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Introduction

One key characteristic of many cancers, including breast cancer, is substantial intertumor 

and intratumor heterogeneity since it confounds the diagnosis and treatment plan. Over the 

past several decades of research, the depth of knowledge has deepened from recognizing the 

presence of tumor evolution and heterogeneity (1) to characterizing it at the level of 

variation in mutational aberrations and gene expression patterns that result in altered cell 

signaling, growth factor deregulation, and distinct metabolic pathways (2). These diverse 

events impact an array of oncogenic networks within a single tumor. It has long been 

recognized that such networks provide the leverage to rely on redundant signaling arms 

necessary for cellular modification to survive and progress under various conditions (3). 

Therefore, the presence of heterogeneity poses challenges when choosing a therapeutic 

intervention to eradicate the tumor without development of drug-resistance, metastasis or 

tumor relapse. Indeed, it is essential to stratify breast cancer at a genomic and molecular 

level to decipher tumor heterogeneity and develop robust targeting strategies to improve 

patient outcome. By using a genomic strategy to predict therapy, personalized medicine can 

be tailored to individual tumors.

Breast Cancer Classification

To address tumor heterogeneity, breast cancer can be broken down into subgroups in terms 

of histology, molecular biomarkers, genomic and genetic profiles. Based on the status of the 

estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 

receptor-2 (HER2) expression in tumors, breast cancer is classified as hormone receptor 

positive (HR+), HER2+ or triple-negative in absence of all three receptors. Based on tumor 

morphology, growth and architecture patterns, breast cancer can be classified into distinct 

histological subtypes. The most common histological subtype is invasive ductal carcinoma, 

followed by classic lobular invasive carcinoma. The histopathological classification provides 

prognostic value. In general, tubular or mucinous carcinoma is associated with excellent 

prognosis while metaplastic carcinoma has an unfavorable outcome. To gain greater insight 

into the gene expression patterns that underlie the histological, ER/PR/HER status, 
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prognostic and outcome features of breast cancer, a study was undertaken where global gene 

expression patterns were analyzed. This study characterized several so-called intrinsic 

subtypes of breast cancer based on high/low expression of specific sets of genes. This was 

refined through several critical manuscripts and evolved to intrinsic subtypes including 

luminal A, luminal B, HER2-enriched, basal-like, claudin-low and normal-like tumors (4–

10).

Sequencing the genome of breast cancer has revealed less than 100 driver mutations, most in 

genes that have previously been widely studied (11). This is consistent with prior reports 

with several genes that are frequently mutated with other supporting genes that are less 

commonly altered (12). However, the juxtaposition of sequence data with the intrinsic 

subtypes reinforces a critical need in breast cancer. That is to say, the ER/PR/HER2-ve 

(triple negative breast cancer or TNBC which largely overlaps with the basal subtype of 

breast cancer lacks oncogenic drivers at a high frequency. This is an urgent problem given 

that on average these tumors have the worst prognosis in breast cancer and typically affect 

younger women. However, it should be noted that when the subtypes of TNBC are stratified, 

there are clear distinctions in survival between the various subtypes of TNBC (13, 14).

Targeted therapy for HR+ breast cancer

Approximately 70% of breast cancers are identified as hormone receptor positive (HR+. +) 

and most of these tumors can be divided into Luminal A and B intrinsic subtypes. Endocrine 

therapy is the mainstay of treatment for all women with HR+ and is centered around 

targeting estrogen receptor to suppress its downstream functions. There are three main HR 

targeting strategies: inhibiting estrogen binding to ER by using selective estrogen receptor 

modulators such as tamoxifen; degrading ER by using selective estrogen receptor degraders 

such as fulvestrant; or depleting estrogen production by using aromatase inhibitor or ovarian 

suppression. The HR+ tumors can be further divided into luminal A and B intrinsic 

subtypes. Morphologically, luminal A tumors are well differentiated carcinomas and include 

classical lobular carcinoma, tubular carcinoma, and mucinous carcinoma(15). Tumors of 

luminal B subtype are less differentiated and consist mostly of invasive ductal carcinoma. 

