inheritance and (1-x)% from
environment; MEy: Mixed environmental microbiome with y% from pooled
environment and (1-y)% from fixed environment
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