Despite the effectiveness of endocrine therapy in HR+ breast tumors, treatment challenges 

remain in clinical practice. Clinical studies reported that luminal A tumors are more 

sensitive to therapy while luminal B tumors more often exhibit primary (intrinsic) resistance 

and may not respond to endocrine therapy alone (16). Conversely, luminal A tumors may 

respond to single endocrine therapy initially but may recur later due to secondary (acquired) 

resistance (17). To counteract primary and secondary endocrine resistance, combination 

strategies of endocrine therapy with cyclin-dependent kinase (CDK) 4/6 inhibitors or PI3K/

mTOR/Akt pathway inhibitors have been evaluated. These inhibitors in combination with 

endocrine therapies have improved progression free survival and disease free survival in 

women with metastatic breast cancer (18–21). The success of these clinical trials illustrate 

the need to develop selective targeted therapies based on tumor mechanisms to utilize 

combinatorial approaches to effectively treat tumors.
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Targeted therapy for HER2 positive breast cancer

HER2 is a member of the epidermal growth factor receptor family and is well recognized for 

its role in cellular differentiation and proliferation. HER2/neu amplification or 

overexpression is noted in 20% of human breast cancer, and was first observed to be an 

independent prognostic factor in lymph node positive breast cancer patients (22). 

Historically it has been seen as a negative prognostic marker associated with increased risk 

or recurrent disease and worse prognosis. A key mechanism for studying the role of HER2 

was the generation of transgenic mice expressing activated c-neu under the control of the 

mouse mammary tumor virus (MMTV) promoter enhancer. These mice developed 

multifocal mammary tumors after a brief latency (23).

The development of a humanized HER2/neu monoclonal antibody, trastuzumab, resulted in 

the first FDA approved targeted therapy for HER2 positive breast cancer patients(24). 

Multiple clinical trials demonstrated that trastuzumab treatment for the HER2+ breast cancer 

patients reduced the recurrence risk and improved overall survival (25–27). Currently, there 

are several HER2 targeting therapeutics utilized in clinical settings: monoclonal antibodies 

such as trastuzumab and pertuzumab, which bind to the extracellular domain of HER2; 

tyrosine kinase inhibitors such as lapatinib and neratinib, which bind to the intracellular 

portion of protein kinase domain of HER2; and toxic drug conjugates such as T-DM1, in 

which a cytotoxic molecule is linked to the HER2 antibody (28–30). Dual HER2 targeting 

therapy, a combination of chemotherapy with monoclonal HER2 antibodies, and a 

combination of endocrine therapy with HER2 targeted agents have been proven to be 

successful in overcoming breast cancer resistance. HER2+ breast cancer is an excellent 

example of how identification of a molecular target can lead to effective treatment and 

improved patient outcomes.

Triple Negative Breast Cancer

TNBC lacks expression of ER, PR, and HER2 receptors, accounts for 10–20% of all 

reported breast cancer, and largely overlaps with the basal intrinsic subtype. 

Epidemiologically, TNBC patients are over-represented for young (<50 years), African 

American and Hispanic women (31). Morphologically, most TNBCs are invasive ductal 

carcinoma; others include metaplastic carcinoma, carcinoma with medullary features, 

adenoid cystic carcinoma, and secretory carcinoma (B). Compared to other intrinsic 

subtypes, TNBC has been clinically observed to be aggressive in nature based on a high 

grade, advanced stage at diagnosis and a higher risk of metastasis. These tumors tend to 

recur within three years of diagnosis and are associated with increased mortality within 5 

years, resulting in the worst prognosis of all subtypes (32). According to gene expression 

patterns, TNBC can be subdivided into basal-like subtype, claudin-low breast cancer 

subtype, and luminal androgen receptor subtype. From a therapeutic standpoint, the basal 

subtype is most sensitive to chemotherapy while the luminal androgen receptor subtype is 

least sensitive. Thus, the lack of targeted therapy in TNBC, coupled with the poor outcome 

and drawbacks of chemotherapy illustrate a critical need to identify the driving factors of 

TNBC and adapt a personalized medicine approach to effectively treat these patients.
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The carriers of BRCA1 germline mutation are more likely to develop TNBC (33). Tumors 

with BRCA mutations are deficient in homologous recombination repair (HRR). As such, 

these BRCA mutated TNBC rely on poly (ADP-ribose) polymerase 1 (PARP-1) for single 

strand DNA break repair, and therefore DNA damaging agents, such as platinum 

chemotherapy or PARP inhibitors, can induce synthetic lethality in HRR deficient cancer 

cells. Indeed, PARP inhibitor, olaparib, is currently FDA approved for the treatment for 

relapsed BRCA-mutated ovarian cancer (34). A recent phase III study reported increased 

progression free survival in metastatic breast cancer patients with a germline BRCA 

mutation treated with olaparib as compared to standard therapy (35). Clinical trials of PARP 

inhibitors in early stage breast cancer with germline BRCA mutation are ongoing.

TNBC is associated with a high number of tumor infiltrating lymphocytes (TILs) and 

indicate better sensitivity to chemotherapy (36). Furthermore, patients with high TILs may 

benefit from therapeutics that enhance antitumoral immune responses. Interest in the 

combination of chemotherapy with immune checkpoint inhibitors is growing and is reflected 

in a number of active clinical trials.

Luminal androgen receptor (LAR) breast cancer subtype is characterized by luminal gene 

expression. Preclinical models demonstrated that tumor growth is driven by androgen 

pathway activation and is estrogen independent (37). The androgen receptor (AR) is an 

emerging target in TNBC treatment. Androgen blockade in AR+ ER- PR- HER2- breast 

cancer is being evaluated in clinical trials.

The claudin-low breast cancer subtype is enriched with epithelial to mesenchymal transition 

(EMT) markers, stem-like features, and immune cell infiltration (38). Currently, there is no 

targeted treatment shown to be effective in this tumor subtype and preclinical studies are 

needed to identify actionable targets.

Current Directions

Models for breast cancer

To study breast cancer in a mammalian system, numerous murine models have been 

developed. The mouse mammary tumor virus (MMTV) promoter enhancer and the Whey 

Acidic promoter (WAP) have been widely used to drive the expression of specific gene in 

the mammary epithelium of transgenic mice. These promoters have been used to establish 

well-known oncogenic mouse models such as MMTV-Myc (39), MMTV-Ras (40), MMTV-

Neu (23) and many others. Tumor suppressors have been studied in mouse models through 

mammary specific knockouts using MMTV-Cre, resulting in mammary specific loss of 

genes including BRCA and p53 (41, 42). Importantly, many models have now been 

compared to human breast cancer at a gene expression level, reflecting many of the broad 

patterns observed in human breast cancer (43–45). When gene expression data from these 

mouse models was used to predict chromosomal gain and loss, conserved events were noted 

in subtypes of cancer in specific models that mimicked human breast cancer (46).

Although these mouse models have played critical roles in establishing the mechanisms in 

breast cancer development and progression, their utility is tempered by limitations for 
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translation to clinical trials. For instance, oncogenes driven by MMTV alleviates the 

mutation selection pressure and alters natural pattern of genomic stability (46). In addition, 

human breast cancer routinely metastasizes to liver and bone while most mouse models 

demonstrate predominately lung metastasis (47). One approach to overcome these 

restrictions is the use of human breast cancer cell lines. Orthotopic injection of cultured 

human cell lines in immunocompromised mice allows for in vivo tumor growth and can be 

used for drug screening. However, cell lines maintained in culture accumulate additional 

mutations and have gene expression patterns divergent from human breast cancer.

Patient-derived xenograft (PDX) model systems use direct implantation of primary human 

tumors to the mammary fat pad of immunocompromised Nude/SCID mouse. PDX models 

eliminate in vitro culture and resulting tumors have been demonstrated to have strong 

similarities to the original primary tumor at both a histological and gene expression level 

(48, 49). Indeed, studies with PDX models have been argued to offer a translatable 

preclinical platform (50). The availability of gene expression data from the PDX models 

opens the realm of developing personalized medicine for testing potential drugs under 

preclinical settings, followed by clinical trials for an accelerated transition to develop 

individualized therapy.

Preclinical trials for personalized medicine

Given that human breast cancer, mouse model systems and PDX tumor samples have 

extensive gene expression data that has been deposited in public repositories, there is now an 

opportunity to use the various model systems in preclinical trials. Importantly, the gene 

expression data allows one to ensure that similar mechanisms to those used in human breast 

cancer can be tested. We have used a method that predicts pathway activation status from 

gene expression data to make predictions in both mouse and human. Essentially this method 

uses gene expression data from training datasets where pathways were activated in human 

mammary epithelial cells in comparison to non-activated controls. Once signaling pathway 

signatures were built and validated (13, 51, 52), they could be used to interrogate any breast 

cancer gene expression dataset. This method has previously been used to make cell signaling 

pathway predictions in both human breast cancer (13, 52–55) and mouse models (43, 56–

62).

Recently we used signaling pathway signatures to predict signaling pathway activation status 

in MMTV-Myc transgenic mice. While we previously noted that Myc induced tumors with 

similar histological subtypes shared gene expression patterns (57) and chromosomal gain or 

deletion events (46), in our recent work we noted key differences in signaling pathways 

between papillary and epithelial to mesenchymal transition (EMT) tumors (63). Indeed, 

Myc, Stat3 and AKT signaling were predicted to be strongly activated in papillary tumors 

while EGFR, RAS and TGFβ activity was upregulated in the EMT tumors. Importantly, as a 

control we use immunoblotting to validate the gene expression based pathway predictions 

for each signaling pathway.

To begin to demonstrate the preclinical application of personalized medicine, we sought to 

use pathway signature predictions to direct therapeutic design, initially in the MMTV-Myc 

mouse model system (Figure 1). By selecting therapeutic compounds that are already FDA 
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approved or under various phases of trials for individual signaling pathway, we sought to 

accelerate the pace for potential transition to clinic. The proof-of-concept experiment 

demonstrated that combination therapy of three drugs simultaneously targeting the Myc, 

Stat3, and Akt pathways inhibited papillary tumor growth compared to vehicle controls in a 

dose dependent manner (63). Importantly, the same combination therapy that prevented 

papillary tumor failed to arrest growth of EMT tumors, emphasizing the importance of 

designing treatment regimen based on gene expression patterns for specificity.

In the described experiment, we noted the initial response of the papillary tumors to 

combination treatment. However, resistance quickly developed and tumors began to grow. 

Examining global patterns of gene expression from these resistant tumors with signaling 

pathway signatures, we predicted elevated probabilities of EGFR and Ras pathway 

activation. This was confirmed through phosphor-ERK immunohistochemistry, and we 

speculated that the cause of recurrence perhaps is not drug resistance but rather a clonal 

selection from tumors that were initially heterogenous due to the speed that resistance 

emerged. With the regrowth of the tumors with other pathways that were targetable, our 

findings suggest that a repeated biopsy in breast cancer patients to examine tumor cells for 

changes in characteristics following courses of treatments may provide critical information 

needed for subsequent treatment decisions.

In much the same manner as the papillary specific treatment, we designed a three drug 

combination to target EMT tumors arising in the transgenic mice. Targeting EGFR, Ras, and 

TGFB pathways in combination prevented EMT tumor growth compared to both vehicle 

control treatment in papillary tumors, again demonstrating that gene expression information 

could direct an effective and specific therapy. The EMT experiment was critical since prior 

comparisons to human cancer revealed a similarity of the EMT mouse tumors to the TNBC / 

Claudin low subtype (43).

To extend the signaling pathway probability method to treating human breast cancer, we 

applied the same signaling pathway predictions to a collection of human breast cancer 

samples from numerous datasets and included PDX samples. Limiting the predictions to the 

basal subset of breast cancer it was readily apparent that many PDX samples were highly 

similar from the standpoint of which cell signaling pathways were active (63). Choosing 

several PDX lines, including one that was similar to the MMTV-Myc EMT samples, we 

implanted the PDX samples into the mammary fat pad and initiated treatment once the 

tumors reached 6 mm. In a critical finding, we noted that cell signaling pathway inhibitors 

that were chosen based on gene expression data were capable of shrinking the PDX tumor 

samples. Together these data demonstrated that gene expression data from both mouse 

models and human breast cancer samples could be interrogated to predict the optimal 

therapy. Together these pre-clinical experiments demonstrated that a gene expression based 

approach could be used to direct effective and specific therapeutic interventions.

5. Future Directions

While there are numerous ongoing studies where molecular profiles are used to direct 

therapy, the future of personalized medicine in cancer will be tied to information gathered 

from individual patient tumors. Indeed, the transition to the clinic in the NCI-MATCH trial 
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(https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match) has 

already begun and is reliant upon genomic sequencing of individual tumors to choose drugs, 

many of which are already FDA approved. In the future, a combination of standard 

biomarkers (ER/PR/HER2), as well as genomic sequence and gene expression information 

will provide an opportunity to tailor treatment for each individual breast cancer patient. A 

future challenge is to develop effective combination strategies. Further preclinical studies 

may identify resistance mechanisms of targeted therapies and inform clinical trial design of 

rationale combination strategies.
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Figure 1. Summary of personalized therapy design
Using the MMTV-Myc mouse model, EMT and Papillary tumors were used in a proof of 

principle experiment to predict therapy. For all tumors RNA was collected and gene 

expression was surveyed. Signaling pathway predictions (red on, blue off) for key signaling 

pathways were calculated based on gene expression signatures. EMT tumors were then 

transplanted to the mammary glands of syngenic mice. Once tumors reached 6 mm in the 

largest dimension, therapy for EMT, control therapy based on papillary tumors and vehicle 

control therapy was initiated in each cohort of mice. EMT treatment was found to be 

effective and specific for EMT tumors. Papillary treatment was also shown to be effective 

and specific for papillary tumors (not shown).
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